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Abstract—The n-step delayed sharing information structure
is investigated. This information structure is a link between
the classical information structure, where information is shared
perfectly between the controllers, and a non-classical information
structure, where there is no “lateral” sharing of information
among the controllers. A structural result for optimal control
policies in systems with such information structures is pre-
sented. A sequential methodology for finding optimal policies
is also established. The solution approach provides an insight for
identifying structural results for general decentralized stochastic
control problems.

I. INTRODUCTION

A. Motivation

One of the difficulties in optimal design of decentralized

control systems is handling the increase of data at the control

stations with time. This increase in data means that the domain

of control laws increases with time which, in turn, creates two

difficulties. Firstly, the number of control strategies increases

doubly exponentially with time; this makes it harder to search

for an optimal strategy. Secondly, even if an optimal strategy

is found, implementing functions with time increasing domain

is difficult.

In centralized stochastic control [1], these difficulties can

be circumvented by using the conditional probability of the

state given the data available at the control station as a

sufficient statistic (where the data available to a control station

comprises of all observations and control actions till the

current time) . This conditional probability, called information

state, takes values in a time-invariant space. Consequently,

we can restrict attention to control laws with time-invariant

domain. Such results, where data that is increasing with time

is “compressed” to a sufficient statistic taking values in a

time-invariant space, are called structural results. While the

information state/structural result for centralized stochastic

control problems is well known, no general methodology to

find such information states or structural results exists for

decentralized stochastic control problems.

In this paper, we find structural results for decentralized

control systems with delayed sharing information structures.

In a system with n-step delayed sharing, every control station

knows the n-step prior observations and control actions of all

other control stations. This information structure, proposed by

Witsenhausen in [2], is a link between the classical informa-

tion structures, where information is shared perfectly among

the controllers, and the non-classical information structures,

where there is no “lateral” sharing of information among the

controllers. Witsenhausen asserted a structural result for this

model without any proof in his seminal paper [2]. Varaiya and

Walrand [3] proved that Witsenhausen’s assertion was true for

n = 1 but false for n > 1. For n > 1, Kurtaran [4] proposed

another structural result. However, Kurtaran proved his result

only for the terminal time step (that is, the last time step in a

finite horizon problem); for non-terminal time steps, he gave

an abbreviated argument, which we believe is incomplete.

We prove a structural result of the optimal control laws

for the delayed sharing information structure. We compare

our results to those conjectured by Witsenhausen and show

that our structural results for n-step delay sharing information

structure simplify to that of Witsenhausen for n = 1; for

n > 1, our results are different from the result proposed by

Kurtaran. We also present a sequential methodology to find

the optimal control policies.

B. Notation

Random variables are denoted by upper case letters; their

realization by the corresponding lower case letter. Xa:b is a

short hand for the vector (Xa, Xa+1, . . . , Xb) while Xc:d is a

short hand for the vector (Xc, Xc+1, . . . , Xd). The combined

notation Xc:d
a:b is a short hand for the vector (Xj

i : i = a, a+
1, . . . , b, j = c, c + 1, . . . , d). P (·) is the probability of an

event, E {·} is the expectation of a random variable. For a

collection of functions g, we use P
g (·) and E

g {·} to denote

that the probability measure/expectation depends on the choice

of functions in g .1A(·) is the indicator function of a set A.

For singleton sets {a}, we also denote 1{a}(·) by 1a(·). For

a finite set A, P {A} denotes the space of probability mass

functions on A. For convenience of exposition, we will assume

all sets have finite cardinality.

C. Model

Consider a system consisting of a plant and K controllers

with decentralized information. At time t, t = 1, . . . , T , the

state of the plant Xt takes values in X ; the control action

Uk
t at station k, k = 1, . . . ,K, takes values in Uk. The initial



state X0 of the plant is a random variable. With time, the plant

evolves according to

Xt = ft(Xt−1, U
1:K
t , Vt) (1)

where Vt is a random variable taking values in V . {Vt; t =
1, . . . , T} is a sequence of independent random variables that

are also independent of X0.

The system has K observation posts. At time t, t =
1, . . . , T , the observation Y k

t of post k, k = 1, . . . ,K, takes

values in Yk. These observations are generated according to

Y k
t = hk

t (Xt−1,W
k
t ) (2)

where W k
t are random variables taking values in Wk. {W k

t ;
t = 1, . . . , T ; k = 1, . . . ,K} are independent random vari-

ables that are also independent of X0 and {Vt; t = 1, . . . , T}.

The system has n-step delayed sharing. This means that at

time t, control station k observes the current observation Y k
t

of observation post k, the n steps old observations Y 1:K
t−n of all

posts, and the n steps old actions U1:K
t−n of all stations. Each

station has perfect recall; so, it remembers everything that it

has seen and done in the past. Thus, at time t, data available

at station k can be written as (∆t,Λ
k
t ), where

∆t := (Y 1:K
1:t−n, U

1:K
1:t−n)

is the data known to all stations and

Λk
t := (Y k

t−n+1:t, U
k
t−n+1:t−1)

is the additional data known at station k, k = 1, . . . ,K. Let

Dt be the space of all possible realizations of ∆t; and Lk be

the space of all possible realizations of Λk
t . Station k chooses

action Uk
t according to a control law gk

t , i.e.,

Uk
t = gk

t (Λk
t ,∆t). (3)

The choice of g = {gk
t ; k = 1, . . . ,K; t = 1, . . . , T} is

called a design or a control strategy. G denotes the class of

all possible designs. At time t, a cost ct(Xt, U
1
t , . . . , U

K
t ) is

incurred. The performance J (g) of a design is given by the

expected total cost under it, i.e.,

J (g) = E
g

{

T
∑

t=1

ct(Xt, U
1:K
t )

}

(4)

where the expectation is with respect to the joint measure

on all the system variables induced by the choice of g. We

consider the following problem.

Problem 1: Given the statistics of the primitive random

variables X0, {Vt; t = 1, . . . , T}, {W k
t ; k = 1, . . . ,K;

t = 1, . . . , T}, the plant functions {ft; t = 1, . . . , T}, the

observation functions {hk
t ; k = 1, . . . ,K; t = 1, . . . , T}, and

the cost functions {ct; t = 1, . . . , T} choose a design g∗ from

G that minimizes the expected cost given by (4).

D. The structural results

Witsenhausen [2] asserted the following structural result for

Problem 1.

Structural Result (Witsenhausen [2]): In Problem 1, without

loss of optimality we can restrict attention to control strategies

of the form

Uk
t = gk

t (Λk
t ,P (Xt−n |∆t)). (5)

Witsenhausen’s result claims that all control stations can

“compress” the common information ∆t to a sufficient statistic

P (Xt−n |∆t). Unlike ∆t, the size of P (Xt−n |∆t) does not

increase with time.

As mentioned earlier, Witsenhausen asserted this result

without a proof. Varaiya and Walrand [3] proved that the

above separation result is true for n = 1 but false for n > 1.

Kurtaran [4] proposed an alternate structural result for n > 1.

Structural Result (Kurtaran [4]): In Problem 1, without loss

of optimality we can restrict attention to control strategies of

the form

Uk
t = gk

t

(

Y k
t−n+1:t,P

g1:K

1:t−1

(

Xt−n, U
1:K
t−n+1:t−1

∣

∣ ∆t

) )

. (6)

Kurtaran used a different labeling of the time indices, so the

statement of the result in his paper is slightly different from

what we have stated above.

Kurtaran’s result claims that all control stations can “com-

press” the common information ∆t to a sufficient statistic

P
g1:K

1:t−1

(

Xt−n, U
1:K
t−n+1:t−1

∣

∣ ∆t

)

, whose size does not in-

crease with time.

Kurtaran proved his result for only the terminal time-step

and gave an abbreviated argument for non-terminal time-steps.

In this paper, we prove a new structural result.

Structural Result (this paper): In Problem 1, without loss

of optimality we can restrict attention to control strategies of

the form

Uk
t = gk

t

(

Λk
t ,P

g1:K

1:t−1

(

Xt−1,Λ
1:K
t

∣

∣ ∆t

) )

. (7)

This result claims that all control stations can “com-

press” the common information ∆t to a sufficient statistic

P
g1:K

1:t−1

(

Xt−1,Λ
1:K
t

∣

∣ ∆t

)

, whose size does not increase with

time.

Our structural results cannot be derived from Kurtaran’s

result and vice-versa. At present, we are not sure of the

correctness of Kurtaran’s result. As we mentioned before, we

believe that the proof given by Kurtaran is incomplete. We

have not been able to complete Kurtaran’s proof; neither have

we been able to find a counterexample to his result.

II. STRUCTURAL RESULT

In this section, we prove the structural result (7) for optimal

strategies of the K control stations. For the ease of notation,

we first prove the result for K = 2, and then show how to

extend it for general K. We refer the reader to [5] for detailed

proofs of the results.



A. Two Controller system (K = 2)

The proof for K = 2 proceeds as follows:

1) First, we formulate a centralized stochastic control prob-

lem from the point of view of a coordinator who ob-

serves the shared information ∆t, but does not observe

the private information (Λ1
t ,Λ

2
t ) of the two controllers.

2) Next, we argue that any strategy for the coordinator’s

problem can be implemented in the original problem

and vice versa. Hence, the two problems are equivalent.

3) Then, we identify states sufficient for input-output map-

ping for the coordinator’s problem.

4) Finally, we transform the coordinator’s problem into a

MDP (Markov decision process), and obtain a structural

result for the coordinator’s problem. This structural

result is also a structural result for the delayed sharing

information strucutres due to the equivalence between

the two problems.

Below, we elaborate on each of these stages.

Stage 1

We consider the following modified problem. In the model

described in Section I-C, in addition to the two controllers, a

coordinator that knows the common (shared) information ∆t

available to both controllers at time t is present. At time t, the

coordinator decides the partial functions

γk
t : Lk 7→ Uk

for each controller k, k = 1, 2. The choice of the partial

functions at time t is based on the realization of the common

(shared) information and the partial functions selected before

time t. These functions map each controller’s private informa-

tion Λk
t to its control action Uk

t at time t. The coordinator then

informs all controllers of all the partial functions it selected at

time t. Each controller then uses its assigned partial function

to generate a control action as follows.

Uk
t = γk

t (Λk
t ). (8)

The system dynamics and the cost are same as in the original

problem. At next time step, the coordinator observes the new

common observation

Zt+1 := {Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1}. (9)

Thus at the next time, the coordinator knows ∆t+1 = Zt+1 ∪
∆t and its choice of all past partial functions and it selects the

next partial functions for each controller. The system proceeds

sequentially in this manner until time horizon T .

In the above formulation, the only decision maker is the

coordinator: the individual controllers simply carry out the

necessary evaluations prescribed by (8). At time t, the co-

ordinator knows the common (shared) information ∆t and all

past partial functions γ1
1:t−1 and γ2

1:t−1. The coordinator uses

a decision rule ψt to map this information to its decision, that

is,

(γ1
t , γ

2
t ) = ψt(∆t, γ

1
1:t−1, γ

2
1:t−1), (10)

or equivalently,

γk
t = ψk

t (∆t, γ
1
1:t−1, γ

2
1:t−1), k = 1, 2. (11)

The choice of ψ = {ψt; t = 1, . . . , T} is called a coordina-

tion strategy. Ψ denotes the class of all possible coordination

strategies. The performance of a coordinating strategy is given

by the expected total cost under that strategy, that is,

Ĵ (ψ) = E
ψ

{

T
∑

t=1

ct(Xt, U
1
t , U

2
t )

}

(12)

where the expectation is with respect to the joint measure

on all the system variables induced by the choice of ψ. The

coordinator has to solve the following optimization problem.

Problem 2 (The Coordinator’s Optimization Problem):

Given the system model of Problem 1, choose a coordination

strategy ψ∗ from Ψ that minimizes the expected cost given

by (12).

Stage 2

We now show that the Problem 2 is equivalent to Problem 1.

Specifically, we will show that any design g for Problem 1 can

be implemented by the coordinator in Problem 2 with the same

value of the problem objective. Conversely, any coordination

strategy ψ in Problem 2 can be implemented in Problem 1

with the same value of the performance objective.

Any design g for Problem 1 can be implemented by the

coordinator in Problem 2 as follows. At time t the coordinator

selects partial functions (γ1
t , γ

2
t ) using the common (shared)

information δt as follows.

γk
t (·) = gk

t (·, δt) =: ψk
t (δt), k = 1, 2. (13)

Consider Problems 1 and 2. Use design g in Problem 1

and coordination strategy ψ given by (13) in Problem 2. Fix a

specific realization of the initial state X0, the plant disturbance

{Vt; t = 1, . . . , T}, and the observation noise {W 1
t ,W

2
t ;

t = 1, . . . , T}. Then, the choice of ψ according to (13)

implies that the realization of the state {Xt; t = 1, . . . , T}, the

observations {Y 1
t , Y

2
t ; t = 1, . . . , T}, and the control actions

{U1
t , U

2
t ; t = 1, . . . , T} are identical in Problem 1 and 2.

Thus, any design g for Problem 1 can be implemented by

the coordinator in Problem 2 by using a coordination strategy

given by (13) and the total expected cost under g in Problem 1

is same as the total expected cost under the coordination

strategy given by (13) in Problem 2.

By a similar argument, any coordination strategy ψ for

Problem 2 can be implemented by the control stations in

Problem 1 as follows. At time 1, both stations know δ1; so,

all of them can compute γ1
1 = ψ1

1(δ1), γ
2
1 = ψ2

1(δ1). Then

station k chooses action uk
1 = γk

1 (λk
1). Thus,

gk
1 (λk

1 , δ1) = ψk
1 (δ1)(λ

k
1), k = 1, 2. (14a)

At time 2, both stations know δ2 and γ1
1 , γ

2
1 , so both of them

can compute γk
2 = ψk

2 (δ2, γ
1
1 , γ

2
1), k = 1, 2. Then station k

chooses action uk
2 = γk

2 (λk
2). Thus,

gk
2 (λk

2 , δ2) = ψk
2 (δ2, γ

1
1 , γ

2
1)(λk

2), k = 1, 2. (14b)



Proceeding this way, at time t both stations know δt and

γ1
1:t−1 and γ2

1:t−1, so both of them can compute (γ1
1:t, γ

2
1:t) =

ψt(δt, γ
1
1:t−1, γ

2
1:t−1). Then, station k chooses action uk

t =
γk

t (λk
t ). Thus,

gk
t (λk

t , δt) = ψk
t (δt, γ

1
1:t−1, γ

2
1:t−1)(λ

k
t ), k = 1, 2. (14c)

Now consider Problems 2 and 1. Use coordinator strategy ψ

in Problem 2 and design g given by (14) in Problem 1. Fix a

specific realization of the initial state X0, the plant disturbance

{Vt; t = 1, . . . , T}, and the observation noise {W 1
t ,W

2
t ;

t = 1, . . . , T}. Then, the choice of g according to (14)

implies that the realization of the state {Xt; t = 1, . . . , T}, the

observations {Y 1
t , Y

2
t ; t = 1, . . . , T}, and the control actions

{U1
t , U

2
t ; t = 1, . . . , T} are identical in Problem 2 and 1.

Hence, any coordination strategy ψ for Problem 2 can be

implemented by the stations in Problem 1 by using a design

given by (14) and the total expected cost under ψ in Problem 2

is same as the total expected cost under the design given

by (14) in Problem 1.

Since Problems 1 and 2 are equivalent, we derive structural

results for the latter problem. Unlike, Problem 1, where we

have multiple control stations, the coordinator is the only

decision maker in Problem 2.

Stage 3

We now look at Problem 2 as a controlled input-output

system from the point of view of the coordinator and identify

a state sufficient for input-output mapping. From the coordi-

nator’s viewpoint, the input at time t has two components:

a stochastic input that consists of the plant disturbance Vt

and observation noises W 1
t ,W

2
t ; and a controlled input that

consists of the partial functions γ1
t , γ

2
t . The output is the obser-

vations Zt+1 given by (9). The cost is given by ct(Xt, U
1
t , U

2
t ).

We want to identify a state sufficient for input-output mapping

for this system.

A variable is a state sufficient for input output mapping of a

control system if it satisfies the following properties (see [6]).

P1) The next state is a function of the current state and the

current inputs.

P2) The current output is function of the current state and the

current inputs.

P3) The instantaneous cost is a function of the current state,

the current control inputs, and the next state.

We claim that such a state for Problem 2 is the following.

Definition 1: For each t define

St := (Xt−1,Λ
1
t ,Λ

2
t ) (15)

Next we show that St, t = 1, 2, . . . , T+1, satisfy properties

(P1)–(P3). Specifically, we have the following.

Proposition 1:

1) There exist functions f̂t, t = 2, . . . , T such that

St+1 = f̂t+1(St, Vt,W
1
t+1,W

2
t+1, γ

1
t , γ

2
t ). (16)

2) There exist functions ĥt, t = 2, . . . , T such that

Zt = ĥt(St−1). (17)

3) There exist functions ĉt, t = 1, . . . , T such that

ct(Xt, U
1
t , U

2
t ) = ĉt(St, γ

1
t , γ

2
t , St+1). (18)

Proof: The proposition is an immediate consequence of

the definitions of St, Zt, Λk
t , the dynamics and observation

equations of the system given by (1) and (2) and the eval-

uations carried out by the control stations according to (8).

Stage 4

Proposition 1 establishes St as the state sufficient for input-

output mapping for the coordinator’s problem. We now define

information states for the coordinator.

Definition 2 (Information States): For a coordination strat-

egy ψ, define information states Πt as

Πt(st) := P
ψ

(

St = st

∣

∣ ∆t, γ
1
1:t−1, γ

2
1:t−1

)

. (19)

As shown in Proposition 1, the state evolution of St de-

pends on the controlled inputs (γ1
t , γ

2
t ) and the random noise

(Vt,W
1
t+1,W

2
t+1). This random noise is independent across

time. Consequently, Πt evolves in a controlled Markovian

manner as below.

Proposition 2: For t = 1, . . . , T − 1, there exists functions

Ft (which do not depend on the coordinator’s strategy) such

that

Πt+1 = Ft+1(Πt, γ
1
t , γ

2
t , Zt+1). (20)

At t = 1, since there is no shared information, Π1 is simply

the unconditional probability P (S1) = P
(

X0, Y
1
1 , Y

2
1

)

. Thus,

Π1 is fixed a priori from the joint distribution of the primitive

random variables and does not depend on the choice of coor-

dinator’s strategy ψ. Proposition 2 shows that at t = 2, . . . , T ,

Πt depends on the strategy ψ only through the choices of

γ1
1:t−1 and γ2

1:t−1. Moreover, as shown in Proposition 1,

the instantaneous cost at time t can be written in terms of

the current and next states (St, St+1) and the control inputs

(γ1
t , γ

2
t ). Combining the above two properties, we get the

following:

Proposition 3: The process Πt, t = 1, 2, . . . , T is a con-

trolled Markov chain with γ1
t , γ

2
t as the control actions at time

t, i.e.,

P
(

Πt+1

∣

∣ ∆t,Π1:t, γ
1
1:t, γ

2
1:t

)

= P
(

Πt+1

∣

∣ Πt, γ
1
t , γ

2
t

)

. (21)

Furthermore, there exists a deterministic function Ct such that

E
{

ĉt(St, γ
1
t , γ

2
t , St+1)

∣

∣ ∆t,Π1:t, γ
1
1:t, γ

2
1:t

}

= Ct(Πt, γ
1
1 , γ

2
t ).

(22)

The controlled Markov property of the process {Πt, t =
1, . . . , T} immediately gives rise to the following structural

result.

Theorem 1: In Problem 2, without loss of optimality we

can restrict attention to coordination strategies of the form

(γ1
t , γ

2
t ) = ψt(Πt), t = 1, . . . , T. (23)

Proof: From Proposition 3, we conclude that the opti-

mization problem for the coordinator is to control the evolution



of the controlled Markov process {Πt, t = 1, 2, . . . , T}
by selecting the partial functions {γ1

t , γ
2
t , t = 1, 2, . . . , T}

in order to minimize
∑T

t=1 E
{

Ct(Πt, γ
1
t , γ

2
t )

}

. This is an

instance of the well-known Markov decision problems where

it is known that the optimal strategy is a function of the current

state. Thus, the structural result follows from Markov decision

theory [1].

The above result can also be stated in terms of the original

problem.

Theorem 2 (Structural Result): In Problem 1 with K = 2,

without loss of optimality we can restrict attention to coordi-

nation strategies of the form

Uk
t = gk

t (Λk
t ,Πt), k = 1, 2. (24)

where

Πt = P
(g1

1:t−1
,g2

1:t−1
)
(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣ ∆t

)

(25)

where Π1 = P
(

X0, Y
1
1 , Y

2
1

)

and for t = 2, . . . , T , Πt is

evaluated as follows:

Πt+1 = Ft+1(Πt, g
1
t (·,Πt), g

2
t (·,Πt), Zt+1) (26)

Proof: Theorem 1 established the structure of the optimal

coordination strategy. As we argued in Stage 2, this optimal

coordination strategy can be implemented in Problem 1 and is

optimal for the objective (4). At t = 1, Π1 = P
(

X0, Y
1
1 , Y

2
1

)

is known to both controllers and they can use the optimal

coordination strategy to select partial functions according to:

(γ1
1 , γ

2
1) = ψ1(Π1)

Thus,

Uk
1 = γk

1 (Λk
1) = ψk

1 (Π1)(Λ
k
1) =: gk

1 (Λk
1 ,Π1), k = 1, 2.

(27)

At time instant t + 1, both controllers know Πt and

the common observations Zt+1 = (Y 1
t−n+1, Y

2
t−n+1,

U1
t−n+1, U

2
t−n+1); they use the partial functions

(g1
t (·,Πt), g

2
t (·,Πt)) in equation (20) to evaluate Πt+1.

The control actions at time t+ 1 are given as:

Uk
t+1 = γk

t+1(Λ
k
t+1) = ψt+1(Πt+1)(Λ

k
t+1)

=: gk
t+1(Λ

k
t+1,Πt+1), k = 1, 2. (28)

Moreover, using the design g defined according to (28), the

coordinator’s information state Πt can also be written as:

Πt = P
ψ

(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣ ∆t, γ
1
1:t−1, γ

2
1:t−1

)

= P
g

(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣ ∆t, g
1:2
1 (·,Π1), . . . , g

1:2
t−1(·,Πt−1)

)

= P
(g1

1:t−1
,g2

1:t−1
)
(

Xt−1,Λ
1
t ,Λ

2
t

∣

∣ ∆t

)

(29)

where we dropped the partial functions from the condi-

tioning terms in (29) because under the given control laws

(g1
1:t−1, g

2
1:t−1), the partial functions used from time 1 to t−1

can be evaluated from ∆t (by using Proposition 2 to evaluate

Π1:t−1).

Theorem 2 establishes the first structural result stated in

Section I-D for K = 2. In the next section, we show how to

extend the result for general K.

B. Extension to General K

Theorem 2 for two controllers (K = 2) can be easily

extended to general K by following the same sequence of

arguments as in stages 1 to 4 above. Thus, at time t, the

coordinator introduced in Stage 1 now selects partial functions

γk
t : Lk 7→ Uk, for k = 1, 2, . . . ,K. The state sufficient for

input output mapping from the coordinator’s perspective is

given as St := (Xt−1,Λ
1:K
t ) and the information state Πt for

the coordinator is

Πt(st) := P
ψ

(

St = st

∣

∣ ∆t, γ
1:K
1:t−1

)

. (30)

Results analogous to Propositions 1–3 can now be used to

conclude the structural result of Theorem 2 for general K.

C. One-Step Delay

In this section, we focus on the one-step delay information

structure, that is, we take n = 1. For a two-controller system

with n = 1, we have, ∆t = (Y 1
1:t−1, Y

2
1:t−1, U

1
1:t−1, U

2
1:t−1),

Λ1
t = (Y 1

t ) and Λ2
t = (Y 2

t ).
The partial functions γk

t , k = 1, 2 to be selected by the

coordinator are therefore mappings from Yk to Uk, k = 1, 2.

Also, the new shared observation at time t + 1 is Zt+1 =
(Y 1

t , Y
2
t , U

1
t , U

2
t ). Following the arguments in Section II, the

state sufficient for input-output mapping from the coordinator’s

perspective is

St = (Xt−1, Y
1
t , Y

2
t ),

and the coordinator’s information state is

Πt(xt−1, y
1
t , y

2
t )

:= Prψ(Xt−1 = xt−1, Y
1
t = y1

t , Y
2
t = y2

t |

∆t, γ
1
1:t−1, γ

2
1:t−1). (31)

At t = 1, Π1 is simply the unconditional probability P (S1) =
P

(

X0, Y
1
1 , Y

2
1

)

. Thus, Π1 is fixed a priori from the joint

distribution of the primitive random variables and does not

depend on the choice of coordinator’s strategy ψ. Moreover,

the update equation for the information states in Proposition 2

can be refined for n = 1 as follows:

Proposition 4: For t = 1, . . . , T − 1, there exists functions

Gt (which do not depend on the coordinator’s strategy) such

that

Πt+1 = Gt+1(Πt, Zt+1). (32)

Proposition 4 and the fact Π1 is fixed a priori imply that, for

all time instants t, the realization of Πt does not depend on

the choice of partial functions but only on the realization of

the shared observations, Z1, Z2, . . . , Zt, which is ∆t. Thus,

we can write Πt as:

Πt(xt−1, y
1
t , y

2
t ) := P

(

Xt−1 = xt−1, Y
1
t = y1

t , Y
2
t = y2

t

∣

∣ ∆t

)

(33)

The result of Theorem 2 can now be restated for this case as

follows:

Corollary 1: In Problem 1 with K = 2 and n = 1, there is

no loss of optimality in restricting to control laws of the form:

Uk
t = gk

t (Y k
t ,Πt), k = 1, 2. (34)



where

Πt := P
(

Xt−1, Y
1
t , Y

2
t

∣

∣ ∆t

)

(35)

We can now compare our result for one-step delay with the

structural result proved in [3]. The result in [3] states that there

is no loss of optimality in using control laws of the form:

Uk
t = gk

t (Y k
t ,P (Xt−1 |∆t)), k = 1, 2. (36)

One can recover the above structural result from (34) by ob-

serving that there is a one-to-one correspondence between Πt

and the belief P (Xt−1 |∆t). Clearly, the belief P (Xt−1 |∆t)
is a marginal of Πt and therefore can be evaluated from Πt.

Moreover, given the belief P (Xt−1 |∆t), one can evaluate Πt

as:

Πt(xt−1, y
1
t , y

2
t |∆t)

= P
(

Y 1
t = y1

t

∣

∣Xt−1 = xt−1

)

× P
(

Y 2
t = y2

t

∣

∣Xt−1 = xt−1

)

× P (Xt−1 = xt−1 |∆t) . (37)

The fact that there is a one-to-one correspondence between Πt

and P (Xt−1 |∆t) means that the separation result proposed

in this paper for n = 1 is effectively equivalent to the one

proved in [3].

III. SEQUENTIAL DECOMPOSITION

In addition to obtaining the structural result of Theorem 2,

the coordinator’s problem also allows us to write a dynamic

program for finding the optimal control strategies as shown

below. We focus on the two controller case (K = 2). The

result can be easily extended to general K.

Theorem 3: The optimal coordination strategy can be found

by the following dynamic program: For t = 1, . . . , T , define

the functions Jt : P {S} 7→ R as follows. For π ∈ P {S} let

JT (π) = inf
γ̃1,γ̃2

E

{

CT (ΠT , γ
1
T , γ

2
T )

∣

∣

∣

∣

ΠT = π,
γ1

T = γ̃1,

γ2
T = γ̃2

}

.

(38)

For t = 1, . . . , T − 1, and π ∈ P {S} let

Jt(π) = inf
γ̃1,γ̃2

E







Ct(Πt, γ
1
t , γ

2
t ) + Jt+1(Πt+1)

∣

∣

∣

∣

∣

∣

Πt = π,

γ1
t = γ̃1,

γ2
t = γ̃2







.

(39)

The arg inf (γ∗,1
t , γ

∗,2
t ) in the RHS of Jt(π) is the optimal

action for the coordinator at time t then Πt = π. Thus,

(γ∗,1
t , γ

∗,2
t ) = φ∗t (πt)

The corresponding control strategy for Problem 1, given

by (14) is optimal for Problem 1.

Proof: As in Theorem 1, we use the fact that the coor-

dinator’s optimization problem can be viewed as a Markov

decision problem with Πt as the state of the Markov process.

The dynamic program follows from standard results in Markov

decision theory [1]. The optimality of the corresponding

control strategy for Problem 1 follows from the equivalence

between the two problems.

The dynamic program of Theorem 3 can be extended to

general K in a manner similar to Section II-B.

IV. CONCLUSION

We studied the stochastic control problem with n-step delay

sharing information structure and established a structural result

for it. We also provided a sequential methodology to identify

the optimal control strategies. To derive our results, we formu-

lated an alternative problem from the point of a coordinator

of the system. We believe that this idea of formulating an

alternative problem from the point of view of a coordinator

which has access to information common to all controllers is

also useful for general decentralized control problems, as is

illustrated by [7] and [8].

Our structural results differ from those asserted by Wit-

senhausen in a fundamental way. The sufficient statistic (also

called information state) P (Xt−n |∆t) of Witsenhausen’s as-

sertion does not depend on the control strategy. The sufficient

statistic P
g1:K

1:t−1

(

Xt−1,Λ
1:K
t

∣

∣ ∆t

)

of our first result depend on

the control laws used before time t. An alternative structural

result that highlights the dependence of the coordinator’s

sufficient statistic at time t and the controls laws used before

time t is presented in [5].
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