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Abstract— Information structures capture how and when
information is shared between the agents of a decentralized sys-
tem. Traditionally, information structures are classified based
on the data available at the agents. No assumptions on the
probability measure or the cost function are imposed. This
classification has helped in clarifying the conceptual difficulties
of decentralized control. However, from a practical point of
view, the classification based only on the data is restrictive
as illustrated by the recent results on stochastically nested
information structures. In this paper, we generalize the main
idea of stochastically nested information structures to define
extensions of classical and quasiclassical information structures
that depend on the probability measure and the cost function.
We show that the optimality results of classical and quasiclassi-
cal information structures extend to their stochastically nested
counterparts.

I. INTRODUCTION

In a decentralized multi-agent control system, the notion

of who knows what and when is captured by information

structures. Broadly speaking, information structures are clas-

sical or non-classical. If every control agent knows all the

data available to agents that acted before her, the infor-

mation structure is classical; otherwise, it is non-classical.

Classical information structure is equivalent to a central-

ized system, but surprisingly, a centralized system need not

have a classical information structure. Similar dichotomy

holds for subclasses for non-classical information structure

that are well understood—partially nested [1], [2], delayed

sharing [3]–[5], and shared observations [6], to name a

few. Since systems with identical information structures do

not have similar design difficulties, using information struc-

tures to classify decentralized multi-agent control systems

is fallacious. In this paper, we present generalizations of

information structures that classify decentralized multi-agent

systems in a more consistent manner.

First, we present an example that shows the limitations of

information structures.

Example 1 (A control station with zero memory):

Consider a discrete time system with a plant and a control

station. At time t , let Xt denote the state of the plant,

Ut the action of the control agent, Wt the process noise,

and Nt the observation noise. All variables take values in

compact sets. The process and the observation noises are

independent across time, independent of each other, and

independent of the initial state of the plant. The plant evolves
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as XtC1 D f .Xt ; Ut ; Wt /. The control station observes

Yt D h.Xt ; Nt / and chooses a control action Ut D gt .Yt /.

(Notice that the control station has no memory). The design

objective is to choose a control strategy g D .g1; : : : ; gT /

to minimize the expected total cost Eg
˚

PT
tD1 c.Xt ; Ut /

	

.

Consider two variations of this system:

V1) The observations are noiseless, i.e., Yt D Xt ;

V2) The observations are noisy i.e., the observation func-

tion h is not invertible in X .

For both variations, the information structure is non-

classical because the control agent at time t does not know

the observations and actions of earlier agents. Nonetheless,

these variations are drastically different. V1 is a MDP

(Markov decision process) and hence centralized while V2 is

decentralized. Thus, information structures do not completely

characterize decentralized systems.

Information structures specify only the data available to

different agents, not the usefulness of that data. In this

paper, we define generalizations of information structures,

which depend on the probability measure and cost function,

that capture the usefulness of information. We call these

generalizations the P -generalization of an information struc-

ture; for any information structure, its P -generalization is

denoted by adding a “P -” prefix. To illustrate the main idea

of P -generalization, consider the P -classical information

structure. In a P -classical information structure all con-

trol agent do not know the data available to agents that

acted before them—thus, the information structure is not

classical—but the missing data is redundant, i.e., even if

all agents had access to the smallest additional data that

will make the information structure classical, the system

will have the same performance. The P -generalization of

an information structure is similar in spirit to stochastically-

nested information structures studied in [7]. In this paper,

we study P -classical and P -quasiclassical information struc-

tures and show that the solution techniques for classical and

quasiclassical information structures can also be used in their

P -generalizations. Similar ideas can be used to describe P -

generalizations of delayed sharing and shared observations

information structures. The results of this paper suggest

that the solution technique for any information structure

is also applicable to its P -generalization. Furthermore,

if we are designing the communication infrastructure of a

system to achieve a particular information structure, we only

need to share data to achieve the P -generalization of that

information structure. This data can be significantly less than

the data needed to achieve the original information structure,

as shown for belief sharing information structure [7].
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Notation: Uppercase letters X , Y , Z, etc. represent

random variables; the corresponding lowercase letters x, y,

z, etc. represent their realizations. Blackboard bold letters

X, Y, Z, etc. represent state spaces and calligraphic letters

F , G , H , etc. represent � -fields. Given two � -fields F1

and F2, F1 ˝F2 denotes the product � -field and F1 _F2

denotes the smallest � -field containing F1 [ F2.

Ef�g denotes expectation of a random variable. For a set A

and an element a, 1A.a/ is 1 if a 2 A and 0 otherwise. For

two sets A and B , 1A.B/ D
Q

b2B 1A.b/, or equivalently,

1A.B/ is 1 if B � A and 0 otherwise.

For any natural number n, Œn� denotes the set f1; : : : ; ng.

For any subset A of natural numbers, XA denotes the vector

.Xa W a 2 A/, XA denotes the product space
Q

a2A Xa and

FA denotes product � -field
N

a2A Fa.

II. INTRINSIC MODEL AND INFORMATION STRUCTURES

Decentralized multi-agent control systems are typically

represented in two ways:

1) State space model: The system consists of a plant and

multiple control stations that act across multiple time

stages. At each time stage, the observation of a control

station depends on the system state. An instantaneous

cost, which depends on the system state and control

actions of all agents, is incurred at each stage. The

objective is to choose a control policy to minimize the

total expected cost over a time horizon.

2) Intrinsic model: The system consists of multiple con-

trol agents. Each agent acts once. The observations

of an agent depends on an intrinsic event and control

actions of some other agents. A cost which depends on

the intrinsic event and actions of all agents is incurred.

The objective is to choose the control laws of all agents

to minimize the expected total cost.

These two models are equivalent. The state space model

is more convenient to describe specific applications. The

intrinsic model, on the other hand, is more convenient

to capture the functional dependence between the control

actions of the agents. For that reason, we follow the intrinsic

model in this paper.

A. The intrinsic model

Consider a system with N agents. Let .�; B; P / be

the probability space for actions ! of nature, .Yn; Fn/

and .Un; Gn/ the measurable spaces for observations Yn

and actions Un of agent n, n D 1; : : : ; N . Un and Yn

are compact metric spaces, and B, Fn, Gn are countably

generated � -fields that contain all singletons.

The observation of agent n is given by

Yn D fn.!; UDn
/

where Dn � Œn � 1� is the set of agents that affect the

observations of agent n. Define a binary relation � on ŒN �

by m � n if m 2 Dn. Let �� denote the transitive closure

of � and D�
n WD fm 2 ŒN � n fng W m �� ng. Then D�

n is

the set of agents that can signal to agent n, i.e., the set of

agents whose actions affect, either directly or indirectly, the

observations of agent n.

Agent n takes a control action

Un D gn.Yn/

where gn is chosen from the set Gn of functions from Yn

to Un that are Gn=Fn measurable.

The system incurs a cost

K
X

kD1

ck.!; UCk
/ (1)

where Ck is a subset of ŒN � and ck is a bounded real-valued

function, k D 1; : : : ; K. In the sequel, we consider two

following partial sums of the total cost.

Qn.!; UŒN �/ WD
K

X

kD1

ck.!; UCk
/1Ck

.n/ (2)

Rn.!; UŒN �/ WD
K

X

kD1

ck.!; UCk
/.1 � 1Ck

.Œn � 1�// (3)

Any choice of the policy g D .g1; : : : ; gN /, chosen from

the set G D G1 � � � � � GN , makes the variables UŒN �

measurable on .�; B; P /. The objective is to choose a

policy g to minimize the expected value of (1) where the

expectation is with respect to the joint measure on UŒN �

corresponding to g.

B. Information fields and information structures

For A � ŒN �, let HA WD � �
Q

n2A Un and H D HŒN �.

For any � -field C on HA, let hC i denote the cylindrical

extension of C on H. Let HA WD
˝

B ˝
�

N

n2A Gn

�˛

and

H D HŒN �.

The observations Yn of agent n, n D 1; : : : ; N , tell

her something about the actions of nature and of agents

in D�
n . Thus, the information available to agent n can

be characterized by a subfield Jn of HD�
n

. This subfield

is called the information field of agent n. The collection

fJngN
nD1 is called the information structure of the system.

There is one-to-one correspondence between the model

involving !, Yn, and Un, n D 1; : : : ; N , and the model

involving B, Jn, and Gn, n D 1; : : : ; N . We will use these

two models interchangeably.

III. CLASSIFICATION OF INFORMATION STRUCTURES

We briefly restate the classification specified in [8].

A system is static if Jn � H; for all n D 1; : : : ; N , i.e.,

the information of all agents depends only on !; otherwise,

the system is dynamic.

A. Classical and quasiclassical information structures

A system is classical if each agent knows the information

available to the agents that acted before her. Thus, in a

classical system, agent n, n D 1; : : : ; N , can deduce YŒn�1�

from Yn (without knowing the policy g). Equivalently, in

a classical system Jn�1 � Jn for n D 2; : : : ; N . A

classical system is called strictly classical if each agent also

knows the control action of the agents that acted before her.
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Thus, in a strictly classical system, agent n, n D 1; : : : ; N ,

can deduce YŒn�1� and UŒn�1� from Yn (without knowing

the policy g). Equivalently, in a strictly classical system,

Jn�1 _hGn�1i � Jn, n D 2; : : : ; N . Centralized stochastic

control problems like MDP (Markov decision process) and

POMDP (partially observable Markov decision process) are

strictly classical.

A system is quasiclassical if each agent knows the infor-

mation available to agents that influence, either directly or

indirectly, her observations. Thus, in a quasiclassical system,

agent n, n D 1; : : : ; N can deduce YD�
n

from Yn (without

knowing the policy g). Equivalently, in a quasiclassical

system, for n D 1; : : : ; N and m 2 D�
n , Jm � Jn.

A quasiclassical system is called strictly quasiclassical if

each agent also knows the control actions of the agents that

influence, either directly or indirectly, her observations. Thus,

in a strictly quasiclassical system, agent n, n D 1; : : : ; N , can

deduce .YD�
n
; UD�

n
/ from Yn (without knowing the policy g).

Equivalently, in a quasiclassical system, for n D 1; : : : ; N

and m 2 D�
n , Jm _ hGmi � Jn. Systems with one-

step delay information structure [3], [4] and partially nested

information structure [1] are strictly quasiclassical.

B. Expansions of information structures

Given a classical system, its strict expansion is the strictly

classical system obtained by replacing Yn by .Yn; UŒn�1�/,

or equivalently, by replacing Jn by Jn _
�

W

m<nhGmi
�

,

n D 1; : : : ; N . Similarly, given a quasiclassical system, its

strict expansion is the strictly quasiclassical system obtained

by replacing Yn by .Yn; UD�
n
/, or equivalently replacing Jn

by Jn _
�

W

m2D�
n
hGmi

�

, n D 1; : : : ; N .

By successive substitution, any policy achievable in the

strict expansion of a classical or quasiclassical system is

achievable in the system itself, and vice versa.

Given any system, its classical expansion is the strictly

classical system obtained by replacing Yn by .YŒn�; UŒn�1�/,

or equivalently, by replacing Jn by Jn _
�

W

m<n.Jm _

hGmi/
�

, n D 1; : : : ; N . Similarly, given any system, its

quasiclassical expansion is the strictly quasiclassical system

obtained by replacing Yn by .Yn; YD�
n
; UD�

n
/, or equivalently

replacing Jn by Jn _
�

W

m2D�
n
.Jm _ hGmi/

�

, n D

1; : : : ; N .

Any policy achievable in the original system is also

achievable in its quasiclassical and classical expansion.

Moreover, the classical expansion of the quasiclassical ex-

pansion of any system is the same as its classical expansion.

Thus, the minimum expected cost of any system is no

smaller than the minimum expected cost of its quasiclassical

expansion, which in turn is no smaller than the minimum

expected cost of its classical expansion.

C. P -classical and P -quasiclassical information structures

The above definitions of information structures do not

depend on the form of the probability measure or the cost

function. Such a measure-and-cost-independent classifica-

tion of information structures has been extremely useful in

highlighting the main conceptual difficulties in decentralized

stochastic control problems. Nevertheless, in models like

classical and quasiclassical information structures where

these conceptual difficulties have been resolved, introducing

a measure-and-cost-dependent identification of information

structures is useful to establish a solution framework for a

larger class of problems.

This idea has been demonstrated in [7], which defined a

system that was not classical but could be reduced to one.

This idea was also used in [2] to define an auxiliary problem

and identify when the solution to the auxiliary problem is

optimal for the original problem. However, the results in [2],

[7] were restricted to either LQG (linear quadratic Gaussian)

or specific state-space models, which limits their application.

In this paper, we present the idea of identifying measure and

cost dependent generalizations of information structures in

its full generality. This extension is based on the notions

of state and information state for decentralized systems [9],

[10]. This generalization of classical and quasiclassical in-

formation structures is given below.

Definition 1 (P -classical information structure): A sys-

tem is P -classical if for every g 2 G and all n D 1; : : : ; N ,

E
g
n

Qn.!; UŒN �/
ˇ

ˇ

ˇ
Yn; Un

o

D E
g
n

Qn.!; UŒN �/
ˇ

ˇ

ˇ
YŒn�; UŒn�

o

: (4)

The system of Example 1 and stochastically nested informa-

tion structure [7] with two control stations are P -classical.

Definition 2 (P -quasiclassical information structure):

A system is P -quasiclassical if for every g 2 G and all

n D 1; : : : ; N ,

E
g
n

Qn.!; UŒN �/
ˇ

ˇ

ˇ
Yn; Un

o

D E
g
n

Qn.!; UŒN �/
ˇ

ˇ

ˇ
Yn; YD�

n
; Un; UD�

n

o

: (5)

Stochastically nested information structures [7] with more

than two control stations are P -quasiclassical. A similar idea

was used in [2] to define an auxiliary problem and identify

when the solution of the auxiliary problem is optimal for the

original.

Thus, in a P -classical information structure, an agent

does not necessarily know all the data that was available

to the agents that act before her; nonetheless, this unknown

data is redundant for the purpose of performance evaluation.

Similarly, in a P -quasiclassical information structure, an

agent does not necessarily know all the data available to the

agents that affect her observations; nonetheless, this unknown

data is redundant for the purpose of performance evaluation.

Similar idea can be used to define P -generalizations of

delayed sharing pattern [3]–[5] and shared observations [6].

However, defining such an information structure needs a

more specific model than what we have assumed in this

paper.

In the remainder of this paper we show that an optimal

solution of P -classical or P -quasiclassical information struc-

tures can be obtained from the solution of the classical or

quasiclassical expansion of these systems. But first, we give

an example of P -quasiclassical systems.
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D. Example of P -quasiclassical system

Consider a system with 6 agents, and ! D

.!0; !1; !2; !3; !4; !5; !6/ where !i and Ui take values in

R. The observation of the agents are given by

Y1 D !0 C !1 C !3 C !5; Y2 D !0 C !2 C !4 C !6;

Y3 D .!0 C !3 C !5; U1/; Y4 D .!0 C !4 C !6; U2/;

Y5 D .!0 C !5; U1; U3/; Y6 D .!0 C !6; U2; U4/:

The cost function is given by

c.!; UŒ6�/ D U T

Œ6�R!0 C U T

Œ6�QUŒ6�

where Q and R are matrices of appropriate dimensions

and Q is positive semi-definite. Let Qi;j denote the .i; j /

component of Q and Ri denote the i component of R. Then,

the cost can also be written as

c.!; UŒ6�/ D
6

X

iD1

�

!0Ri Ui CQi;i U
2
i

6
X

j D1;j ¤i

.Qi;j CQj;i /Ui Uj

�

For this system

D�
1 D ;; D�

3 D f1g; D�
5 D f1; 3g;

D�
2 D ;; D�

4 D f2g; D�
6 D f2; 4g:

The corresponding observations are not nested. Thus, the

system is not quasiclassical or classical. However, it is

easy to check that if the probability measure on ! is a

product measure on .!0; !1; !2; !3; !4; !5; !6/, then the

above system is P -quasiclassical.

IV. OPTIMAL POLICY FOR STRICTLY CLASSICAL

SYSTEMS

An optimal (or arbitrarily close to optimal) policy of the

system presented in Section II can always be obtained by

a brute force search over all policies. However, a more

systematic solution approach is also possible. As shown

in [11], the one shot optimization problem of choosing g

in G can be broken into N nested subproblems for choosing

gn in Gn. This process is called sequential decomposition.

When the system is classical, this decomposition simpli-

fies. Each subproblem of choosing gn in Gn further breaks

down into subproblems for choosing un D gn.yn/ for

each realization yn of Yn. Thus, in a classical system, an

optimal policy g can be obtained by solving a sequence

of nested parametric optimization subproblems (each sub-

problem chooses a parameter un). In contrast, in a general

system, we need to solve nested functional optimization sub-

problems (each subproblem chooses the function gn). Such a

parametric sequential decomposition is more popularly called

dynamic programming.

The main idea of dynamic programming is the following.

From each agent’s point of view, the total cost can be split

into two parts: “past” cost and “future” cost. Cost terms

where Ck � Œn � 1� are past costs; others are future costs.

For any policy g, the future cost to go for an agent is given

by

J g
n .yn/ D E

g
n

Rn.!; UŒN �/
ˇ

ˇ

ˇ
Yn D yn; Un D gn.yn/

o

: (6)

which can be written as

E
g
n

Rn.!; UŒN �/ � RnC1.!; UŒN �/

C RnC1.!; UŒN �/
ˇ

ˇ

ˇ
Yn D yn; Un D gn.yn/

o

: (7)

Since the system is classical, JnC1 � Jn _ hGni, and the

last term can be written as

E
g
n

RnC1.!; UŒN �/
ˇ

ˇ

ˇ
Yn D yn; Un D gn.yn/

o

D E
g
n

E
g
˚

RnC1.!; UŒN �/
ˇ

ˇ YnC1; UnC1 D gnC1.YnC1/
	

ˇ

ˇ

ˇ
Yn D yn; Un D gn.yn/

o

D E
g
n

J
g
nC1.YnC1/

ˇ

ˇ Yn D yn; Un D gn.yn/
o

: (8)

Substitute (8) in (7) and write the cost to go function in a

recursive form as

J g
n .yn/ D E

g
n K

X

kD1

ck.!; UCk
/.1Ck

.Œn�/ � 1Ck
.Œn � 1�//

C J
g
nC1.YnC1/

ˇ

ˇ

ˇ
Yn D yn; Un D gn.yn/

o

: (9)

Dynamic programming optimizes these cost-to-go functions

by backward induction. For that matter, define

VN .yN / D inf
uN 2UN

E

n K
X

kD1

ck.!; UCk
/.1ŒN �.Ck/

� 1ŒN �1�.Ck//
ˇ

ˇ

ˇ
YN D yN ; UN D uN

o

(10)

and for n D N � 1; : : : ; 1, define

Vn.yn/ D inf
un2Un

E

n K
X

kD1

ck.!; UCk
/.1Ck

.Œn�/�1Ck
.Œn�1�//

C VnC1.YnC1/
ˇ

ˇ

ˇ
Yn D yn; Un D un

o

: (11)

By induction, we can show that for any g 2 G

Vn.yn/ � J g
n .yn/

with equality only if g is an optimal policy. This suggests

a method to find an optimal policy. Recursively solve Vn

defined by (10) and (11) and choose gn.yn/ to be the

arg inf of the RHS of Vn.yn/. Since Un is compact and

ck is bounded, the arg inf lies in Un and is a valid control

action. The equations (10) and (11) are called the dynamic

programming equations.

A critical step in the above decomposition is (8), which

follows from the law of iterated expectations. However,

for non-classical systems, Jn 6� JnC1 so the argument

in (8) breaks down, and a parametric decomposition of the

form (10) and (11) is not possible. Nonetheless, when the

system is P -classical, an optimal policy can be identified

from the solution of (10) and (11) corresponding to its

classical extension. This is demonstrated in the next section.

First, we prove a result about the classical expansion of a

system.

Consider any system (S) and its classical expansion (SC).

Let Y 0
n be the observations and g0

n be the control laws of
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agent n, n D 1; : : : ; N , in (SC). Let G0
n be the set of all

control laws g0
n and G0 set of all policies in (SC).

Definition 3: A policy g0 of (SC) is achievable at agent

n in (S) if g0
n is Gn=F �

n measurable, where F �
n is the

cylindrical extension of Fn to YŒn� � UŒn�1�. Another way

of stating this property is that for any .y
.1/

Œn�
; u

.1/

Œn�1�
/ and

.y
.2/

Œn�
; u

.2/

Œn�1�
/ in YŒn� � UŒn�1� such that for y

.1/
n D y

.2/
n ,

we have g0
n.y

.1/

Œn�
; u

.1/

Œn�1�
/ D g0

n.y
.2/

Œn�
; u

.2/

Œn�1�
/: A policy is

achievable in (S) if it is achievable at all agents in (S).

Proposition 1: Given any policy g0 of (SC) that is achiev-

able in (S), we can find a corresponding policy g of (S) such

that for any realization of !, using g in (S) gives the same

realization of the random variables as using g0 is (SC).

Proof: Define policy g as follows. For any .yŒn�; uŒn�1�/

in YŒn� � UŒn�1�,

gn.yn/ D g0
n.yn; yŒn�1�; uŒn�1�/: (12)

The values of .yŒn�1�; uŒn�1�/ do not matter because

g0
n.yn; yŒn�1�; uŒn�1�/ takes the same value for all

.yŒn�1�; uŒn�1�/. Proceeding sequentially, we can show

that for any realization of !, the using g in (S) leads to the

same realization of UŒN � as using g0 in (SC).

V. OPTIMAL POLICY FOR P -CLASSICAL SYSTEMS

For a P -classical system (S), consider its classical expan-

sion (SC). According to Proposition 1, if an optimal policy

of (SC) is achievable in (S), then the corresponding policy

is optimal in (S).

The system (SC) is classical, so the dynamic programming

equations (10) and (11) give an optimal policy g0. However,

such a policy g0 need not be achievable in (S),1. Nonetheless,

it is a stepping stone to find an optimal policy g0� for (SC)

that is achievable in (S).

Theorem 1: If (S) is P -classical, there exists an optimal

policy g0� of (SC) that is achievable in (S). The policy

corresponding to g0� is optimal for (S).

Proof: Let g0 be an optimal policy for (SC). Pick an

agent n. Fix the policy g0
�n of all other agents. We will show

that we can find a policy .g0�
n ; g0

�n/ which is optimal for (SC)

and achievable for (S) at agent n. Repeating this process for

all agents will give us a policy that is achievable at all agents

in (S).

In (SC), consider the “best response” policy of agent n

to g0
�n. Since, g0 is optimal g0

n is a best response. If g0
n is

1The definition of P -classical is not strong enough to ensure that g 0 is
achievable in (S). If, however, we assume that

E
g

n

Rn.!; UŒN �/
ˇ

ˇ

ˇ Yn; Un

o

D E
g

n

Rn.!; UŒN �/
ˇ

ˇ

ˇ YŒn�; UŒn�

o

;

then g 0 obtained by solving (10) and (11) is also achievable in (S).
An example where the above condition holds is the stochastically nested
information structure with two control stations considered in [7].

achievable at agent n in (S), we are done. Otherwise, choose

u�
n D g�

n.yŒn�; uŒn�1�/

D arg inf
un2Un

E
g0

�n
˚

Rn.!; UŒN �//
ˇ

ˇ YŒn� D yŒn�; UŒn� D uŒn�

	

.a/
D arg inf

un2Un

E
g0

�n
˚

Qn.!; UŒN �//
ˇ

ˇ YŒn� D yŒn�; UŒn� D uŒn�

	

.b/
D arg inf

un2Un

E
g0

�n
˚

Qn.!; UŒN �//
ˇ

ˇ Yn D yn; Un D un

	

(13)

where .a/ is true because Rn.!; UŒN �/ � Qn.!; UŒN �/ does

not depend of Un, and .b/ is true because (S) is P -

classical. The expectation in the first two equations do not

depend on g0 due to policy independence of conditional

expectation [12]. Relation (13) shows that g�
n is achievable

at agent n in (S). This completes the proof of the result.

The above result suggests the following methodology to

find an optimal design for a P -classical system. First, find

consider its classical expansion (SC), and find an optimal

policy g0 for (SC) using dynamic programming. Then, one by

one, find the best response of all agents in (SC) to remaining

components of g0. This resultant policy g0� is achievable in

the original system. Therefore, the policy corresponding to

g0� is optimal in the original system.

VI. OPTIMAL POLICY FOR STRICTLY QUASICLASSICAL

SYSTEMS

Quasiclassical systems are not necessarily classical.

Hence, the dynamic program of Section IV is not applicable

to them. In this section, we present coupled dynamic pro-

grams to find person-by-person optimal solutions for qua-

siclassical systems. Our approach is based on the approach

of [13] for the decentralized Wald problem.

Coupled dynamic programs are obtained by restricting

attention to classical subsystem and finding optimal policy

for such subsystems by dynamic programming.

A subset A WD f˛1; : : : ; ˛mg of agents forms a classical

subsystem if ˛i � ˛iC1 (or, equivalently, ˛i 2 D˛iC1
), i D

1; : : : ; m � 1.

Given a classical subsystem A, a policy g can be par-

titioned into two parts, gA that depends on control laws

of agents in A and g�A that depends on control laws of

agents not in A. For a fixed g�A, the system is classical

and the “best response” gA can be determined by dynamic

programming. This suggests the following process to obtain

a person-by-person optimal solution for the entire system.

Partition the set ŒN � of agents into mutually disjoint and

collectively exhaustive subsets A1; : : : ; AM
2 such that Am is

a classical subsystem, m D 1; : : : ; M . Orthogonal search

over these subsystems gives a person-by-person optimal

policy. Such a search proceeds as follows. Arbitrarily fix the

control policies of all subsystems. Now pick one subsystem,

2Such a partitioning is different from the i -partitions and the s-partitions
considered in [14]. The i - and s-partitions break the set of agents into
groups such that the agents within a group do not interact directly, while
we break the set of agents into groups such that the groups have classical
information structure.
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say Am, and determine the best response gAm
assuming

g�Am
is fixed. Subsystem Am uses this best response policy

in the future. Now pick another subsystem, say Am0 , m0 ¤ m,

and determine gAm0 assuming g�Am0 is fixed. Subsystem Am0

uses this best response policy in the future. Continue in this

manner by cyclically changing the policy of the subsystems

one-by-one. If this algorithm converges, the resultant policy

is person-by-person optimal. If the cost is convex in policy

space, then a person-by-person optimal policy is also globally

optimal.

The best response of each subsystem is determined by

a dynamic program. Thus, effectively we have M dynamic

programs, one for each subsystem, and we are cyclically

solving them one by one. These dynamic programs are

coupled through the observations and the cost.

A critical step in the above decomposition is breaking

the system into a collection of classical subsystems. If the

system is not quasiclassical, then such a decomposition is

not possible. Nonetheless, if the system is P -quasiclassical,

a person-by-person-optimal policy can be identified in a

similar manner.

VII. OPTIMAL POLICY OF STRICTLY P -QUASICLASSICAL

SYSTEMS

A subset A WD f˛1; : : : ; ˛mg of agents is a P -classical

subsystems if for all i 2 Œm�

E
˚

Q˛i
.!; UŒN �/

ˇ

ˇ Y˛i
; U˛i

	

D E
˚

Q˛i
.!; UŒN �/

ˇ

ˇ Y˛Œi�
; U˛Œi�

	

For a P -quasiclassical system (S) consider its quasi-

classical expansion (SQ). Partition the set ŒN � of agents

into mutually disjoint and collectively exhaustive subsets

A1; : : : ; AM such that Am is classical subsystem of (SQ),

m D 1; : : : ; M . Then, by construction, Am is a P -classical

subsystem of (S). Follow the orthogonal search procedure of

Section VI. At each step, pick a subsystem Am. Fix g�Am
.

Am is P -classical, so determine the best response gAm
using

the method of Section V. Proceed as in Section VI to find a

person-by-person optimal policy.

VIII. CONCLUDING REMARKS

In this paper, we introduced P -classical and P -

quasiclassical information structures that are characterized

by � -fields and the underlying probability measure and

cost function. These information structures are inspired by

stochastically nested information structures and the notion of

state in decentralized system. Systems with such information

structures can achieve the same performance as their classical

and quasiclassical extensions. Thus, all for practical pur-

poses, P -classical and P -quasiclassical information struc-

tures are the same as classical and quasiclassical information

structures.
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