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Abstract— In static LQG teams with finite number of players,
there is no loss of optimality in restricting attention to affine
control strategies. This result, in turn, implies that affine control
strategies are globally optimal for finite horizon partially
nested LQG teams. The standard proof of optimality of affine
strategies does not generalize to the setting where the team has
countably infinite players and the cost function is the average
expected cost per player. Consequently, it is not clear whether
affine control strategies are globally optimal for infinite horizon
partially nested LQG teams. We identify sufficient conditions
under which affine control strategies are globally optimal for
static teams with countably infinite players. An example is
included.

I. INTRODUCTION

Decentralized decision making is an increasingly relevant

area of research with applications ranging from networked

control systems, sensor networks, traffic management, vehi-

cle coordination, to sociology and interaction of masses, as

well as economics.

Consider a collection of players where each player has

access to a local information variable and they collective

wish to minimize a common cost function. Assume that the

players agree on the system (that is, the probability space

on which the system is defined, and the strategy and action

spaces). Such a collection is called a team; when one of these

conditions is not satisfied, the collection is said to engage

in a game. A team is dynamic if the information of one

player is affected by the decision rule of some other player.

A team is sequential if the order in which the players act can

be specified before the system starts running. Witsenhausen

[1] provided the following characterization of information

structures in a dynamic sequential team: Under a centralized

information structure, all players have the same information.

Under a quasi-classical information structure whenever the

information of any player, say player j, depends on the

decision rule of another player, say player k, then player j
has access to the information available to player k. An

information structure that is neither classical nor quasi-

classical is called non-classical.

Team decision theory has its roots in both control theory

and economics. Marschak [2] was perhaps the first to intro-

duce the basic elements of (static) teams, and to provide the

first steps toward the development of a team theory. Radner

[3] followed with a mathematical formulation and developed

A. Mahajan is with the Dept. of ECE, McGill University, Canada.
(aditya.mahajan@mcgill.ca).

N. C. Martins is with the Dept. of ECE and the ISR, University of
Maryland, College Park. (nmartins@isr.umd.edu).
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results to some classes of static teams, establishing connec-

tions between person-by-person optimality, stationarity, and

team-optimality (concepts that we will visit in further detail).

Marschak’s and Radner’s collaborative work culminated in

[4]. Contributions of Witsenhausen [1], [5]–[8] on dynamic

teams and characterization of information structures have

been crucial in the progress of our understanding of dynamic

teams. For a detailed review of the literature and classifica-

tion of information structures we refer the reader to [9].

For static linear quadratic team (LQG) problems, [3]

and [10] established the optimality of person-by-person-

optimal policies. Ho and Chu [11] made the observation that

this result holds for partially nested LQG teams: partially

observed LQG teams can be reduced to static teams by a

transformation of the cost. For further extensions see [6].

Along a separate line of thought, when one deals with

decentralization, information has been interpreted by non-

stochastic sparsity conditions. In such formulations, a player

has access to only a subset of variables in the system. The

goal is to minimize an operator norm in an infinite horizon

problem when the controllers have been restricted to be

linear. In a recent tutorial paper [12], we highlighted some

of the differences between these two approaches. Relevant

to our paper are the recent results on frequency domain

characterization of solutions to deterministic teams, as well

as quadratic stochastic dynamic teams under the a priori

restriction to linear policies [13], [14], [15], [16], [17].

However, there has been no conclusive research on the in-

teraction between the stochastic control approach (described

above) and the operator theoretic sparsity-based approach.

One reason is that the tools, techniques and the definitions

have been very different, as has been highlighted in [12]. In

general, these two approaches impose different modelling as-

sumptions. In the stochastic control approach, a probabilistic

model is assumed for the noise, no restriction is imposed on

the dynamics, and the objective is to minimize the expected

total or average cost. In the operator theoretic sparsity-based

approach, no restriction is imposed on the noise model, the

dynamics are assumed to be linear, and the objective is to

minimize some norm on the cost process. The stochastic

control approach does not impose any restriction on the form

of the controller, while the sparsity-constrained approach

restricts attention to linear controllers.

Given these differences in the modeling assumptions and

the solution concepts, a natural question is whether one can

compare the results of the two approaches at all. In this paper,

we present preliminary results to address this question.

The closest point of contact between the two approaches

is the LQG systems with partially nested information struc-
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ture studied using a stochastic control approach and the

quadratically invariant systems with H2 norm studied using

sparsity-constrained approach. It is not hard to see that the

LQG optimal control problem can be posed as a H2-control

problem and vice versa. To make a precise comparison, we

need to pose the same problem using the two approaches.

As mentioned above, Ho and Chu [11] studied finite hori-

zon LQG systems with partially nested information structures

and showed that there is no loss of optimality in restricting

attention to affine controllers. The critical steps of the proof

were: (i) we can transform the finite horizon dynamical

system into a static team with finite players using a linear

(information) transformation; and (ii) affine strategies are

globally optimal for static teams with finite players [3].

This approach does not directly extend to infinite horizon

partially nested teams. We can still use a linear transforma-

tion to convert partially nested team into a static team, but

the resulting static team will have countably infinite players.

Radner’s result for static teams is only valid for teams with

finite players.

In this paper, we generalize the theory due to Radner

[3] and Krainak, Speyer, and Marcus [10] to teams with

countably infinitely many players. We establish sufficient

conditions on the global optimality of affine policies. We

then present an illustrative example.

II. STATIC LQG TEAMS

In this section, we formulate an infinite player static

LQG team as a limit of finite player LQG teams. We use

the following notation: subscripts denote the index of the

player and superscripts denote the number of players in

the team; e.g., yni denotes the observation of player i in a

team with n players. Bold face letters denote vectors: un

denotes the vector (un
1 , . . . , u

n
n); u∞ denotes the infinite-

dimensional vector (u∞
1 , u∞

2 , . . . ). Similarly, wn denotes

the vector (wn
0 , w

n
1 , . . . , w

n
n) and w∞ denotes the vector

(w∞
0 , w∞

1 , . . . ). For the infinite dimensional vector u∞,

the notation u∞∣

∣

n
denotes the n-dimensional projection

(u∞
1 , . . . , u∞

n ). Similarly, for the infinite dimensional vector

w∞, the notation w∞∣

∣

n
denotes the (n + 1)-dimensional

projection (w∞
0 , w∞

1 , . . . , w∞
n ).

A. Team with finite players

In an n-player static LQG team, player i observes

yni = An
i w

n
0 +Dn

i w
n
i (1)

and chooses a control action

un
i = γn

i (y
n
i ). (2)

The variables (wn
i , yni , and un

i are vectors of dimensions dw,

dy , and du, respectively.1 The variables (wn
0 , w

n
1 , . . . , w

n
n)

are zero-mean jointly Gaussian random variables with co-

variance Σij = E[wn
i (w

n
j )

⊺] that does not depend on n.

1We assume that the dimension does not depend on i for simplicity of
exposition. The critical assumption here is that the dimension does not
depend on n.

The performance of a team strategy γn = (γn
1 , . . . , γ

n
n) is

quantified by an expected quadratic cost

Jn(γn) =
1

n
E[cn(wn,un)] (3)

where wn = (wn
0 , w

n
1 , . . . , w

n
n), u

n = (un
1 , . . . , u

n
n), and

cn(wn,un)

=

n
∑

i=1

n
∑

j=1

(un
i )

⊺Qn
iju

n
j +

n
∑

i=1

n
∑

k=0

(un
i )

⊺Pn
ikw

n
k (4)

where Qn
ij and Pn

ik are matrices of appropriate dimensions

and Qn = [Qij ] is positive symmetric.

In contrast to the formulation in [3], we normalize the

cost (3) by 1/n. Such a normalization is needed to extend the

formulation to infinite number of players. As a consequence

of this normalization, additional technical conditions are

required to extend the result of system with finite players to

the system with infinite players. We present such conditions

in this paper.

With a slight abuse of notation, we also use cn to denote

the following:

cn(wn,γn) = cn(wn,un)
∣

∣

un
i
=γn

i
(An

i
wn

0
+Dn

i
wn

i
),i∈{1,...,n}

cn(wn,γn
−i, u

n
i )

= cn(wn,un)
∣

∣

un
j
=γn

j
(An

j
wn

0
+Dn

j
wn

j
),j∈{1,...,n}\{i}

Definition 1 (Globally optimal strategy) A strategy γn is

globally optimal if for all possible choices γ̃n of the strategy

for all players

Jn(γn) ≤ Jn(γ̃n).

Definition 2 (Person-by-person optimal strategy) A

strategy γn is person-by-person optimal if for all players i
and all possible choices γ̃n

i of the strategy for player i

Jn(γn) ≤ Jn(γ̃n
i ,γ

n
−i).

B. Optimality conditions for teams with finite players

Consider two arbitrary policies γn and γ̃n. For a particular

realization of wn, let un
i = γn

i (y
n
i ) and ũn

i = γ̃n
i (y

n
i ) and

define hn
i = ũn

i −un
i . Then, following the arguments of [10],

we get that

Jn(γ̃n)− Jn(γn) =
1

n
E[cn(wn, ũn)]− 1

n
E[cn(wn,un)]

=
1

n
E[cn(wn,un + hn)− cn(wn,un)] (5)

≥ lim
α→0

1

n
E

[

1

α

[

cn(wn,un + αhn)− cn(wn,un)
]

]

(6)

=
1

n
E

[ n
∑

i=1

(hn
i )

⊺

[

2

n
∑

j=0

Qn
iju

n
j +

n
∑

k=0

Pn
ikw

n
k

]

]

(7)

=: ∆n(γn, γ̃n) (8)

where (6) follows because cn is convex in un and a version

of the monotone convergence theorem applies (see [10])

and (7) follows by substituting (4) in (6). Furthermore,

Jn(γ̃i,γ
n
−i)− Jn(γn)
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=
1

n
E[cn(wn, ũn

i ,u
n
−i)]−

1

n
E[cn(wn,un)]

=
1

n
E[cn(wn, un

i + hn
i ,u

n
−i)− cn(wn,un)] (9)

≥ lim
α→0

1

n
E

[

1

α

[

cn(wn, un
i + αhn

i ,u
n
−i)− cn(wn,un)

]

]

(10)

=
1

n
E

[

(hn
i )

⊺

[

2
n
∑

j=0

Qn
iju

n
j +

n
∑

k=0

Pn
ikw

n
k

]

]

(11)

=: ∆n
i (γ

n, γ̃n) (12)

where (10) follows because cn is a convex in un
i and (11)

follows by substituting (4) in (10).

Remark 1 A strategy γn is globally optimal if for any

other strategy γ̃n, Jn(γ̃n)− Jn(γn) ≥ 0. Thus, a sufficient

condition for global optimality of γ is that ∆n(γn, γ̃n) ≥ 0
holds for any strategy γ̃n.

Remark 2 A strategy γn is person-by-person optimal if for

any other strategy Jn(γ̃i,γ
n
−i)−Jn(γn) ≥ 0 for all i. Thus,

a sufficient condition for person-by-person optimality of γ

is that ∆n
i (γ

n, γ̃n) ≥ 0 holds for any strategy γ̃n and for

all i.

Remark 3 If ∆n
i (γ

n, γ̃n) ≥ 0 for all i, then ∆n(γn, γ̃n) ≥
0. Thus, if a strategy satisfies the sufficient condition of

Remark 2, then it is also globally optimal.

Remark 4 A sufficient condition for ∆n
i (γ

n, γ̃n) ≥ 0 for

all i is that

E

[

2
n
∑

j=0

Qn
iju

n
j +

n
∑

k=0

Pn
ikw

n
k

∣

∣

∣
yni

]

= 0, i = 1, . . . , n.

(13)

The discussion so far has not used the fact that the

primitive random variables are Gaussian. The next result

relies on pritive variables being Gaussian.

Proposition 1 (Radner) Let Rn
ij = E[yni (y

n
i )

⊺] and Sn
ki =

E[wn
k (y

n
i )

⊺]. The system of equations (13) has a solution of

the form2

un
i = γn

i (y
n
i ) = Hn

i y
n
i (14)

where Hn
i ∈ R

du×dy is given by the solution of the following

system of linear (matrix) equations

2

n
∑

j=1

Qn
ijH

n
i R

n
ji +

n
∑

k=0

Pn
ikS

n
ki = 0, i = 1, . . . , n. (15)

Remark 4 implies that the control law (14) is person-by-

person optimal. Remark 3 implies that it is globally optimal.

The system of equations (15) may be written in a compact

form using vectorization. For a matrix A, let vec(A) denote

the column vector formed by stacking the columns of A.

Then, similar to the discussion in [18, Eq. (8)], (15) may be

simplified as follows:

2We assumed that the primitive random variable is zero mean, so our
solution does not have any affine term. In general, if wn

0
is not zero mean,

(14) will have an affine correction term. See [3], or [9] for details.

Corollary 1 The solution of the form (14) for the system of

equations (13) is given by

2Γn ~Hn + ηn = 0 (16)

where Γn = [Γn
ij ], Γn

ij = Rn
ij ⊗ Qn

ij and ⊗ denotes the

Kronecker product, ~Hn = vec[Hn
1 | · · · | Hn

n ], and

ηn = vec
[

n
∑

k=0

Pn
0kS

n
ko

∣

∣

∣
· · ·

∣

∣

∣

n
∑

k=0

Pn
nkS

n
kn

]

. (17)

Substituting (14) in (3) and using the above vector notation

gives that

Jn(γn) =
1

n

[

( ~Hn)⊺Γn ~Hn + ( ~Hn)⊺ηn
]

(18)

= − 1

4n
(ηn)⊺(Γn)−1ηn. (19)

PROOF Vectorizing (15) gives that for i = 1, . . . , n,

2
n
∑

j=1

vec(Qn
ijH

n
i R

n
ji) + vec

(

n
∑

k=0

Pn
ikS

n
ki

)

= 0. (20)

Using the fact that for any matrices A, B, and C of

appropriate sizes, vec(ABC) = vec(C⊺ ⊗ A) vec(B) and

the definitions of ~Hn, Γn and ηn, we get (16).

Similarly, vectorizing (4) gives

E[cn(wn,γn)] =

n
∑

i=1

vec(Hn
i )

[

n
∑

j=1

vec(Qn
ijH

n
j R

n
ji)

+ vec
(

n
∑

k=0

Pn
ikS

n
ki

)

]

. (21)

Using the above property of vec(ABC), we get (18).

C. Team with infinite players

In an infinite player static LQG team, we assume that

the primitive random variables w∞ = (w∞
0 , w∞

1 , . . . ) are

independent Gaussian random variables. The observation and

control action of player i are given by (1) and (2). The

performance of a team strategy γ∞ = (γ∞
1 , γ∞

2 , . . . ) is

quantified by

J∞(c∞) = lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,u∞∣

∣

n
)] (22)

where cn is given by (4).

We are interested in deriving conditions for optimality for

such teams. The analysis of Section II-B does not directly

apply. We illustrate this point in the next section and identify

a different sufficient condition for optimality.

D. Optimality conditions for teams with countably infinite

players

Consider two arbitrary policies γ∞ and γ̃∞. For a par-

ticular realization of w∞, let u∞
i = γ∞

i (y∞i ) and ũ∞
i =

γ̃∞
i (y∞i ) and define h∞

i = ũ∞
i − u∞. Let nm be a

subsequence such that

J∞(γ∞) = lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,u∞∣

∣

n
)]
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= lim
m→∞

1

nm
E[cnm(w∞∣

∣

nm
,u∞∣

∣

nm
)] (23)

Then,

J∞(γ̃∞)− J∞(γ∞)

= lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
, ũ∞∣

∣

n
)]

− lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,u∞∣

∣

n
)]

≥ lim sup
m→∞

1

nm
E[cnm(w∞∣

∣

nm
, ũ∞∣

∣

nm
)]

− lim
m→∞

1

nm
E[cnm(w∞∣

∣

nm
,u∞∣

∣

nm
)]

(24)

= lim sup
m→∞

1

nm
E[cnm(w∞∣

∣

nm
, ũ∞∣

∣

nm
)

− cnm(w∞∣

∣

nm
,u∞∣

∣

nm
)]

≥ lim sup
m→∞

lim
α→0

1

nm

E

[

1

α

[

cnm(w∞∣

∣

nm
,u∞∣

∣

nm
+ h∞∣

∣

nm
)

− cnm(w∞∣

∣

nm
,u∞∣

∣

nm
)
]

]

= lim sup
m→∞

1

nm
E

[ nm
∑

i=1

(h∞
i )⊺

[

2

nm
∑

j=0

Qnm

ij u∞
j

+

nm
∑

k=0

Pnm

ik w∞
k

]

]

= lim sup
m→∞

∆nm(γ∞∣

∣

nm
, γ̃∞∣

∣

nm
) (25)

where (24) follows by the definition of the subsequence

nm, the rest of the steps follow the same argument as in

Section II-B, and ∆nm is defined in (8).

Following the same argument as above, we can modify

the calculation in Section II-B to show that

J∞(γ̃i,γ
∞
−i)− J∞(γ∞) ≥ lim sup

m→∞
∆nm

i (γ∞∣

∣

nm
, γ̃∞∣

∣

nm
)

(26)

Remark 5 Unlike the finite player setup, the sufficient con-

dition for person-by-person optimality of a policy γ∞:

lim
m→∞

∆nm

i (γ∞∣

∣

nm
, γ̃∞∣

∣

nm
) ≥ 0, ∀i

does not imply the sufficient condition for global optimality:

lim
m→∞

∆nm(γ∞∣

∣

nm
, γ̃∞∣

∣

nm
) ≥ 0.

An alternative sufficient condition for global optimality is

as follows.

Theorem 1 Let {γn}∞n=0 be a sequence of strategies such

that for all γ̃n and for all i, ∆n
i (γ

n, γ̃n) ≥ 0. Assume that:

(A1) there exists a strategy γ∞ such that

lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,γn)]

= lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,γ∞∣

∣

n
)].

Then under (A1), the strategy γ∞ is globally optimal for the

infinite horizon setup.

PROOF Let Γn and Γ∞ denote the set of all strategies for

the n-player and the infinite player teams, respectively. By

Remark 3, we know that γn is globally optimal for the n-

player setup.

Assume that (A1) is true. Consider

J∞(γ∞) = lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,γ∞∣

∣

n
)]

= lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
,γn)] (27)

= lim sup
n→∞

inf
γ̃n∈Γn

1

n
E[cn(w∞∣

∣

n
, γ̃n)] (28)

= lim sup
n→∞

inf
γ̃∞∈Γ∞

1

n
E[cn(w∞∣

∣

n
, γ̃∞∣

∣

n
)] (29)

≤ inf
γ̃∞∈Γ∞

lim sup
n→∞

1

n
E[cn(w∞∣

∣

n
, γ̃∞∣

∣

n
)]

= inf
γ̃∞∈Γ∞

J∞(γ̃∞) (30)

where (27) follows from (A1), (28) follows because γn

is globally optimal for team with n players, (29) follows

because {γ̃∞∣

∣

n
: γ̃∞ ∈ Γ∞} = Γn, and (30) implies that

γ∞ is optimal.

III. CHARACTERIZATION OF PERSON BY PERSON LINEAR

OPTIMAL POLICIES

In this section we describe a class of parameters for which

(A1) holds and we also outline a method to obtain γ∞.

Definition 3 Two sequences of vectors {vn}∞n=1 and

{zn}∞n=1, where the terms vn and zn have the same

dimension, are said to be asymptotically equivalent if

limn→∞
1√
n
‖vn − zn‖2 = 0.

Definition 4 A sequence of vectors {v℘,n}∞n=1 is periodic

if there exists ṽ so that v℘,n = [ṽT · · · ṽT ]T whenever the

dimension of v℘,n is a multiple of the dimension of ṽ. Here,

we use ℘ to indicate that the sequence is periodic.

Assumption (A2) Assume the following:

1) There exists a sequence of periodic vectors {η℘,n}∞n=1

satisfying η℘,n+m = [(η℘,n)T η̃T ]T , such that

{η℘,n}∞n=1 is asymptotically equivalent to ηn as de-

fined in (17).

2) There exist positive constants β and β̄ so that

‖(Γn)−1‖ ≤ β and ‖Γn‖ ≤ β̄ holds for every n, where

the matrix norm for L ∈ R
m×m is defined as:

‖L‖ = sup
{x∈Rm|x⊺x=1}

(x⊺L⊺Lx)1/2. (31)

3) There exists an integer q and a square matrix F
such that the sequence {η℘,mq}∞m=1 is asymptotically

equivalent to the sequence {Γmq(Im⊗F )η℘,mq}∞m=1,

where Im ⊗ F has the same dimension of Γmq for

every m.
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Theorem 2 If (A2) holds then (A1) holds. A corresponding

γ∞ is given by γ∞
i : yi 7→ H℘,mq

i yi, with mq ≥ i, and

H℘,mq
i computed from

~H℘,mq = (Im ⊗ F )η℘,mq,m ≥ 1 (32)

where ~H℘,mq is also a periodic vector defined as

~H℘,mq = vec[(H℘,mq
q )T | · · · | H℘,mq

mq ].

PROOF Our first goal is to show that the following holds:

lim
m→∞

1√
m
‖ ~Hmq − ~H℘,mq‖2 = 0 (33)

Use the triangle inequality to write:

‖ ~Hmq − ~H℘,mq‖2 = ‖(Γmq)−1ηmq − (Im ⊗ F )η℘,mq‖2
≤ ‖(Γmq)−1‖‖ηmq − η℘,mq‖2
+ ‖(Γmq)−1‖‖η℘,mq − Γmq(Im ⊗ F )η℘,mq‖2 (34)

From (33) and (34), we conclude the following:

1√
m
‖ ~Hmq − ~H℘,mq‖2 ≤

β
√
m

(

‖ηmq − η℘,mq‖2

+ ‖η℘,mq − Γmq(Im ⊗ F )η℘,mq‖2
)

whose right hand side converges to zero due to (A2). It

remains now to prove that (33) implies (A1). This will be

achieved in two steps, where we prove that the following

two limits hold:

lim
m→∞

1

mq

[

( ~Hmq)⊺Γmq ~Hmq − ( ~H℘,mq)⊺Γmq ~H℘,mq
]

= 0

(35)

lim
m→∞

1

mq

[

( ~Hmq − ~H℘,mq)⊺η℘,mq
]

= 0. (36)

Notice that (35) and (36) imply (A1) because they show

that both the quadratic and linear terms of the cost in (18)

converge.

In order to show (35), we use the triangle inequality to

write:

1√
mq

∣

∣

∣

(

( ~Hmq)⊺Γmq ~Hmq
)1/2−

(

( ~H℘,mq)⊺Γmq ~H℘,mq
)1/2

∣

∣

∣

≤ β̄√
mq

‖ ~Hmq − ~H℘,mq‖2

which, from (33), converges to zero as m tends to infinity.

Now, apply Hölder’s inequality to the numerator of (36):

|( ~Hmq − ~H℘,mq)⊺η℘,mq| ≤ ‖ ~Hmq − ~H℘,mq‖1‖η℘,mq‖∞.
(37)

In order to show (36), notice that ‖η℘,mq‖∞ in (37) is

bounded because the vector is periodic and that the following

holds:

lim
m→∞

1

mq
‖ ~Hmq − ~H℘,mq‖22 = 0

=⇒ lim
m→∞

1

mq
‖ ~Hmq − ~H℘,mq‖1 = 0 (38)

where the left limit corresponds to (33).

A. The Intuition Behind Assumption (A2)

As the example in Section IV illustrates, when (1)–(2)

correspond to the static reduction of the decentralized control

of q LTI subsystems then ηn is asymptotically equivalent

to a periodic vector. In our example, the process and

measurement noise vectors affecting the overall system are

stationary, and the boundary effect created by the initial

condition causes the transient deviation that ηn has from its

periodic equivalent. An alternative characterization in terms

of correlation matrices is also possible, where it can be

shown that they will be asymptotically equivalent to block

circulant matrices, as described in [19], [20]. A similar

justification can be given to argue that Γn and (Γn)−1 are

both asymptotically equivalent to block circulant matrices

in the sense defined in [19], [20]. Hence, if the asymptotic

periodicities of ηmq and (Γmq)−1 are compatible then the

product (Γmq)−1ηmq will be asymptotically equivalent to the

periodic vector given by (Im ⊗ F )η℘,mq for some matrix

F . In the particular case when F is a scalar, this is the

asymptotic equivalent of the fact that any constant vector is

an eigenvector of a circulant matrix.

IV. EXAMPLE

To illustrate the theory, we consider an example in which

we first describe a n-player static team and then consider the

optimal strategy as n → ∞.

A. Overall structure

Let w = (w1, w2, . . . ) be a zero-mean wide-sense station-

ary Gaussian process with correlation matrix Σ. Consider

the following n-player team: wn
0 = 0 and for i = 1, . . . , n,

wn
i = wi, the observations yni = wn

i , and hence the controls

un
i = γn

i (y
n
i ) = γn

i (wi). Thus, the correlation matrices Rn

and Sn defined in Proposition 1 are given by Rn = Sn =
Σn, where Σn is the upper n× n block of Σ.

Let xn
i = un

i + wn
i and consider the cost function

c(wn,un) =

n
∑

i=1

n
∑

j=1

xn
i Q̂

n
ijx

n
j +

n
∑

i=1

n
∑

k=1

xn
i P̂

n
iku

n
k . (39)

The above system is completely characterized by the

matrices Σ, Q̂n, and P̂n. One can consider a series of

examples with specific choices of these matrices. Due to lack

of space, we consider only one example here

B. Example (Coupled neighbors)

As an example, consider the case when the cost of a player

is coupled with that of its neighbors. In particular, let Q̂n =
qIn,

P̂n =















p p̂ 0 . . . 0
p̂ p p̂ . . . 0
0 p̂ p . . . 0
...

. . .
. . .

. . .
...

0 0 . . . p̂ p















,

and Σii = σ2,Σi(i+1) = βσ2. In this example, the result

does not depend on the value of Σij , |i − j| > 1, so we
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leave them unspecified. Further assume that ∃ε such that

[|q + p| − 2|p̂β|]σ2 > ε.
By substituting the value of Q̂n and P̂n in (39) and

simplifying, we get that Qn and Pn are tri-banded Toeplitz

matrices in which for i = 1, . . . , n, and j ∈ σ(i)

Qn
ij = q + p, Qn

ij = p̂

Pn
ij = 2q + p, Pn

ij = p̂

where σ(1) = {2}, σ(n) = {n − 1}, and for i = 1, . . . , n,

σ(i) = {i− 1, i+ 1}.

Using the definitions in Corollary (1), we get that Γn and

ηn are given as follows. For i = 1, . . . , n and j ∈ σ(i),

Γn
ii = (q + p)σ2 and Γn

ij = p̂βσ2.

Moreover, ηn1 = ηnn = [2q + p + p̂β]σ2, and for i = 2, . . . ,

n− 1, ηni = [2q + p+ 2p̂β]σ2,
Define

η℘,m = [2q + p+ 2p̂β]σ2
1
m.

η℘,n is a periodic vector that differs from ηn only at the first

and the last components. Therefore, η℘,n is asymptotically

equally distributed as ηn and, hence, (A2-1) is satisfied.

Γn is a tri-banded Toeplitz matrix. Therefore, (A2-2) is

satisfied if (see [21]): ∃ε such that [|q + p| − 2|p̂β|]σ2 > ε.
We assume that such an ε exists, and therefore (A2-2) is

satisfied.

Define F = [F11] to be a 1× 1 matrix such that

F11 =
1

[q + p+ 2p̂β]σ2

Then, for any m ≥ 1

(Im ⊗ F )η℘,m =
2q + p+ 2p̂β

q + p+ 2p̂β
1
m.

For ease of notation, define µm = Γm(Im ⊗ F )η℘,m. Then,

µm
1 = µm

m = (q + p+ p̂β)(2q + p+ 2p̂β)σ2/(q + p+ 2p̂β)

and for i = 2, . . . ,m− 1

µn
i = (2q + p+ 2p̂β)σ2.

Note that µn differs from η℘,m only at the first and the

last components. Therefore, µm is asymptotically equally

distributed as η℘,m and, hence, (A2-3) is satisfied.

Thus, η℘,m and F defined above satisfy (A2). Therefore,

by Theorem 2,

~H℘,m
i =

2q + p+ 2p̂β

q + p+ 2p̂β

and, consequently, an optimal strategy is given by

γ∞
i : wi 7→

2q + p+ 2p̂β

q + p+ 2p̂β
wi.

V. CONCLUSION

In this paper we established sufficient conditions for

the optimality of person-by-person-optimal policies in static

teams with countably infinite players. The application of

these results to infinite horizon, partially nested stochastic

dynamic teams is currently under investigation.
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