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Abstract—Optimal transmission policies for a two-user multi-
ple access broadcast channel with binary feedback are investi-
gated. The system is modeled as a dynamic team. Conditioned
on the channel feedback, the past history of buffer states is
redundant to each user. Once this redundant data is removed,
the information structure, although non-classical, satisfies the
sufficient conditions of Mahajan, Nayyar, and Teneketzis, 2008
for a dynamic team problem to be tractable. Using the idea
of a virtual coordinator of Mahajan, Nayyar, and Teneketzis, a
dynamic programming decomposition is presented. This dynamic
program is defined over a countable state space and a finite
action space. When the arrival rates of both users are symmetric,
an optimal policy is identified by solving the dynamic program
analytically. This policy matches the optimal window protocol
proposed by Hluchyj and Gallager, 1981. Thus, this paper
presents the an example of a non-trivial dynamic team with non-
linear dynamics where an exact analytic solution is obtained.

I. INTRODUCTION

A. System Model

Consider a two-user multiple access broadcast system

(MABC) in which two users communicate to a common

receiver over a broadcast medium. Time is slotted. At the

beginning of each time slot, packets arrive stochastically at

each user. The users have a buffer that can store one packet.

If the buffer is empty when a new packet arrives, the packet

is stored in the buffer; if the buffer already has a packet, the

new packet is dropped. (In some applications, the old packet

is dropped and the new packet is stored in the buffer).

After the packet arrival, each user decides whether or

not to transmit. If both users transmit simultaneously, the

transmissions interfere and the receiver cannot decode; if only

one user transmits, the receiver can decode the transmitted

packet. At the end of transmission, the receiver feeds back

whether or not it successfully decoded a packet. In case of a

successful decoding, the transmitting user removes the packet

from her buffer. The above process is repeated at each slot.

The design objective is to choose decentralized transmission

policies at both users to maximize the average throughput over

a finite or infinite horizon.

The salient features of the above model are: (i) Each user

knows its own queue state but has only partial information

about the queue state of the other user; (ii) The queue

dynamics of the two users are coupled due to packet collision.

In this paper we analyze the two-user MABC using dynamic

team theory and provide a dynamic programming decompo-

sition. This dynamic program has countable state space and

finite action space. When the arrival rates at both users are

symmetric, we provide an analytic solution of the dynamic

program.

B. Literature overview

Dynamic team theory has been used to study MABC as

modeled above and its variants. Schoute [1] and Varaiya and

Walrand [2] investigated MABC under the assumptions that

packet collision incurs a cost rather than retransmission and

that the queue states are shared between the users with a delay.

Grizzle et. al. investigated MABC under the assumption that

queue state and transmission decisions are shared between the

users with one-step delay. In this paper, we do not make any

assumption on delayed sharing of information.

Hluchyj and Gallager [3] investigated the two-user MABC

with symmetric arrivals by restricting attention to window

protocols. Thus, their approach provides a lower bound on

optimal performance. Ooi and Wornell [4] investigated two-

user MABC with symmetric arrivals under the assumption

that queue state and transmission decisions are shared between

the users with some delay. Thus, their approach provides an

upper bound on performance. It turns out that the lower bound

of [3] matches the upper bound of [4]. Hence, for the case of

symmetric arrivals, the optimal policy is known.

For the case of asymmetric arrivals not much is known about

the optimal policy. Various researchers [5]–[8]. have used

MABC as a benchmark problem for the numerical algorithms

for decentralized stochastic control problems. These algo-

rithms are either heuristic and do not provide any optimality

guarantees, or can compute the optimal policy only for small

horizon (usually running out of memory at horizon four or

five). These attempts highlight the difficulty of the seeming

simple two-user MABC.

C. Contributions

The main contributions of this paper are two-fold.

1) We provide a dynamic programming decomposition

of the two-user MABC. The dynamic program has a

countable state space and finite action space. Hence,

the optimal policy can be computed numerically using

the standard methods for solving such dynamic pro-

grams [9]. This is in contrast to the existing attempts to

numerically compute the optimal policies, which either

relied on heuristics or could not handle large horizons.
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2) For the case of symmetric arrival rates, an optimal policy

is obtained by analytically solving the dynamic program.

The previous proof was based on identifying tight upper

and lower bounds.

Thus, this paper presents an example of a non-trivial decen-

tralized control problem with non-linear dynamics where an

exact analytic solution has been obtained.

D. Notation

xt denotes the value of a variable x at time t ; x1Wt denotes

the sequence x1; x2; : : : ; xt . P.�/ denotes probability of an

event; Ef�g denotes expectation of a random variable. For any

p 2 Œ0; 1�, Np denotes 1 � p. N denotes the set f0; 1; 2; : : : g.

II. PROBLEM FORMULATION

For user i , i D 1; 2, and time t , let ai;t 2 f0; 1g denote

the number of new packet arrivals, xi;t 2 f0; 1g the number

of packets in the buffer, and ui;t 2 f0; 1g the number of

transmitted packets.

The packet arrivals at both users are independent Bernoulli

processes with arrival probability p1 and p2. Thus, for i D

1; 2,

ai;t D

(

0 with probability .1 � pi /

1 with probability pi

and

xi;tC1 D .xi;t � ui;t zt / _ ai;t

where _ denotes binary OR.

Let zt 2 f0; 1g indicate if the receiver successfully decoded

a packet. Thus,

zt D u1;t ˚ u2;t (1)

where ˚ denotes exclusive OR. At the end of the slot zt is

fed back to both users. The users choose their transmission

decisions based on their histories of buffer states and channel

feedback according to a transmission rule gi;t as follows

ui;t D gi;t .xi;1Wt ; ui;1Wt�1; z1Wt�1/ (2)

such that ui;t � xi;t .

At time t , the system gets a reward r.u1;t ˚ u2;t /, where

r � 0 is a normalizing constant. We are interested in the

following optimization problem.

Problem 1: Given the arrival rates p1 and p2 and a time

horizon T , choose transmission policies gi :D .gi;1; : : : ; gi;T /

of the form (2) that maximizes the expected total reward

JT .g1; g2/ D E
g1;g2

� T
X

tD1

r.u1;t ˚ u2;t /

�

or the average expected reward per unit time as T ! 1

J .g1; g2/ D lim
T !1

1

T
E

g1;g2

� T
X

tD1

r.u1;t ˚ u2;t /

�

:

where E
g1;g2 denotes the expectation taken with respect to the

joint probability measure induced on all the system variables

from the choices of .g1; g2/.

We restrict attention to pure policies (also called determinis-

tic policies). Since the optimization problem does not have any

constraints, randomization cannot improve performance [10,

Chapter 8]. Hence, restriction attention to pure policies is

without loss.

III. STRUCTURE OF OPTIMAL TRANSMISSION POLICY

Problem 1 has a non-classical information structure [11]

because both users do not know each other’s buffer state. As

a result, it is hard to compress each user’s data, which is

increasing with time, into an information state whose domain

is not increasing with time. Unless such information states are

identified, systems with non-classical information structure are

intractable.

Sufficient conditions under which non-classical information

structures are tractable were identified in [12]. The model

of Section II does not satisfy these conditions. However, we

show that conditioned on the channel feedback, the history

of buffer states at both users are redundant, and after this

redundant data is removed, the information structure, although

non-classical, satisfies the conditions of [12]. Therefore, a

tractable sequential decomposition is possible.

A. Feedback implies control sharing

Since the control actions are binary and the feedback is the

XOR of the control actions, each user can recover the other

user’s control action from the feedback and its own control.

In particular, user 1 can recover u2;t because u2;t D u1;t ˚ zt

and user 2 can recover u1;t because u1;t D u2;t ˚ zt . Hence,

.ui;1Wt�1; z1Wt�1/ $ .u1;1Wt�1; u2;1Wt�1/:

Consequently, we have the following:

Proposition 1: In problem 1, each user can use a transmis-

sion policy of the form

ui;t D gi;t .xi;1Wt�1; u1;1Wt�1; u2;1Wt�1/: (3)

B. Removing redundant data

Proposition 2: For any transmission policy of user 2 of the

form (3), restriction attention to a transmission policy of the

form

u1;t D g1;t .x1;t ; u1;1Wt�1; u2;1Wt�1/ (4)

at user 1 is without loss. By symmetry, the result is also true

if the role of users 1 and 2 is interchanged.

Combining both the cases of the above, we have the

following:

Corollary 1: Restricting attention to transmission policies

of the form

ui;t D gi;t .xi;t ; u1;1Wt�1; u2;1Wt�1/ (5)

is without loss

Due to lack of space, we omit the proof of Proposition 2.

Corollary 1 implies that Problem 1 is equivalent to the

following problem.

Problem 2: In Problem 1, determine optimal policies of the

form (5).
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The information structure of Problem 2 is same as Model A

of [12]. Each user’s data consists of two parts: shared ob-

servations .u1;1Wt�1; u2;1Wt�1/ that are increasing with time,

and private observation x1;t and x2;t that have a fixed size.

So, Problem 2 can be sequentially decomposed using the

methodology of [12].

For that matter, consider a virtual coordinator that observes

the shared observations .u1;1Wt�1; u2;1Wt�1/ and chooses how

each user uses her private observations x1;t or x2;t . Any policy

for the coordinator can be implemented in original problem

and vice versa. Hence, the two problems are equivalent.

The coordinator’s problem, which is centralized, sequentially

decomposes by an appropriate choice of information state.

The corresponding dynamic programming decomposition also

determines optimal transmission policy for Problem 2.

C. Virtual coordinator

Consider the following modified problem. In the model

described in Section II, in addition to the two users, a virtual

coordinator is present. The coordinator has perfect recall, i.e.,

it remembers its past observations and control actions. At time

t , it observes .u1;t�1; u2;t�1/ and chooses partial functions


i:t W f0; 1g 7! f0; 1g

for user i , i D 1; 2. Each user then uses its assigned partial

function to generate a transmission decision as follows:

ui;t D 
i;t .xi;t /:

Since ui;t � xi;t , 
i;t is equivalent to 'i;t D 
i;t .1/. Hence,

we can write

ui;t D 'i;t xi;t : (6)

We call .'1;t ; '2;t / the control action of the coordinator. These

are similar to the partial functions defined in [12].

The coordinator chooses the current control action based on

all past observations and past control actions as follows:

.'1;t ; '2;t / D ht .u1;1Wt�1; u2;1Wt�1; '1;1Wt�1; '2;1Wt�1/ (7)

The system dynamics and the reward are the same as in the

model described in Section II. Thus, the reward at time t is

r..x1;t '1;t / ˚ .x2;t '2;t //

In the above formulation, the only decision maker is the

virtual coordinator; the users simply carry out the calculations

prescribed by (6). The virtual coordinator has to solve the

following optimization problem.

Problem 3: Given the arrival rates p1 and p2 and a time

horizon T , choose coordination policy h :D .h1; : : : ; hT / of

the form (7) that maximizes the expected total reward

JT .h/ D E
h

� T
X

tD1

r..x1;t '1;t / ˚ .x2;t '2;t //

�

:

or the average reward per unit time as T ! 1

J .h/ D lim
T !1

1

T
E

h

� T
X

tD1

r..x1;t '1;t / ˚ .x2;t '2;t //

�

:

Problems 2 and 3 are equivalent.

Proposition 3: Any transmission policy .g1; g2/ for Prob-

lem 2 can be implemented in Problem 3 by a corresponding co-

ordination policy h with identical expected reward. Conversely,

any coordinator policy h for Problem 3 can be implemented

in Problem 2 by a transmission policy .g1; g2/ for Problem 2

with identical expected reward.

Proof: We prove the first part of the proposition. The

proof of the second part is similar. Consider a transmission

policy .g1; g2/ for Problem 2. To implement this policy in

Problem 3 set a coordination policy h for Problem 3 by

choosing

'i;t D gi;t .1; u1;1Wt�1; u2;1Wt�1/: (8)

Now consider Problem 2 and 3 for a specific realization of

x1;1, x2;1, a1;1WT , and a2;1WT . The choice (8) of h implies

that x1;1WT , x2;1WT , u1;1WT , u2;1WT , and z1WT are identical in

Problems 2 and 3. Thus, any transmission policy .g1; g2/ for

Problem 2 can be implemented in Problem 3 by choosing h

according to (8). Furthermore, since the system variables in the

two Problems are identical along all sample paths, the expected

reward of the transmission policy .g1; g2/ for Problem 2 is

identical to the expected reward of the coordination policy h

for Problem 3.

D. Information states at the virtual coordinator

To sequentially decompose Problem 3, we define the fol-

lowing.

Definition 1: Let �i;t be the posterior belief of the coordi-

nator that the buffer of user i is full, i.e.,

�i;t D P

�

xi;t D 1

ˇ

ˇ

ˇ

ˇ

u1;1Wt�1; u2;1Wt�1

'1;1Wt�1; '2;1Wt�1

�

(9)

Proposition 4: Let Ai , i D 1; 2, be operators from Œ0; 1� to

Œ0; 1� defined for any � 2 Œ0; 1�, as

Ai � D 1 � Npi N� D pi C Npi �:

Then,

An
i � D 1 � Npn

i N�:

Proof: The proof follows from induction.

Proposition 5: The vector .�1;t ; �2;t / evolves as follows:

1) When .'1;t ; '2;t / D .0; 0/,

.�1;tC1; �2;tC1/ D .A1�1;t ; A2�2;t /:

2) When .'1;t ; '2;t / D .1; 0/,

.�1;tC1; �2;tC1/ D .p1; A2�2;t /:

3) When .'1;t ; '2;t / D .0; 1/,

.�1;tC1; �2;tC1/ D .A1�1;t ; p2/:

4) When .'1;t ; '2;t / D .1; 1/,

.�1;tC1; �2;tC1/ D

(

.1; 1/ if x1;t D x2;t D 1

.p1; p2/ otherwise
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Proof: The result follows directly from the definition of

.�1;t ; �2;t /.

Proposition 6: 1) For any coordination policy of the

form (7), the process f.�1;t ; �2;t /g is a controlled

Markov chain with control action .'1;t ; '2;t /, that is

P

�

�1;tC1; �2;tC1

ˇ

ˇ

ˇ

ˇ

�1;1Wt ; u1;1Wt�1; '1;1Wt�1

�2;1Wt ; u2;1Wt�1; '2;1Wt�1

�

D P.�1;tC1; �2;tC1j�1;t ; �2;t ; '1;t ; '2;t /

2) The conditional instantaneous reward may be written as

E

�

r.u1;t ˚ u2;t /

ˇ

ˇ

ˇ

ˇ

�1;1Wt ; u1;1Wt�1; '1;1Wt�1

�2;1Wt ; u2;1Wt�1; '2;1Wt�1

�

D Efr.u1;t ˚ u2;t /j�1;t ; �2;t ; '1;t ; '2;t /

Proof:

1) The result follows from the update equation of Proposi-

tion 5.

2) From Definition 1, we have

P

�

�1;tC1; �2;tC1

ˇ

ˇ

ˇ

ˇ

�1;1Wt ; u1;1Wt�1; '1;1Wt�1

�2;1Wt ; u2;1Wt�1; '2;1Wt�1

�

D r.�1;t '1;t .1 � �2;t '2;t / C .1 � �1;t '1;t /�2;t '2;t /

D P.�1;tC1; �2;tC1j�1;t ; �2;t ; '1;t ; '2;t /

E. Main structural result

The above result implies that the vector .�1;t ; �2;t / is an

information state for Problem 3. Consequently, we have the

following.

Theorem 1: In Problem 2, restricting attention to coordina-

tion policy of the form

.'1;t ; '2;t / D ht .�1;t ; �2;t / (10)

is with loss. Consequently, in Problem 2, restricting attention

to a transmission policy of the form

ui;t D gi;t .xi;t ; �1;t ; �2;t / (11)

is without loss.

Proof: Proposition 6 implies that the coordinator’s opti-

mization problem can be viewed as an MDP in which the

underlying Markov process is .�1;t ; �2;t / and the instanta-

neous cost is Efu1;t ˚ u2;t j�1;t ; �2;t ; '1;t ; '2;t g. This MDP

formulation implies the result of the theorem.

The information state .�1;t ; �2;t /, exploits the spe-

cial structure of the two-user MABC, and as such

is simpler than the information state P.x1;t ; x2;t j

u1;1Wt�1; u2;1Wt�1; '1;t�1; '2;1Wt�1/ proposed in [12]. This sim-

plification of the information state was also reported in [13].

IV. DYNAMIC PROGRAMMING DECOMPOSITION

A. Finite horizon

Since .�1;t ; �2;t / is a controlled Markov process, Problem 3

sequentially decomposes as follows:

Theorem 2: In Problem 3, an optimal policy of the

form (10) is given by the solution of the following dynamic

program. For any �1; �2 2 Œ0; 1�,

VT C1.�1; �2/ D 0 (12)

and for t D T; T � 1; : : : ; 1,

Vt .�1; �2/ D max
˚

W10;t .�1; �2/;

W01;t .�1; �2/; W11;t .�1; �2/
	

(13)

where Wij;t , i; j 2 f0; 1g denotes the expected future reward

if .'1;t ; '2;t / is chosen to be .i; j /, i.e.,

W10;t .�1; �2/ D r�1 C VtC1.p1; A2�2/;

W01;t .�1; �2/ D r�2 C VtC1.A1�1; p2/;

W11;t .�1; �2/ D r.�1 C �2 � 2�1�2/ C �1�2VtC1.1; 1/

C .1 � �1�2/VtC1.p1; p2/

Proof: The above dynamic program follows from the

MDP formulation presented in the proof of Theorem 1.

B. Properties of the value function

Proposition 7: The functions Vt , W10;t , W01;t , and W11;t

satisfy the following properties: for all t

1) W10;t .�1; �2/ is linear in �1 and convex in �2.

2) W01;t .�1; �2/ is convex in �1 and linear in �2.

3) W11;t .�1; �2/ is component-wise linear in �1 and �2.

4) Vt .�1; �2/ is component-wise convex in �1 and �2.

Proof: The proof proceeds by induction. The properties

are true at T C 1. Suppose they are also true at t C 1. Then,

1) and 2) follow from the convexity of VtC1 and linearity of

A1 and A2, 3) follows from definition, and 5) follows from

the component-wise convexity of W10;t , W01;t , and W11;t .

C. Properties of the optimal policy

Definition 2: Partition the space Œ0; 1�2 of realization of

.�1;t ; �2;t / into three disjoint regions R10;t , R01;t , and R11;t

such that Rij;t denotes the region where .'1;t ; '2;t / D .i; j /

is optimal, i; j 2 f0; 1g.

We say that Rij;t , i; j 2 f0; 1g, is element-wise convex in

�1 if for any � 0

1, � 00

1 , �2, � 2 Œ0; 1� and

�1 D �� 0

1 C N�� 00

1 ;

such that .� 0

1; �2/, .� 00

1 ; �2/ 2 Rij;t , then .�1; �2/ 2 Rij;t .

Element-wise convexity in �2 is defined in a similar manner.

Proposition 8: For all t , the regions R10;t and R11;t are

element-wise convex in �1; the regions R01;t and R11;t are

element-wise convex in �2.
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Proof: We prove the result for one case. The proof of

other cases is similar. Suppose .� 0

1; �2/, .� 00

1 ; �2/ 2 R10;t ,

� 2 Œ0; 1�, and �1 D �� 0

1 C N�� 00

1 . Then,

W10;t .�1; �2/
.a/
D �W10;t .�

0

1; �2/ C N�W10;t .�
00

1 ; �2/

.b/
� �W01;t .�

0

1; �2/ C N�W01;t .�
0

1; �2/

.c/
� W01;t .�1; �2/

where .a/ is true because W10;t .�1; �2/ is linear in �1; .b/

is true because .� 0

1; �2/, .� 00

1 ; �2/ 2 R10;t ; and .c/ is true

because W01;t .�1; �2/ is convex in �1. By a similar argument,

we can show that W10;t .�1; �2/ � W11;t .�1; �2/: Hence,

.�1; �2/ 2 R10;t .

D. Infinite horizon

When T D 1, the sequence of nested functions of

Theorem 2 simplify as follows.

Theorem 3: In Problem 3, when T D 1, the optimal

coordination policy is stationary and given by the solution of

the following fixed point equation.

v.�1; �2/ C J � D max
˚

w10.�1; �2/;

w01.�1; �2/; w11.�1; �2/
	

(14)

where J � denotes the average reward per unit time, v.�1; �2/

is the differential reward at .�1; �2/ and wij , i; j 2 f0; 1g

are the expected differential reward if .'1; '2/ is chosen to be

.i; j /, i.e.,

w10.�1; �2/ D r�1 C ˇv.p1; A2�2/;

w01.�1; �2/ D r�2 C ˇv.A1�1; p2/;

w11.�1; �2/ D r.�1 C �2 � 2�1�2/ C ˇ�1�2V.1; 1/

C ˇ.1 � �1�2/v.p1; p2/

Proof: Since reward function is bounded, the result

follows from standard dynamic programming arguments.

See [14].

Similar to Definition 2, let Rij be the region where

.'1; '2/ D .i; j / is optimal. Then, Proposition 8 implies that

R10 and R11 are element-wise convex in �1 while R01 and

R11 are element-wise convex in �2.

E. Reduction to a countable state MDP

The information state .�1; �2/ takes value in the set Œ0; 1�2.

However, the reachable set of the information state is count-

able.

Proposition 9: Suppose the system starts in state .p1; p2/.

Then, the reachable set of .�1; �2/ is countable and given by

S D f.1; 1/; .p1; 1/; .1; p2/; .p1; p2/g
[

f.An
1p1; p2/; .p1; An

2p2/; W n 2 Ng (15)

Proof: This is an immediate consequence of Proposi-

tion 5.

The reachable set for p1 D p2 D 0:4 is shown in Figure 1.

Notice that the reachable set is considerably smaller than

(0, 0)

(p1, p2)

(1, 1)

(1, p2)

(p1, 1)

Fig. 1. Reachable set of .�1; �2/ for p1 D p2 D 0:4.

whole space Œ0; 1�2. We need to solve the dynamic program

of Theorem 3 only for .�1; �2/ 2 S , resulting in considerable

computational savings. The resultant dynamic program has

countable state space and finite action space, and can be solved

using the methods described in [9].

In some applications, in particular sensor networks, it is

reasonable to assume that each user must transmit at least

once within m consecutive time slots, where m is finite. If we

make such an assumption, then the reachable state space is

finite and is given by

Sm D f.1; 1/; .p1; 1/; .1; p2/; .p1; p2/g
[

f.An
1p1; p2/; .p1; An

2p2/ W n D 1; : : : ; mg (16)

In this case, we only need to solve the dynamic program of

Theorem 3 only for .�1; �2/ 2 Sm. The resultant dynamic

program has a finite state and action spaces, and can be solved

using standard policy iteration [15].

V. SYMMETRIC ARRIVAL RATES

In this section, we focus on the infinite horizon case for

symmetric arrival rates, i.e., p1 D p2 D p. For this case,

A1 D A2, so we denote both operators by A. An immediate

consequence of symmetric arrival rates is that the optimal

policy is symmetric: for any �1; �2 2 Œ0; 1�

h.�1; �2/ D h.�2; �1/:

A. Optimal policies

We exploit the symmetry of the optimal policy to analyti-

cally solve the dynamic program of Theorem 3 and identify

an optimal policy. For that matter, we define the following.

Definition 3: Let for n 2 N

fn.x/ D 1 C .1 � x/2 � .3 C x/.1 � x/nC1:

and sn denote the root of fn.x/ that is between Œ0; 1�. The

function f .n/ is negative for x 2 Œ0; sn� and positive in x 2

Œsn; 1�. Thus, sn is a decreasing sequence. Moreover, s0 �

0:70711 and s1 � 0:34729. Let � be the root of x D .1 � x/2

that lies in Œ0; 1�. Observe that s1 < � < s0 and � � 0:38196.
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Theorem 4: An optimal policy for Problem 3 is: For p � � ,

h�.�1; �2/ D

8

ˆ

<

ˆ

:

.1; 0/ if �1 > �2;

.0; 1/ if �1 < �2;

.1; 0/ or .0; 1/ if �1 D �2:

(17)

For p � � , let m 2 N be such that smC1 � p � sm. Then,

h�.�1; �2/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.1; 1/ if �1 � Amp; �2 � Amp;

.1; 0/ if �1 > �2; �1 > Amp

.0; 1/ if �1 < �2; �2 > Amp

.1; 0/ or .0; 1/ if �1 D �2 D 1:
(18)

The average reward per unit time is

J � D

(

rpŒ1 � .2p2 � 1/=D.p/� if p � s1;

r.1 � Np2/ if s1 � pI
(19)

where D.p/ :D 1 C p2 C p3.

See Appendix A for proof.

B. Qualitative properties

Although the optimal policy looks complicated, with dif-

ferent behavior depending on the value of p, essentially

it has only two modes of operation. When p � s1, the

states f.p; Ap/; .Ap; p/g are absorbing and form a recur-

rence class in S . Within this recurrence class, the optimal

policy is a round-robin policy. When p � s1, the states

f.1; 1/; .p; p/; .Ap; p/; .p; Ap/g are absorbing and form a

recurrence class in S . Within this recurrence class, the optimal

policy is identical for all p � s1. Each user transmits if it has a

packet. If a collision occurs, both users know that both of them

have a packet. So, they simply empty their buffer one-by-one,

and then go back to “transmit if you have a packet”.

Thus, for both p � s1 and p � s1, the optimal policy

restricted to the recurrent states is a window protocol [3] and

identical to the one proposed by Hluchyj and Gallager.

According to the optimal policy, irrespective of the value of

p each user gets a transmission opportunity (i.e., wi;t D 1) at

least once in two consecutive time slots. This property enforces

a two-step delayed state sharing information structure. So, if

we could establish this property beforehand, we could use

the dynamic programming decomposition for delayed state

sharing information structure [16]. In fact, Schoute [1] and

Varaiya and Walrand [2] assumed this property while deriving

structural properties for their model. However, we could find

a direct way of proving this property.

VI. CONCLUSION

We presented a dynamic programming decomposition for

finding optimal decentralized transmission policies for two-

user MABC. This dynamic program has a countable state

space and a finite action space. When both users have

symmetric arrival rates, we find an analytic solution to the

dynamic program, thereby identifying an optimal policies. Our

approach differs from existing approaches in the literature,

which have focused on either a restriction of the model, or

a relaxation of the model, or on heuristic approximations. In

contrast, in this paper we provide a direct and explicit solution.

The model of this paper is an example of a dynamic team

problem in which the search of an optimal solution is tractable.

The insights provided by this example may also be useful for

understanding general dynamic team problems.
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APPENDIX A

PROOF OF THEOREM 4

The proof of the theorem is purely algebraic. We simply

guess the differential reward functions and show that they

satisfy the dynamic programming equations of Theorem 3. At

some places, the proof exploits a recursive property of fn.x/,

namely.

Lemma 1: For any n 2 N

fnC1.x/ � .1 � x/fn.x/ D p.1 C Np2/

The rest is simply elementary (but tedious) algebra.

We prove the cases, p � � , � > p � s1, s1 > p � s2, etc.

separately.

A. Case 1: p � �

For this case, the differential reward functions are

v.p; Anp/ D v.Anp; p/ D r.1 � NpnC1/; n > 1

v.p; 1/ D v.1; p/ D r;

v.1; 1/ D r.1 C Np2/;

v.p; p/ D rp

To show that h� is optimal, we need to show two things.

First

w01.p; Anp/ D r.1 � NpnC1/ C v.Ap; p/ D v.p; Anp/ C J �;

w01.p; 1/ D r C v.Ap; p/ D v.p; 1/ C J �;

w01.1; 1/ D r C v.1; p/ D v.1; 1/ C J �;

w01.p; p/ D rp C v.p; Ap/ D v.p; p/ C J �:

which is easy to verify.

Next we show that if �1 � �2,

w01.�1; �2/ � maxfw10.�1; �2/; w11.�1; �2/g

We show this on a case-by-case basis:

1) For .�1; �2/ D .p; Anp/, we have

w01.p; Anp/ � w10.p; Anp/ D rp Np.1 � Npn/ � 0

Furthermore,

w01.p; Ap/ � w11.p; Ap/ D rp2Œ1 C Np.1 � .2 C Np/ Npn/�

Observe that

1 � .2 C Np/ Np2 D .1 C Np/.p � Np2/:
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Thus, for p � � , this term is positive. Hence, for n � 2,

1 � .2 C Np/ Npn � 1 � .2 C Np/ Np2 � 0:

For n D 1, the term in the square brackets is �p3 C

5p2 �6p C1 which is positive for p � 0:19806. Hence,

h� is optimal at .p; Anp/ and .Anp; p/, n > 1.

2) For .�1; �2/ D .p; 1/, we have

w01.p; 1/ � w10.p; 1/ D r Np � 0

and

w01.p; 1/ � w11.p; 1/ D rp2.1 C Np/ � 0

Hence, h� is optimal at .p; 1/ and .1; p/

3) For .�1; �2/ D .1; 1/, we have

w01.1; 1/ � w10.1; 1/ D 0

and

w01.1; 1/ � w11.1; 1/ D rp.1 C Np/ � 0

Hence, h� is optimal at .1; 1/.

4) For .�1; �2/ D .p; p/, we have

w01.p; p/ � w10.p; p/ D 0

and

w01.p; p/ � w11.p; p/ D rp2.p � Np2/

which is positive for p 2 Œ0; 1� such that p > Np2 or

p > � . Hence, h� is optimal at .1; 1/.

Thus, we have proved that h� is optimal for p � � .

B. Case 2: s1 � p � �

For this case, the differential reward functions are

v.p; Anp/ D v.Anp; p/ D r.1 � NpnC1/; n > 1

v.p; 1/ D v.1; p/ D r;

v.1; 1/ D r.1 C Np2/;

v.p; p/ D r Np2

As before, it is easy to verify that

w01.p; Anp/ D r.1 � Npn/ C v.Ap; p/ D v.p; Anp/ C J �;

w01.p; 1/ D r C v.Ap; p/ D v.p; 1/ C J �;

w01.1; 1/ D r C v.1; p/ D v.1; 1/ C J �;

w11.p; p/ D 2rp Np C p2v.p; p/ C .1 � 2p2/v.1; 1/

D v.p; p/ C J �:

Next, we will show that for �1 < �2, and �1 D �2 D 1,

w01.�1; �2/ � maxfw10.�1; �2/; w11.�1; �2/g

while for �1 D �2 D p,

w11.p; p/ � maxfw01.p; p/; w10.p; p/g

As before, we show this on a case-by-case basis:

1) For .�1; �2/ D .p; Anp/, we have

w01.p; Anp/ � w10.p; Anp/ D rp Np.1 � Npn/ � 0

Furthermore,

w01.p; Ap/ � w11.p; Ap/ D r.1 � 2 Np2 � p NpnC1/

D rŒfn.p/ � 3 Np2.1 � Npn�1/�

which is positive for p � s1. Hence, h� is optimal at

.p; Anp/ and .Anp; p/.

2) For .�1; �2/ D .p; 1/

w01.p; 1/ � w10.p; 1/ D r Np � 0

Furthermore,

w01.p; 1/ � w11.p; 1/ D �rf0. Np/

which is positive if Np < s0, or equivalently, p > 1 � s0.

Since p > s1 > 1 � s0, w01.p; 1/ � w11.p; 1/ � 0.

Hence, h� is optimal at .p; 1/ and .1; p/.

3) For .�1; �2/ D .1; 1/, the calculations are the same as

for p � � .

4) For .�1; �2/ D .p; p/,

w01.p; p/ � w10.p; p/ D w11.p; p/ � w01.p; p/

D r. Np2 � p/

which is positive if p < Np2, or equivalently, p < � .

Hence, h� is optimal at .p; p/.

Thus, we have proved that h� is optimal for s1 � p � � .

C. General case: smC1 � p < sm, m 2 N

For this case,

J � D rpŒ1 � f0.p/=D.p/�

where D.p/ :D 1Cp2 Cp3. The differential reward functions

are

v.p; 1/ D v.1; p/ D J �;

v.1; 1/ D r;

v.p; p/ D rf1.p/=D.p/;

v.Anp; p/ D v.p; Anp/ D

(

c�.n/ if n � m;

c�.n/ if n > m

where

c�.n/ D
Np

p
.1 � Npn/J � C r NpnC1 � r Np C v.p; p/;

c�.n/ D r.1 � NpnC1/ C c�.1/ � J �

The functions c� and c� satisfy the following property.

Lemma 2: For any n 2 N,

c�.n C 1/ � c�.n/ D p NpnC1f0.p/=D.p/;

c�.n C 1/ � c�.n/ D p NpnC1

which follow from elementary algebra. Using the above recur-

sion, we can express c�.n/ and c�.n/ in terms of c�.1/ and

c�.1/.
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To show that h� is optimal, we need to show two things.

First

w11.p; Ap/ D r.p C Ap C pAp/ C pApv.1; 1/

C .1 � pAp/v.p; p/ D v.p; Ap/ C J;

w01.p; Anp/ D rAnp C v.Ap; p/ D v.p; Anp/ C J; n > 1

w01.p; 1/ D r C v.Ap; p/ D v.p; 1/ C J �;

w01.1; 1/ D r C v.1; p/ D v.1; 1/ C J �;

w11.p; p/ D 2rp Np C p2v.1; 1/ C .1 � p2/v.p; p/

D v.p; p/ C J �:

which is easy to verify. Second, when �1 < Amp and �2 <

Amp,

w11.�1; �2/ � maxfw10.�1; �2/; w01.�1; �2/g

otherwise when �1 � �2,

w01.�1; �2/ � maxfw10.�1; �2/; w11.�1; �2/g

We show these on a case-by-case basis.

1) For .�1; �2/ D .p; Anp/, n � m, we have

w11.p; Anp/�w10.p; Anp/ D �rp.1� NpnC1/f0.p/=D.p/

which is positive since p � � < s0. Furthermore,

w11.p; Anp/ � w01.p; Anp/ D �rp2fn.p/=D.p/

which is positive for p � sn. Since n � m, sn � sm.

By assumption p < sm. Thus, p � sn and hence h� is

optimal at .p; Anp/ and .Anp; p/, n � m.

2) For .�1; �2/ D .p; Anp/, n > m, we have

w01.p; Anp/ � w10.p; Anp/ D rp

�

�
f0.p/

D.p/
� NpnC1

�

� p

�

�f0.p/

D.p/
� Np

�

D p

�

�pf1.p/

D.p/

�

which is positive for p 2 Œ0; s1�. Furthermore,

w01.p; Anp/ � w11.p; Anp/ D rp2fn.p/=D.p/

which is positive when p � sn. Since n � m C 1,

smC1 � sn. By assumption, p � smC1. Thus, p � sn

and h� is optimal at .p; Anp/, .Anp; p/ for n > m.

3) For .�1; �2/ D .p; 1/, we have

w01.p; 1/ � w10.p; 1/ D r Np � 0

Furthermore,

w01.p; 1/ � w11.p; 1/ D rp2.1 C Np2/=D.p/ � 0

Hence h� is optimal at .p; 1/ and .1; p/

4) For .�1; �2/ D .1; 1/, we have

w01.1; 1/ � w10.1; 1/ D 0:

Furthermore,

w01.1; 1/ � w11.1; 1/ D rp.1 C p/.1 C Np2/=D.p/ � 0:

Hence, h� is optimal at .1; 1/.

5) For .�1; �2/ D .p; p/, we have

w11.p; p/ � w01.p; p/ D rp2.1 � 2p2/=D.p/

which is positive since p < s0. Furthermore, by symme-

try w10.p; p/ D w01.p; p/, so w11.p; p/�w01.p; p/ �

0. Hence, h� is optimal at .p; p/.

Thus, we have proved that h� is optimal for smC1 � p < sm,

m 2 N.
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