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Abstract—Sequential decomposition of two general models of
decentralized systems with non-classical information structures
is presented. In model A, all agents have two observations at
each step: a common observation that all agents observe and
a private observation of their own. The control actions of each
agent is based on all past common observations, the current
private observation and the contents of its memory. At each
step, each agent also updates the contents of its memory. A
cost function, which depends on the state of the plant and
the control actions of all agents, is given. The objective is to
choose control and memory update functions for all agents to
either minimize a total expected cost over a finite horizon or to
minimize a discounted cost over an infinite horizon. In model
B, the agents do not have any common observation, the rest is
same as in model A. The key idea of our solution methodology
is the following. From the point of view of a fictitious agent
that observes all common observations, the system can be
viewed as a centralized system with partial observations. This
allows us to identify information states and obtain a sequential
decomposition. When the system variables take values in finite
sets, the optimality equations of the sequential decomposition
are similar to those of partially observable Markov decision
processes (POMDP) with finite state and action spaces. For
such systems, we can use algorithms for POMDPs to compute
optimal designs for models A and B.

I. INTRODUCTION

Decentralized systems arise in different branches of engi-

neering. Examples include the Internet, telecommunication

networks, sensor networks, surveillance networks, monitor-

ing and diagnostic systems, MANET (mobile ad-hoc net-

works), cognitive radio, control of UAVs (unmanned aerial

vehicles), robotics, etc. Most of these applications are inde-

pendent areas of research. However, from an abstract level,

these applications have similar salient features and similar

design difficulties. We believe that if we can capture these

salient features in a simple model and understand how to

resolve the conceptual difficulties for that model, then these

insights would provide design guidelines for applications.

In this paper, we study two general models of decentralized

systems that arise in different applications and show that,

when viewed appropriately, the optimal design of these

decentralized systems is similar to the optimal design of

partially observable Markov decision processes (POMDPs).

This enables us to obtain a sequential decomposition of these

models, and allows us to use the computational results of

POMDPs to obtain optimal solutions for these models.

Decentralized systems consist of multiple components

(or agents); each component has partial information about

the state of the system but there is no centralization of

information, i.e., no agent knows the information available

to all other agents. In many decentralized systems, all

components/agents have a common objective: optimize the

performance with respect to a system-wide objective (e.g.,

probability of correct detection with minimum energy con-

sumption in sensor, surveillance, and UAV networks, con-

gestion avoidance in transportation and telecommunication

networks, throughput in MANETs and telecommunication

networks, etc.). The agents can coordinate their activities to

achieve their objective.

The decentralization of information makes the design of

decentralized systems drastically different from the design of

centralized systems. The results of standard Markov decision

theory [1] are only applicable to centralized systems and

cannot be used directly to obtain optimal solutions of decen-

tralized systems. To the best of our knowledge, there is only

one known methodology for obtaining appropriate infor-

mation states for decentralized problems—Witsenhausen’s

standard form [2]. However, the standard form is applicable

to only finite horizon problems; we are interested in solution

methodology that can be used for both finite and infinite

horizon problems.

The main contributions of this paper are the following.

We obtain sequential decomposition of two general models

for decentralized systems for both finite and infinite hori-

zon problems. This decomposition is based on identifying

common knowledge between the information structures of

the different agents of the system. We further identify

classes of information structures for which our sequential

decomposition is similar to the sequential decomposition of

POMDPs with finite state and action spaces. Such problems

can be solved efficiently using the numerical techniques for

POMDPs.

The paper is organized as follows. In Section II, we

present two models of decentralized systems and formulate

finite and infinite horizon problems for them. In Section III,

we provide sequential decomposition for these models. In

Section IV we illustrate the key features of our analysis us-

ing a simple multiaccess broadcast system as an example. In

Section V, we identify conditions under which the sequential

decomposition is tractable. We conclude in Section VI.
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II. PROBLEM FORMULATION

In this section we consider two models of decentralized

systems and formulate the problem of optimal design of thse

models for finite and infinite horizon.

A. Model A

Consider a discrete time systems that consists of a plant

and n agents/controllers. Let Xt ∈ X denote the state of the

plant at time t, and Uk
t denote the control action of agent k,

k = 1, . . . , n, at time t. The system evolves as follows

Xt+1 = ft(Xt, U
1
t , . . . , Un

t , Wt), (1)

where ft(·) is the plant function and Wt ∈ W denotes the

process noise.

All agents receive a common message and a private

message. The common message Yt takes values in Y and is

generated according to:

Yt = ct(Xt, U
1
t−1, U

2
t−1, . . . , U

n
t−1, Qt), (2)

where ct(·) is the observation channel and Qt denotes the

observation noise.

The private message to agent k, which is denoted by Zk
t

and takes values in Zk, is generated according to:

Z1
t = h1

t (Xt, N
1
t ), (3a)

Z2
t = h2

t (Xt, U
1
t , N2

t ) (3b)

· · · = · · ·

Zn
t = hn

t (Xt, U
1
t , U2

t , . . . , Un−1
t , Nn

t ) (3c)

where hk
t is the observation channel of agent k and Nk

t

denotes the observation noise of agent k.

Each agent has unlimited memory to store the common

messages and has either perfect recall or limited memory to

store the private messages. We model this by assuming that

at any time t, agent k knows Y1, . . . , Yt and its memory

contents Mk
t−1, where Mk

t−1 takes values in Mk
t . If Mk

t

equals Zk
1 × · · · Zk

t−1 × Uk
1 × · · · × Uk

t−1 then agent k has

perfect recall.

At each time time t, after agent k gets his private

observation Zk
t , it generates a control action Uk

t and updates

its states to Mk
t according to

Uk
t = gk

t (Y1, . . . , Yt, Z
k
t , Mk

t−1), (4)

Mk
t = lkt (Y1, . . . , Yt, Z

k
t , Mk

t−1), (5)

respectively. The functions gk
t and lkt are the control law and

the memory update rule/function of agent k. Let Yt denote

Y × · · · × Y (t-times), G k
t denote the family of functions

from Yt ×Zk
t ×Mk

t−1 to Uk
t and L k

t denote the family of

functions from Yt ×Zk
t ×Mk

t−1 to Mk
t .

At each time an instantaneous cost ρt(Xt, U
1
t , . . . , Uk

t ) is

incurred. We assume that the initial state X1 of the plant is

a random variable with PDF (probability density function)

PX1
. We assume that {W1, t = 1, . . . }, {Q1, t = 1, . . . },

and {Nk
1 , t = 1, . . . }, k = 1, . . . , n, are mutually inde-

pendent sequence of independent random variables that are

also independent of X1. The PDFs of Wt, Qt, and Nk
t are

given by PWt
, PQt

and PNk

t

, respectively. The variables X1,

{W1, t = 1, . . . }, {Q1, t = 1, . . . }, and {Nk
1 , t = 1, . . . },

k = 1, . . . , n are called primitive random variables.

We are interested in two optimization problems, one for

finite horizon and the other for infinite horizon.

1) Finite horizon case: Consider model A that operates

for a finite horizon T . The choice of control laws and

memory update rules for all agents for the entire horizon is

called a design or a strategy. We denote a design by (G,L),
where G := (G1, G2, . . . , Gn), Gk := (gk

1 , gk
2 , . . . , gk

T ), k =
1, . . . , n, and L := (L1, L2, . . . , Ln), Lk := (lk1 , lk2 , . . . , lkT ).
The peformance of a design is quantified by the expected

total cost under that design, which is given by

JT (G,L) := E

{
T∑

t=1

ρt(Xt, U
1
t , . . . , Un

t )

∣
∣
∣
∣
∣
G, L

}

(6)

We are interested in the following optimization problem.

Problem 1 (The finite horizon problem): Given a hori-

zon T and for each time t = 1, . . . , T , given the plant func-

tion ft, the observation functions ct and hk
t , k = 1, . . . , n,

the cost function ρt, and the statistics PX1
, PWt

, PQt
and

PNk

t

of the primitive random variables, determine a design

(G∗, L∗) that is optimal with respect to the performance

criterion of (6), i.e.,

JT (G∗, L∗) = J∗
T := inf

G,L∈(G T ,L T )
JT (G,L) (7)

where G T := (G 1
1 ×G 1

2 ×. . .G 1
T )×· · ·×(G n

1 ×G n
2 ×. . .G n

T )
and L T := (L 1

1 × L 1
2 × . . .L 1

T ) × · · · × (L n
1 × L n

2 ×
. . .L n

T ).
2) Infinite horizon case: Consider Model A that operates

for an infinite horizon T → ∞. We assume that the system

is time homogeneous, that is

(i) all system variables take values in time-invariant

spaces; so Xt, Yt, Zk
t , Mk

t , Uk
t , Wk, Qt, and N k

t

do not depend on t and can be written as X , Y , Zk,

Mk, Uk, Wk, Q, and N k, respectively.

(ii) the plant function ft, the observation functions ct and

hk
t , and the instantaneous cost function ρt do not

depend on t and can be written as f , c, hk, and ρ

respectively.

(iii) The statistics of the primitive random variables are

independent of time. Thus, PWt
, PQt

, and PNk

t

do

not depend on t and can be written as PW , PQ, and

PNk .

The collection of control laws and memory update rules

for all agents for all time is called a design or a strategy

and denoted by (G,L). The performance of a design is

quantified by the expected discounted cost over an infinite

horizon under that design; this cost is given by

Jβ(G,L) := E

{
∞∑

t=1

βt−1ρ(Xt, U
1
t , . . . , Un

t )

∣
∣
∣
∣
∣
G, L

}

(8)

where β is the discount factor which takes values in the in-

terval (0, 1). We are interested in the following optimization

problem.
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Problem 2 (The infinite horizon problem): Given the

plant function f , the observation functions c and hk, the

cost function ρ and the statistics PX1
, PW , PQ, PNk ,

k = 1, . . . , n, of the primitive random variables, determine

a design (G∗,L∗) that is optimal with respect to the

performance criterion of (8), i.e.,

Jβ(G∗,L∗) = Jβ,∗ := inf
G,L∈(Ḡ ,L̄ )

Jβ(G,L) (9)

where Ḡ := (G 1 × G 1 × . . . )× · · · × (G n × G n × . . . ) and

L̄ := (L 1 × L 1 × . . . ) × · · · × (L n × L n × . . . ).

B. Model B

In model B we assume that the agents do not receive

a common message. The rest of the model is same as

model A. The plant update is given by (1) and each agent

receives a private message according to (3). The control law

and memory update rules of each agent do not depend on

common messages and are given by

Uk
t = gk

t (Zk
t , Mk

t−1), (10)

Mk
t = lkt (Zk

t , Mk
t−1). (11)

The instantaneous cost and statistics of the noise are the

same as in model A.

For model B, we are interested in two optimization

problems, one for finite horizon, and one for infinite horizon.

These problems are similar those for model A.

C. Salient features of the models

Models A and B capture the salient features of decentral-

ized systems that arise in different engineering applications.

These features include

1) In decentralized systems agents have access to different

information. Nevertheless, there may be certain infor-

mation about the state of the system that is commonly

known. Model A captures this situation.

2) The agents do not know all the observations and the

control actions of other agents.

3) The actions taken by one agent affect the observations

of other agents.

4) The agents are coupled through the plant dynamics and

the common objective.

Hence a study of these models is useful for a large class of

decentralized problems.

These models are also general enough to encompass

other special classes of decentralized systems that have been

considered in the literature. As an example, we show that

the delayed sharing pattern is a special case of model A.

D. Delayed sharing pattern as an instance of model A

The delayed sharing pattern considered in [3], [4] consists

of a plant and n agents/controllers.1 The state of the plant

is denoted by Xt and the control actions of agent k, k =
1, . . . , n, is denoted by Uk

t . The plant evolves according to

Xt+1 = ft(Xt, U
1
t , . . . , Un

t , Wt), (12)

1We use a slightly different notation than [4].

Each agent receives two messages at time t: a common mes-

sage consisting of private observations and control actions of

all the agents at time t−d; and a private message consisting

of noisy observations of the the state of the plant. More

precisely, the private messages Zk
t are given by

Zk
t = hk

t (Xt, N
k
t ), k = 1, . . . , n (13)

where Nk
t denotes the observation noise. The common

message Yt is given by

Yt =
(
(Z1

t−d, U
1
t−d), . . . , (Z

n
t−d, U

n
t−d)

)
(14)

Each agent has perfect recall and generates its control

actions according to

Uk
t = gk

t (Zk
1 , . . . , Zk

t , Uk
1 , . . . , Uk

t−1, Y1, . . . , Yt)

which is equivalent to

Uk
t = gk

t (Zk
t−d+1, . . . , Z

k
t , Uk

t−d+1, . . . , U
k
t−1, Y1, . . . , Yt).

(15)

Thus, we can think of (Zk
t−d+1, . . . , Z

k
t−1,

Uk
t−d+1, . . . , U

k
t−1) as the memory of agent k. At each time

an instantaneous cost ρt(Xt, U
1
t , . . . , Un

t ) is incurred.

The delayed sharing pattern has some similarties with

model A but is not exactly the same. However, it can

be considered as an instance of model A by a suitable

expansion of the state space. Given a system with delayed

sharing pattern, define

N̄t := (N1
t , . . . , Nn

t ) (16)

Ūt := (U1
t , . . . , Un

t ) (17)

X̄t := (Xt−d, . . . , Xt, Ūt−d, . . . , Ūt−1, N̄t−d) (18)

W̄t := (Wt, N̄t−d+1) (19)

Then,

X̄t+1 = (Xt−d+1, . . . , Xt+1, Ūt−d+1, . . . , Ūt, N̄t−d+1)

The component Xt+1 of X̄t+1 is generated according

to (12); the component Ūt is a controlled input, the com-

ponent N̄t−d+1 is a component of W̄t, and all other com-

ponents of X̄t+1 are part of X̄t. Thus, we can determine a

function f̄t such that

X̄t+1 = f̄t(X̄t, U
1
t , . . . , Un

t
︸ ︷︷ ︸

Ūt

, W̄t) (20)

The common observations of all the agnets can be written

as

Yt := (Z1
t−d, . . . , Z

n
t−d, U

1
t−d, . . . , U

n
t−d)

=
(
h1

t−d(Xt−d, N
1
t−d), . . . , h

n
t−d(Xt−d, N

n
t−d),

U1
t−d, . . . , U

n
t−d

)

=: c̄(X̄t)

(21)

The private messages given by (13) can be written as

Zk
t = hk

t (Xt, N
k
t ) =: h̄k

t (X̄t, N
k
t ) (22)
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which is a special case of (3). Furthermore, the control laws

of (15) is a special case of (4). The instantaneous cost can

be written as ρt(Xt, U
1
t , . . . , Un

t ) =: ρ̄t(X̄t, U
1
t , . . . , Un

t ).
Thus, the system with the above regrouping and X̄t as the

state of the system is an instance of model A. This model

is equivalent to the delayed sharing pattern, so the delayed

sharing model is also an instance of model A.

E. Solution philosophy of centralized problems

In this paper, we show that when viewed appropriately,

decentralized problems of model A and B can be considered

as partially observed centralized systems. In order to explain

our results, we first briefly present the main ideas for

partially observed centralized systems.

A common model of centralized control problem is the

partially observable Markov decision process (POMDP)

which consists of a plant and a controller. The state of the

plant is denoted by Xt which takes values in X . The state

evolves as follows:

Xt+1 = ft(Xt, Ut, Wt) (23)

where Ut is the control action taking values in U , and {Wt,

t = 1, . . . , T} is an independent noise process.

The state of the plant is imperfectly observed by a con-

troller. The controller’s observation at time t is denoted by

Yt and takes values in Y . These observations are generated

according to

Yt = ht(XtNt) (24)

The controller has perfect recall, that is, it remembers

all its past actions and observations. At each time t, the

controller generates a control action according to

Ut = gt(Y
t, U t−1) (25)

where Y t = Y1, . . . , Yt and U t−1 = U1, . . . , Ut−1.

A control policy or a design for a finite time horizon T

is given by a collection of functions :

gt : Yt × U t−1 → U (26)

At each instant, the system incurs a cost ρt(Xt, Ut) that

depends on the state and the action taken at that time.

The initial state X1 of the plant is a random variable with

PDF PX1
. The plant disturbance {W1, t = 1, . . . } and

the observation noise {N1, t = 1, . . . } are independent

processes which are also independent of X1. The PDF of

Wt and Nt are given by PWt
and PNt

respectively.

We are interested in two optimization problem, one for

finite horizon and one for infinite horizon. For the finite

horizon problem, the objective is to determine a design G :
= (g1, . . . , gT ) to minimize a total expected cost given by

JT (G) := E

{
T∑

t=1

ρt(Xt, Ut)

∣
∣
∣
∣
∣
G

}

For the infinite horizon problem, the system is assumed

to be time homogeneous and the objective is to determine a

design G := (g1, g2, . . . ) to minimize (or minimize within

an ε) a total expected discounted cost given by

Jβ(G) := E

{
∞∑

t=1

βt−1ρ(Xt, Ut)

∣
∣
∣
∣
∣
G

}

Choosing an optimal design for both finite and infinite

horizons in a functional optimization problem. Markov

decision theory provides a systematic methodology for

determining optimal designs for POMDPs. For centralized

problems, this methodology is called dynamic programming;

in general, it is called sequential decomposition.

For finite horizon problem, Markov decision theory pro-

vides a decomposition of the one-shot optimization problem

into a sequence of smaller problems; each step of this

decomposition solves a series of parametric optimization

problems. The notion of information state is key to obtaining

such a sequential decomposition. For POMDPs, an informa-

tion state is the controller’s belief on the state of the system

given its past observations and actions, i.e.,

πt = Pr
{

Xt

∣
∣ Y t, U t−1

}
(27)

The information state πt+1 at time t + 1 is a function of

the information state πt at time t, the control action Ut at

time t and the observation Yt+1 at time t + 1; so, it can be

written as

πt+1 = Ft(πt, Ut, Yt+1). (28)

See [1] for the exact functional form of Ft.

Markov decision theory shows that there is no loss of

optimality in restricting attention to control laws of the form

Ut = gt(πt). (29)

Further, optimal control laws can be determined by the

solution of the following optimality equations, called the

dynamic program

VT+1(π) = 0 (30a)

Vt(π) = inf
ut∈U

[
E

{
πt(Xt, Ut) +

Vt+1(πt+1)
∣
∣ πt = π, Ut = ut

}]
(30b)

The arg inf at each step determines the corresponding opti-

mal control action.

For the infinite horizon problems, Markov decision theory

shows that for a time homogeneous system there is no loss

of optimality in restricting attention to time-invariant designs

of the form (29), i.e., designs where gt = g for all t.

The optimal time-invariant design can be determined from

the unique uniformly bounded fixed point of the following

functional equation

V (π) = inf
u∈U

[
E

{
ρ(X, U) +

βV (F (π, U, Y ))
∣
∣ π, U = u

}]
(31)

where F (·) is the time invariant version of Ft from (28),

Y = h(f(X, U, W ), N) and the expectation is with respect

to the measure on (X, W,N) given by π · PW · PN .
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The above described sequential decomposition provides a

systematic way to search for an optimal design efficiently.

For finite horizon problems where the system variables

are finite valued, a brute force search for an optimal de-

sign requires computing the performance of approximately

|U|(|Y|×|U|)T

designs. The dynamic programming equations

can be solved by exploiting the piecewise linearity and con-

vexity of the Vt functions [5]. In the worst case, this solution

requires approximately |U||Y|T
computations. However, for

specific instances, the solution can be found in computations

that are polynomial in T (see [6]).

For infinite horizon POMDPs, even when the system vari-

ables are finite valued, optimal designs cannot be searched

in a brute force manner since there are infinitely many

designs. The functional equations of (31) can be efficiently

approximated using randomized algorithms that discretize

the belief space. It is shown in [8] that the worst case

complexity of solving discounted cost POMDPs with finite

state and action space is polynomial in |X | and |U|. There

are other results which exploit the special structure of

POMDPs arising in specific application domains to solve

finite and infinite POMDPs more efficiently.

The advantages of sequential decomposition for central-

ized problems motivates obtaining the sequential decompo-

sition of decentralized problems.

III. SEQUENTIAL DECOMPOSITION

For a centralized stochastic control problem, the sequen-

tial decomposition of provides computational advantages in

finding an optimal policy for both finite and infinite horizon

problems (see [7], [8]). In certain cases the optimality equa-

tions of the sequential decomposition can be used to identify

qualitative properties of optimal control laws. For example,

for sequential hypothesis testing problem [9] the optimality

equations are used to prove that an optimal decision rule is

of a “threshold type”; for centralized LQG (linear quadratic

and Gaussian) problems the optimality equations can be

used to prove that optimal control laws are affine. Such

qualitative properties significantly simplify the search for

optimal designs.

In this section, we present sequential decomposition for

both finite and infinite horizon multi-agent problems de-

scribed in models A and B. As in the case of a centralized

problem, the sequential decomposition proceeds backward

in time — it first finds optimal strategies for all realizations

of an information state at the last time step and then for

the previous time step and so on. The decentralized nature

of our models implies that each step of the decomposition

is a functional optimization problem unlike the parametric

optimization obtained in centralized problems.

A. Model A : Finite Horizon Case

Consider the finite horizon case of model A. At each time

instant, the optimal strategy choice of an agent depends on

the strategies of other agents. If the strategies of all agents

are to be obtained sequentially, the agents should be able to

agree on the choice of strategies of all agents. In other words,

every agent must be able to carry out the same sequential

decomposition. Hence, the sequential decomposition must

be based on information that is available to all agents. At

each time step t, this “common information” is the collection

of all past control and memory-update functions and the

sequence of past common messages (Y1, . . . , Yt). Equiv-

alently, we can assume that the sequential decomposition

is carried out by a fictitious agent who has access to the

common information. We call this agent the common agent.

The derivation of the sequential decomposition proceeds

in three stages:

1) Formulate the problem as a centralized stochastic con-

trol problem from the point of view of the common

agent who knows the common information.

2) Show that the centralized stochastic problem is a

POMDP.

3) Identify an information state for the resulting POMDP

and use this information state to obtain a sequential

decomposition.

Below, we elaborate on each of these stages.

Stage 1: At each time step, the common agent knows

all the common messages received so far. The common

agent then selects functions that map each agent’s private

information to its actions. That is, for agent k at time t, the

common agent selects the following partial functions ĝk
t and

l̂kt ,

ĝk
t : Zk

t ×Mk
t−1 → Uk

t

l̂kt : Zk
t ×Mk

t−1 → Mk
t

based on (Y1, . . . , Yt). Once these functions are selected,

each agent simply receives its private message and uses the

selected functions to determine its control action and update

its memory according to

Uk
t = ĝk

t (Zk
t , Mk

t−1),

Mk
t = l̂kt (Zk

t , Mk
t−1).

The system then incurs a cost ρt(Xt, U
1
t , . . . , Un

t ). Viewed

like this, the problem is now a centralized problem with the

common agent as the only decision maker.

Stage 2: Define the following random vectors:

Definition 1:

S0
t := (Xt, M

1
t−1, M

2
t−1, . . . , M

n
t−1, U

1
t−1, U

2
t−1, . . . , U

n
t−1),
(32a)

and for k = 1, . . . , n + 1,

Sk
t := (Xt, M

1
t , M2

t , . . . , Mk−1
t ,

Mk
t−1, M

k+1
t−1 , . . . , Mn

t−1, U
1
t , U2

t , . . . , Uk−1
t ). (32b)

These random variables evolve with time as follows:

Claim 1: For each time t there exists a function f̂0
t such

that

S1
t = f̂0

t (S0
t ), (33a)
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Fig. 1. Sequential ordering of the different variables in the system. In the labels CA is an abbreviation for common agent.

and for each time t, and each k = 1, . . . , n, there exist

function f̂k
t such that

Sk+1
t = f̂k

t (Sk
t , ĝk

t , l̂kt , Nk
t ), (33b)

and for each t, there exists a function f̂n+1
t such that

S0
t+1 = f̂n+1

t (Sn+1
t , Wt). (33c)

Proof: This followed immediately from the functional

relation between the different components of Sk
t . A detailed

proof is presented in [10].

Using these random variables, the common message can

be written as

Yt = ct(Xt, U
1
t−1, . . . , U

n
t−1, Qt) =: ĉt(S

0
t , Qt). (34)

The update equations (33) of Claim 1 and the observa-

tion equation (34) imply that, from the point of view of

the common agent, the variables Sk
t , k = 1, . . . , n + 1,

t = 1, . . . , T , are states sufficient for input-output mapping

of the system . Thus, from the point of view of the common

agent, the system is a partially observed system. To see this,

we refine the notion of time. Consider that each agent makes

its observation and takes an action at a different time step.

Thus, in the time interval from t to t + 1, we consider

n + 2 smaller time steps marked by: t0, t1, . . . , tn+1 (see

Figure 1). All agents get the common message at t0. Just

after t1, the common agent selects the partial functions for

agent 1; then, the first agent gets his private observation,

uses the selected partial functions to take its control action

and update its memory. Similarly, for the k-th agent, just

after tk, the common agent selects the partial functions for

agent k; then, the k-th agent gets his private observation,

uses the selected partial functions to take its control action

and update its memory.

We can assume that after each time step tk, k =
0, . . . , n + 1 the common agent makes observations, which

are denoted by Ok
t , where the observations at time tk,

k = 1, . . . , n + 1 are null. The common agent’s observation

functions can be written as:

O0
t = Yt = ct(Xt, U

1
t−1, U

2
t−1, . . . , U

n
t−1, Qt) =: ĥ0

t (S
0
t , Qt)
(35a)

and for k = 1, . . . , n + 1,

Ok
t = 0 =: ĥk

t (Sk
t ) (35b)

Thus, {Sk
t , k = 0, . . . , n + 1, t = 1, . . . , T} is a partially

observed controlled Markov process and the common agents

observations depend only on the current state of the con-

trolled Markov chain.

Furthermore, the instantaneous cost can be written as

follows:

Claim 2: ρt(Xt, U
1
t , . . . , Un

t ) = ρ̂t(S
n+1
t ).

Proof: This follows from the fact that Xt and

U1
t , . . . , Un

t are components of Sn+1
t .

The total cost of the system can be written as:

JT = E

{
T∑

t=1

ρ̂t(S
n+1
t )

}

. (36)

Thus from the common agent’s perspective the system is a

standard POMDP.

Stage 3: When the decentralized problem of model A is

viewed from the perspective of the fictitious common agent,

it becomes a centralized problem with an enlarged state and

action spaces. In particular, the state space incorporates not

only the state of the plant but also the state of the private

information of each actual agent while the action space is

no longer the space of control action taken but the space of

functions used to map private information to control actions.

Since the model A assumes perfect memory for common

information, the common agent has perfect recall. Hence,

from the perspective of the common agent, the problem is

a POMDP. One can now use the standard POMDP results

to come up with an information state and the sequential

decomposition. Next we describe the information state and

the sequential decomposition for this POMDP.

Information State: Let O
k
t denote all the observations

received by common agent till time tk. That is,

O
k
t = (O0

1, O
1
1, .., O

n+1
1 , O0

2, .., O
n+1
2 , .., O0

t , ..Ok
t )

= (Y1, . . . , Yt). (37)

Similarly let P
k
t be the set of all partial functions selected

by the controller before time tk. That is,

P
k
t = (ĝ1

1 , l̂11, . . . , ĝ
n
1 , l̂n1 , ĝ1

2 , l̂12, . . . , ĝ
n
2 , l̂n2 , . . . ,

ĝ1
t , l̂1t , . . . , ĝ

k−1
t , l̂k−1

t ) (38)

Then, the information state of the common agent is his

belief on the current state given the past observations and
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actions and is given by

πk
t = Pr

{
Sk

t

∣
∣ O

k
t ,Pk

t

}
(39)

Since the common agent’s problem is now a POMDP, it

follows that the next belief depends only on the current

belief, the current action and the next observation of the

common agent. Similar to (28), we can write

π1
t = F 1

t (π0
t ) (40a)

and for k = 1, . . . , n,

πk+1
t = F k

t (πk
t , ĝk

t , l̂kt ) (40b)

and

π0
t+1 = F 0

t+1(π
n+1
t , Yt) (40c)

We refer the reader to [10] for the exact functional form of

F k
t , k = 0, . . . , n + 1. Using these information states, the

optimality equations of the problem at the common agent

are given by the following.

Theorem 1: Let π̃k
t denote a PMF (probability mass func-

tion) on Sk
t , k = 0, . . . , n+ 1, and t = 1, . . . , T . Define the

following functions:

V 0
T+1(π̃

0
T+1) = 0 (41a)

and for t = 1, 2, . . . , T and k = 1, 2, . . . , n,

V n+1
t (π̃n+1

t ) =

E
{

ρ̂t(S
n+1
t ) + V 0

t+1(π
0
t+1)

∣
∣ πn+1

t = π̃n+1
t

}
(41b)

V k
t (π̃k

t ) = inf
ĝk

t
,l̂k

t

[

E

{

V k+1
t (πk+1

t )
∣
∣
∣ πk

t = π̃k
t , ĝk

t , l̂kt

}]

(41c)

V 0
t (π̃0

t ) = E
{

V 1
t (π1

t )
∣
∣ π0

t = π̃0
t

}
(41d)

The arg inf at each step in (41c) determines the optimal

partial functions.

The above sequential decomposition is similar to the one

in POMDPs. Observe that the infimum at each step is over

the set of partial functions and not parameters.

Since the information states in the above decomposition

depends on common information which is available to all

agents, the sequential decomposition can be carried out by

all agents. If all agents use identical rules for breaking ties,

they will come up with identical solutions for the optimality

equations. An agent can then implement its own partial

functions to select its control action and use the partial

functions of all agents to track the evolution of information

state.

B. Sequential Decomposition for Model B

As mentioned before, model B is a special case of model

A where there are no common messages. Therefore, one

can use the same arguments as for model A to arrive at a

sequential decomposition with the only modification being

the removal of the common messages. Specifically, the three

stages in the argument for model A become modified as

follows:

Stage 1: At each time step, the common agent has to

select each agent’s control law and memory update rule,

that is, functions that map each agent’s information to its

actions.

gk
t : Zk

t ×Mk
t−1 → Uk

t

lkt : Zk
t ×Mk

t−1 → Mk
t

Stage 2: The definition of the states Sk
t and the refined

notion of time are same as in model A. However, the

common agent observations are null at all times. The system

is then an unobserved controlled Markov decision process.

Stage 3: The information state is now given as:

πk
t = Pr

{
Sk

t

∣
∣ P

k
t

}
(42)

where

P
k
t = (g1

1 , l11, . . . , g
n
1 , ln1 , g1

2 , l12, . . . , g
n
2 , ln2 , . . . ,

g1
t , l1t , . . . , g

k−1
t , lk−1

t ) (43)

The optimality equations for model B are given by the

following.

Theorem 2: Let π̃k
t denote a PMF (probability mass func-

tion) on Sk
t , k = 0, . . . , n+ 1, and t = 1, . . . , T . Define the

following functions:

V 0
T+1(π̃

0
T+1) = 0 (44a)

For t = 1, 2, . . . , T and k = 1, 2, . . . , n

V n+1
t (π̃n+1

t ) =

E
{

ρt(S
n+1
t ) + V 0

t+1(π
0
t+1)

∣
∣ πn+1

t = π̃n+1
t

}
(44b)

V k
t (π̃k

t ) = inf
gk

t
,lk

t

[

E
{

V k+1
t (πk+1

t )
∣
∣ πk

t = π̃k
t , gk

t , lkt
}]

(44c)

V 0
t (π̃0

t ) = E
{

V 1
t (π1

t )
∣
∣ π0

t = π̃0
t

}
(44d)

The arg inf at each step in (44c) determines the optimal

partial functions.

C. Models A and B: Infinite Horizon Cases

The common agent’s problem described above for the

finite horizon cases can also be extended to the infinite

horizon cases. Essentially, from the common agent’s per-

spective, the system is still a partially observed controlled

Markov process but it now has a discounted cost over infinite

horizon as the optimization criterion. Under the assumptions

of time-homogeneity described in the problem formulation,

the problem is equivalent to time-invariant infinite horizon

POMDP. The optimality equations of Theorems 1 and 2

can be extended to the infinite horizon in the standard way.

For model A, the infinite horizon designs are given by the

following functional equations

V 0(π̃0) = E
{

V 1(π1)
∣
∣ π0 = π̃0

}
,

for k = 1, . . . , n

V k(π̃k) = inf
ĝk,l̂k

[

E

{

V k+1(πk+1)
∣
∣
∣ πk = π̃k, ĝk, l̂k

}]

,
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and

V n+1(π̃n+1) = E
{

ρ̂(Sn+1) + βV 0(π0)
∣
∣ πn+1 = π̃n+1

}
.

The information states πk, k = 0, . . . , n+1, are related by a

time-invariant version of (40). For model B, we can simply

replace (ĝk, l̂k) in the above equations with (gk, lk). The

detailed derivation of these equations is shown in [10].

IV. AN EXAMPLE — MULTIACCESS BROADCAST SYSTEM

A. Problem formulation

Consider the following two user multiaccess broadcast

system where the users transmit over a shared channel. The

system operates in discrete time. Both users have a buffer

of size 1 and if they have a packet, they can transmit it at

the beginning of the time slot. If only one user transmits,

the packet is received successfully. If both users transmit

simultaneously, a collision occurs and no packet is received.

Packets arrival at each user is an independent Bernoulli

process with probabilities of arrival p1 and p2, respectively.

At the end of each time step, both users receive a feedback

describing the channel use in that time step, that is, both

users know whether there was a successful transmission, a

collision or that the channel was idle.

The objective of the problem is to design transmission

protocols for both users to maximize the throughput of the

system, that is, to maximize the probability of successful

transmission in each time step.

Formally, the above model can be described as follows:

for the ith user, let Bi
t ∈ {0, 1} be the state of the buffer

at the beginning of the tth time step, let Ai
t ∈ {0, 1} be the

number of packet arrivals during the tth time step and let

U i
t ∈ {0, 1} be the transmission decision made (0 repre-

senting no transmission and 1 representing a transmission).

Let Rt be the channel feedback received at the end of the

tth time step. Rt = 0 represents idle channel, Rt = i,

(i = 1, 2) represents a successful transmission by the ith

user and Rt = 3 represents a collision. At each time step,

each user decides its action based on the current state of its

buffer and all the past channel feedback messages received.

That is,

U i
t = gi

t(B
i
t, R1, . . . , Rt−1). (46)

The number of packets in the buffer of user i change as

follows

a) Bk
t+1 = Bk

t if both users transmit, i.e., Uk
t = Uk′

t = 1,

k′ �= k.

b) Bk
t+1 = Ak

t if only user k transmits, i.e., Uk
t = 1, Uk′

t =
0, k′ �= k.

c) Bk
t+1 = min(1, Bk

t + Ak
t ) if user k does not transmit,

i.e., Uk
t = 0.

Also, the channel feedback Rt is a function only of the

current actions U1
t and U2

t of the users. In particular,

Rt =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0, if no user transmits, i.e., U1
t = U2

t = 0,

1, if only user 1 transmits, i.e., U1
t = 1 and U2

t = 0,

2, if only user 2 transmits, i.e., U1
t = 0 and U2

t = 1,

3, if both users transmit, i.e., U1
t = U2

t = 1.

The reward earned in a time step is given as r(U1
t , U2

t )
where r(a, b) = 1 if a �= b and 0 otherwise. The overall

objective is to maximize the total reward over a finite

horizon T .

The above problem can be formulated as an instance of

model A as follows :

1) The state of the system can be described as

Xt = (B1
t , B2

t ) (47)

Given the current state and the users’ decisions, the

state at next time step is determined by the independent

arrival process, that is,

Xt+1 = ft(Xt, U
1
t , U2

t , A1
t , A

2
t ) (48)

2) Rt−1 is the common message (Yt) between users at

time t. Clearly,

Yt = Rt−1 = ct(U
1
t−1, U

2
t−1) (49)

3) Additionally, each user observes the state of his own

buffer. Thus Bi
t is the private message (Zi

t) of ith user.

Zi
t = Bi

t = hi
t(Xt) (50)

4) Since the users don’t recall past states of buffer, they

have no memory (M i
t = ∅).

5) The instantaneous cost ρt(Xt, U
1
t , U2

t ) = −r(U1
t , U2

t ).

Thus, the multiaccess broadcast problem can be viewed

as an instance of model A. We can use the results of

Section III-A to obtain a sequential decomposition of the

problem. This sequential decomposition is described in the

next section.

B. Sequential decomposition of multiaccess broadcast

The common agent for this problem knows all the past

channel feedback messages. The actions for the common

agent are the partial functions that map the state of the

user’s buffer to a transmission decision. Since both the state

of buffer and the action take values in {0,1}, the partial

functions that the common agent selects are of the form

ĝk
t : {0, 1} → {0, 1} (51)

Following the arguments of sequential decomposition of

Model A, we can define the states Sk
t as:

S0
t := (B1

t , B2
t , U1

t−1, U
2
t−1),

S1
t := (B1

t , B2
t ),

S2
t := (B1

t , B2
t , U1

t ),

S3
t := (B1

t , B2
t , U1

t , U2
t ). (52)

It is straightforward to see that there exist deterministic

functions f̂k
t , k = 0, 1, 2, such that

S1
t = f̂0

t (S0
t ) (53a)

S2
t = f̂1

t (S1
t , ĝ1

t ), (53b)

S3
t = f̂2

t (S2
t , ĝ2

t ), (53c)
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and for each t, there exists a function f̂3
t such that

S0
t+1 = f̂3

t (S3
t , A1

t , A
2
t ). (53d)

The common agent’s observations are:

O0
t = Yt = ct(U

1
t−1, U

2
t−1) = ĥ0

t (S
0
t ) (54a)

and for k = 1, . . . , 3,

Ok
t = ĥk

t (Sk
t ) = 0; (54b)

and the cost is

ρt(U
1
t , U2

t ) = ρ̂t(S
3
t ) (55)

We can now use equation (39) to write the information

states at each instant in the refined time (t0, t1, t2, t3). A

simple substitution gives the following information states

π0
t = Pr

{
B1

t , B2
t , U1

t−1, U
2
t−1

∣
∣ Rt−1

}
(56a)

π1
t = Pr

{
B1

t , B2
t

∣
∣ Rt−1

}
(56b)

π2
t = Pr

{
B1

t , B2
t , U1

t

∣
∣ Rt−1

}
(56c)

π3
t = Pr

{
B1

t , B2
t , U1

t , U2
t

∣
∣ Rt−1

}
(56d)

where Rt−1 = (R1, . . . , Rt−1). It can be easily verified

that as in POMDP the information state at the next stage

depends only on the current information state, the action and

the observation of the common agent ([10]). The sequential

decomposition of Theorem 1 can be written as follows for

this problem

V 0
T+1(π̃

0
T+1) = 0 (57a)

and for t = 1, 2, . . . , T and k = 1, 2,

V 3
t (π̃3

t ) = E
{

ρ̂t(S
3
t ) + V 0

t+1(π
1
t+1)

∣
∣ π3

t = π̃3
t

}
(57b)

V k
t (π̃k

t ) = inf
ĝk

t

[

E
{

V k+1
t (πk+1

t )
∣
∣ πk

t = π̃k
t , ĝk

t

}]

(57c)

V 0
t (π̃0

t ) = E
{

V 1
t (π1

t )
∣
∣ π0

t = π̃0
t

}
(57d)

In equations (57b) and (57d) we do not have to choose a

control action. In (57c), we have to perform a minimization

over a set of four possible choices of ĝk
t . Moreover, the state

at each time Sk
t belongs to a finite set of small cardinality

(at most 8) In principle, the four optimality equations can be

combined by straightforward substitution to yield a single

minimization at each step where the minimization is over

all possible choices of ĝ1
t and ĝ2

t together.

Thus, we can transform the original decentralized prob-

lem into a POMDP by considering the problem from the

common agent’s perspective. Since each agents private in-

formation lies in a small finite set and the number of control

actions is limited to two (transmit or not), the POMDP

formulation involves only small state and action spaces.

This allows using the available numerical techniques for

solving moderately sized POMDPs to be applied for this

decentralized problem. In the next section, we generalize

these ideas to identify cases where the finite and infinite

horizon problem for models A and B can be efficiently

solved with the POMDP numerical methods.

V. TRACTABILITY OF THE SEQUENTIAL DECOMPOSITION

In general optimality equations for POMDPs are hard

to solve. However, when the state and action spaces are

finite, efficient approximation techniques exist for both finite

horizon [7] and infinite horizon [8] problems. This means

that if the POMDPs corresponding to models A and B have

finite state and action space, approximately optimal efficient

solutions of these models can be computed.

Consider the finite horizon problem for model A when

all system variables take values in a finite set. In this case,

the states Sk
t , k = 0, . . . , n + 1, sufficient for input-output

mapping also take values in a finite set. Furthermore, the

partial functions ĝk
t and l̂kt are functions where the domain

and the range are finite sets. Thus, there are finitely many

possibilities for these partial functions. Hence, the POMDP

formulated from the common agent’s perspective has finite

state and action spaces. Consequently, optimal solution

for these POMDPs can be found using the computational

techniques of [7]. Recall however that the conversion of

the decentralized model A into a POMDP comes at the

cost of the increase in the dimensionality of the state and

action spaces. In particular, the action space is exponential

in the sizes of the private messages and the memory of the

agents. This means that optimal solutions for model A can

be computed for a much smaller dimensionality of the state

and action spaces (of the underlying decentralized problem)

than those for POMDPs. Similar results and concerns hold

for the finite horizon case of model B.

For infinite horizon problems, the system variables take

values in time-invariant spaces. When all of these spaces

are finite sets, the POMDP at the common agent has finite

state and action spaces. This follows from arguments similar

to those in the finite horizon case. Such POMDPs can be

solved approximately using randomized algorithms [8]. The

complexity of these algorithms in polynomial in the size of

the state and the action spaces.

When the system variables in models A and B are contin-

uous, the problem from the common agent’s perspective is

similar to a POMDP where the state space is continuous and

the action space is the space of functions over continuous

spaces. Computational algorithms for such POMDPs have

not been considered in the literature, mainly because such

POMDPs do not arise in centralized problems. The models

usually considered for centralized POMDPs involve systems

that are described by finite state Markov chains with finite

action space and finite observation space.

Notice that decentralized problems can be identified as be-

longing to models A and B on the basis of their information

structures. In addition, if the system variables take values in

finite sets, we can obtain a sequential decomposition that

can be solved efficiently.

VI. CONCLUSION

Analysis of decentralized systems presents both con-

ceptual and computational challenges. In this paper, we

described two general models of decentralized systems that

encompass many practical models. We used the notion of
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common information between control agents as a key idea

to formulate the decentralized problem as a POMDP. This

allowed us to utilize Markov decision theory to come up

with information states and sequential decomposition. We

further observed that in cases where the private information

of agents and their action spaces belong to small finite sets,

one can use the computational methods used for POMDPs

for carrying out the sequential decomposition we achieved.

The idea of common information also provides the uni-

fying feature in sequential decompositions of many decen-

tralized problems considered in literature. In some cases,

the common information may be same as information avail-

able at one of the actual control agents. This implies, the

problems can be converted to POMDPs from one actual

agents perspective, as shown in [11], [12]. Sequential de-

compositions obtained for decentralized control problems

when all agents know the state of the system with k step

delay [13] can also be seen as utilizing the notion of com-

mon information. In cases when no common information

is present (model B), our fictitious agent corresponds to a

system designer who is sequentially deciding each agents

strategy. The viewpoint of the system designer was used to

identify information states for two agent systems equivalent

to model B in [14], [15], [16].

The idea of using common information to identify infor-

mation states for sequential decomposition might also be

useful in systems which do not have an explicit common

message. For such systems common knowledge between

the agents, in the sense of Aumann [17] could play the

role analogous to the role of common information in model

A. However, we are not aware of any results on explicitly

identifying common knowledge between decentralized dy-

namical systems.
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