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Abstract— We investigate team optimal control of stochastic
subsystems that are weakly coupled in dynamics (through the
mean-field of the system) and are arbitrary coupled in the cost.
The controller of each subsystem observes its local state and the
mean-field of the state of all subsystems. The system has a non-
classical information structure. Exploiting the symmetry of the
problem, we identify an information state and use that to obtain
a dynamic programming decomposition. This dynamic program
determines a globally optimal strategy for all controllers. Our
solution approach works for arbitrary number of controllers
and generalizes to the setup when the mean-field is observed
with noise. The size of the information state is time-invariant;
thus, the results generalize to the infinite-horizon control setups
as well. In addition, when the mean-field is observed without
noise, the size of the corresponding information state increases
polynomially (rather than exponentially) with the number of
controllers which allows us to solve problems with moderate
number of controllers. We illustrate our approach by an
example motivated by smart grids that consists of 100 coupled
subsystems.

I. INTRODUCTION

A. Motivation

Team optimal control of stochastic decentralized systems

arises in many applications ranging from networked control

systems, robotics, communication networks, transportation

networks, sensor networks, and economics. There is a long

and rich history of research on team theory, starting from

the work of Radner [1], [2], Witsenhausen [3]–[5] and others;

and continuing to various solution approaches that have been

proposed in recent years. Due to space limitations, we can

not provide a detailed overview of the literature; we rather

refer the reader to [6], [7] for detailed overviews.

The scalability of the solution approach to large scale

systems is an important consideration in team optimal con-

trol. Different approaches have been proposed to ensure

that the solution complexity does not increase drastically

with the number of subsystems. These include coordination-

decomposition methods [8], [9] that use iterative message

passing algorithm and mean-field games that reduce the

optimal control problem to a game between an individual

and the mass [10], [11], and references therein.

In this paper, we introduce a solution approach that

exploits symmetry to identify a low-dimensional information

state. Our approach uses two steps. In the first step, we

identify an equivalent centralized system using the common
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information approach of [12]. In the second step, we exploit

the symmetry of the system to identify an information state

and use that to obtain a dynamic programming decomposi-

tion.

The rest of the paper is organized as follows. We formulate

the team optimal control problem in Section I-C and identify

the salient features of the problem and our contributions

in Sections I-D and I-E, respectively. We present the main

results in Section II, and provide some generalizations in

Section III. In Section IV, we present an example (motivated

by smart grid applications).

B. Notation

To distinguish between random variables and their realiza-

tions, we use upper-case letters to denote random variables

(e.g. X) and lower-case letters to denote their realizations

(e.g. x). We use the short hand notation Xa:b for the vector

(Xa, Xa+1, . . . , Xb) and bold letters to denote vectors e.g.

Y = (Y 1, . . . , Y n) where n is the size of vector Y. 1(·)
is the indicator function of a set, P(·) is the probability of

an event, E[·] is the expectation of a random variable, and

| · | is the cardinality of a set. N refers to the set of natural

numbers.

C. Problem Formulation

Consider a discrete time decentralized control system with

n ∈ N homogeneous subsystems that operate for a horizon

T ∈ N. The state of subsystem i, i ∈ {1, . . . , n}, at time t,

is denoted by Xi
t ∈ X , where X is a finite set (that does

not depend on i). Let U i
t ∈ U denote the control action of

controller i, i ∈ {1, . . . , n}, at time t, where U is a finite set

(that does not depend on i).

We refer to the empirical distribution of all subsystems at

time t as the mean-field of the system and denote it by Zt,

i.e.,

Zt =
1

n

n
∑

i=1

δXi

t
(1)

or equivalently, for x ∈ X ,

Zt(x) =
1

n

n
∑

i=1

1(Xi
t = x) (2)

where δx denotes a Dirac measure on X with a point mass

at x. Let |X | = k and Mn = {(m1

n
, m2

n
, . . . , mk

n
) : mi ∈

{0, . . . , n},
∑k

i=1mi = n} denote the space of realizations

of Zt. Note that Mn ⊂ ∆(X ), the space of probability

distributions on X .
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1) System dynamics: The subsystems are weakly coupled

with each other in dynamics via the mean-field, as described

below. The initial states of all subsystems are independent

and distributed according to PMF (probability mass function)

PX (that does not depend on i). The state Xi
t of subsystem

i evolves according to

Xi
t+1 = ft(X

i
t , U

i
t ,W

i
t , Zt), i ∈ {1, . . . , n} (3)

where ft is the plant function at time t and {W i
t }

T
t=1 is

an independent process with probability distribution PWt
at

time t. Note that the plant functions {ft}
T
t=1 and the PMFs

{PWt
}Tt=1 do not depend on i.

The primitive random variables (X1
1 , . . . , X

n
1 , {W

1
t }

T
t=1,

. . . , {Wn
t }

T
t=1) are mutually independent and defined on a

common probability space.

2) Information structure: In addition to the local state

of its subsystems, each controller observes the history of

the mean-field. Thus, the data available at controller i, i ∈
{1, . . . , n}, at time t is

Iit = {Z1:t, X
i
t}. (4)

We refer to this information structure as mean-field shar-

ing. In Section III, we consider a generalization of this

information structure in which each controller observes a

noisy version of the mean-field. We refer to that information

structure as partially observed mean-field sharing.

The control action at controller i is chosen according to

U i
t = git(Z1:t, X

i
t). (5)

The function git is called the control law of controller i at

time t. In this paper, we restrict attention to identical control

laws at all controllers. In particular:

Assumption 1 At any time t, the control laws at all con-

trollers are identical i.e. git = g
j
t for any i, j ∈ {1, . . . , n}.

Therefore, we drop the superscripts and denote the control

law at every controller at time t as gt.

In view of Assumption 1, we call the collection g =
(g1, . . . , gT ) of control laws over time as the control strategy

of the system.

3) Cost-structure: The subsystems are arbitrary coupled

through cost. At each time step, the system incurs a cost that

depends on joint state Xt = (X1
t , . . . , X

n
t ) and joint action

Ut = (U1
t , . . . , U

n
t ) that is given by

ℓt(Xt,Ut).

The performance of any strategy g is quantified by the

expected total cost

J(g) = E
g

[

T
∑

t=1

ℓt(Xt,Ut)

]

(6)

where the expectation is with respect to a joint measure

induced on all system variables by the choice of g.

4) Optimization problem: We are interested in the follow-

ing optimization problem.

Problem 1 Given the information structure in (5), the hori-

zon T , the plant functions {ft}
T
t=1, the cost functions

{ℓt}
T
t=1, the PMF PX on the initial states, and the PMFs

{PWt
}Tt=1 on the plant disturbance, identify a control strat-

egy g∗ to minimize the total cost J(g) given by (6).

The above model assumes that all subsystems have access

to the mean-field of the system. In certain applications such

as cellular communications and smart grids, a centralized

authority (such as a base station in cellular communication

and an independent service operator in smart grids) may

measure the mean field and transmit it to all controllers. In

other applications such as multi-robot teams, all controllers

may compute the mean-field in a distributed manner using

methods such as consensus-based algorithms [13], [14].

We first investigate the model where the mean field is

shared perfectly and develop a solution methodology for that

model. In Section III, we extend the solution methodology

to a more practical model in which a noisy estimate of the

mean field is observed.

D. Salient Features of the Model

Our key simplifying assumption is that all control laws are

identical (Assumption 1). In general, this assumption leads

to a loss in performance, as is illustrated by the example

below.

Example: Consider a system with n homogeneous subsys-

tems with control horizon T = 2. Let state space and action

space be X = U = {1, 2, . . . , n} and probability distribution

of initial states be uniform on X . Suppose that the system

dynamics are given by

Xi
2 = U i

1, i ∈ {1, . . . , n}. (7)

Let ℓ1(x1,u1) = 0 and ℓ2(x2,u2) = K · 1(z2 6=
{ 1
n
, 1
n
, . . . , 1

n
}) where K is a positive number. The asym-

metric strategy ḡ = (ḡ11 , . . . , ḡ
n
1 ), where ḡi1(z1, x

i
1) = i, has

a cost J(ḡ) = 0. Hence, ḡ is optimal. On the other hand,

under any symmetric strategy, P(1(Z2 6= { 1
n
, 1
n
, . . . , 1

n
})) is

positive. Hence, a symmetric strategy is not globally optimal.

By increasing K, we can make symmetric strategies perform

arbitrary bad as compared to asymmetric strategies.

Although assuming identical control laws (Assumption 1)

leads to loss in performance, it is a standard assumption in

the literature on large scale systems for reasons of simplicity,

fairness, and robustness. For example, similar assumption has

been made in [15], [16], [17].

In the model described above, we assume that the strate-

gies are pure (non-randomized). In general, randomized

strategies are not considered in team problems because

randomization does not improve performance [18, Theorem

1.6]. However, if attention is restricted to identical strategies,

randomized strategies may perform better than pure strate-

gies [15, Theorem 2.3]. In the above model, we assume

that the control strategies are pure, primarily for the ease
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of exposition. As explained in the conclusion, our solution

methodology generalizes to randomized strategies as well.

E. Contributions

In spite of the simplification provided by Assumption 1,

Problem 1 is conceptually challenging because it has a non-

classical information structure [4]. In general, team optimal

control problems with non-classical information structure be-

long to NEXP complexity class [19]. Although it is possible

to get a dynamic programming decomposition for problems

with non-classical information structure [5], the size of the

corresponding information state increases with time. For

some information structures, we can find information states

that do not increase with time [7], but even for these models

the size of the information state increases exponentially with

the number of controllers.

Our key contributions in this paper are the following:

1) We identify a dynamic program to obtain globally

optimum control strategies.

2) The size of the corresponding information state does

not increase with time. Thus, our results extend natu-

rally to infinite horizon setups.

3) The size of the corresponding information state in-

creases polynomially with the number of controllers.

This allows us to solve problems with moderate num-

ber of controllers. (In Section IV, we give an example

with n = 100 controllers).

4) The solution methodology and dynamic programming

decomposition extend to the scenario where all con-

trollers observe a noisy version of the mean-field.

II. MAIN RESULTS

In this section, we use the common information approach

[12] to introduce an equivalent centralized problem (Prob-

lem 2) for Problem 1. Then, we find an optimal solution for

the equivalent problem and translate the obtained solution

back to the solution of Problem 1.

Following [12], split the information Iit available to con-

troller i into two parts: the common information consisting

of the history Z1:t of the mean-field process that is observed

by all controllers; and the local information consisting of the

current state Xi
t of subsystem i. Since the size of the local

information does not increase with time, the model described

above has a partial history sharing information structure [12].

For such systems, the structure of optimal control strategies

and a dynamic programming decomposition was proposed

in [12]. If we directly use these results on our model, the

information state will be a posterior distribution on the

global state Xt = (X1
t , . . . , X

n
t ) of the system. As such the

complexity of the solution increases doubly exponentially

with the number of controllers.

To circumvent this issue, we proceed as follows.

Step 1: We follow the common information approach

proposed in [12] to convert the decentralized control problem

into a centralized control problem from the point of view of

a controller that observes the common information Z1:t.

Step 2: We exploit the symmetry of the problem (with

respect to the controllers) to show that the mean-field Zt is

an information state for the centralized problem identified in

Step 1. We then use this information state Zt to obtain a

dynamic programming decomposition.

The details of each of these steps are presented below.

A. Step 1: An Equivalent Centralized System

Following [12], we construct a fictitious centralized co-

ordinated system as follows. We refer to decision maker

in the coordinated system as the coordinator. At time t,

the coordinator observes the mean-field Zt and chooses a

mapping Γt : X → U as follows

Γt = ψt(Z1:t). (8)

The function ψt is called the coordination rule at time t.

The collection ψ = (ψ1, . . . , ψT ) is called the coordination

strategy.

After the mapping Γt is chosen, it is communicated to all

controllers. Each controller in the coordinated system is a

passive agent that uses its local state Xi
t and the mapping

Γt to generate

U i
t = Γt(X

i
t), i ∈ {1, . . . , n}. (9)

The dynamics of each subsystem and the cost function are

the same as in the original problem. By a slight abuse of

notation, define

ℓt(Xt,Γt) := ℓt(Xt,Γt(X
1
t ), . . . ,Γt(X

n
t )). (10)

The performance of any coordination strategy is quantified

by the total expected cost

Ĵ(ψ) = E
ψ[

T
∑

t=1

ℓt(Xt,Γt)] (11)

where the expectation is with respect to a joint measure

induced on all system variables by the choice of ψ.

Consider the following optimization problem.

Problem 2 Given the information structure in (8), the hori-

zon T , the plant functions {ft}
T
t=1, the cost functions

{ℓt}
T
t=1, the PMF PX on the initial states, and the PMFs

{PWt
}Tt=1 on the plant disturbance, identify a control strat-

egy ψ∗ to minimize the total cost Ĵ(ψ) given by (11).

Lemma 1 ( [12], Proposition 3) Problem 1 and Problem 2

are equivalent.

In particular, for any control strategy g = (g1, . . . , gT ) in

Problem 1, define a coordination strategy ψ = (ψ1, . . . , ψT )
in Problem 2 by

ψt(z1:t) := gt(z1:t, ·), ∀z1:t. (12)

Then, J(g) = Ĵ(ψ). Similarly for any coordination strategy

ψ in Problem 2, define a control strategy g in Problem 1 by

gt(z1:t, xt) := ψt(z1:t)(xt), ∀z1:t, ∀xt.

Then, J(g) = Ĵ(ψ).
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B. Step 2: Identifying an Information State and Dynamic

Program

An important result in identifying an information state is

the following:

Lemma 2 For any choice γ1:t of Γ1:t, any realization z1:t
of Z1:t, and any x ∈ Xn,

P(Xt=x|Z1:t=z1:t,Γ1:t=γ1:t) = P(Xt=x|Zt=zt)

=
1

|H(zt)|
1(x ∈ H(zt))

where H(z):={x ∈Xn: 1
n

∑n
i=1 δxi = z}.

Proof outline: To prove the result, it is sufficient to show

that P(Xt = x|Z1:t = z1:t,Γ1:t = γ1:t) is indifferent

to permutation of x. The latter can be proved using the

symmetry of the model and the control laws. �

Using this result, we can show that

Lemma 3 The expected per-step cost may be written as a

function of Zt and Γt. In particular, there exits a function ℓ̂t
(that does not depend on strategy ψ) such that

E[ℓt(Xt,Γt)|Z1:t,Γ1:t] =: ℓ̂t(Zt,Γt).

Proof outline: Consider

E[ℓt(Xt,Γt)|Z1:t = z1:t,Γ1:t = γ1:t]

=
∑

x

ℓt(x, γt)P(Xt = x|Z1:t = z1:t,Γ1:t = γ1:t).

Substituting the result of Lemma 2, and simplifying gives

the result. �

Lemma 4 For any choice γ1:t of Γ1:t, any realization z1:t
of Z1:t, and any z ∈ Mn,

P(Zt+1=z|Z1:t=z1:t,Γ1:t=γ1:t)=P(Zt+1= z|Zt=zt,Γt=γt).

Also, above conditional probability does not depend on

strategy ψ.

Proof outline: The result relies on the independence of the

noise processes across subsystems and Lemma 2. �

Based on the results in steps 1 and 2, we have that

Theorem 1 In Problem 2, there is no loss of optimality in

restricting attention to Markovian strategy i.e. Γt = ψt(Zt).
Furthermore, an optimal strategy ψ∗ is obtained by solving

the following dynamic program. Define recursively value

functions:

VT+1(zT+1) := 0, ∀zT+1 ∈ Mn (13)

and for t = T, . . . , 1, and for zt ∈ Mn,

Vt(zt) := min
γt

(ℓ̂t(zt, γt) + E[Vt+1(Zt+1)|Zt = zt,Γt = γt])

(14)

where the minimization is over all functions γt : X → U .

Let ψ∗
t (zt) denote any argmin of the right-hand side of

(14). Then, the coordination strategy ψ∗ = (ψ∗
1 , . . . , ψ

∗
T )

is optimal.

Proof: Zt is an information state for Problem 2 because:

1) As shown in Lemma 3, the per-step cost can be written

as a function of Zt and Γt.

2) As shown in Lemma 4, {Zt}
T
t=1 is a controlled Markov

process with control action Γt.

Thus, the result follows from standard results in Markov

decision theory [20]. �

Based on the equivalence in Lemma 1, we get

Corollary 1 Let ψ∗
t (z) be a minimizer of (14) at time t.

Define

g∗t (z, x) := ψ∗
t (z)(x). (15)

Then, g∗=(g∗1 , . . . , g
∗
T ) is an optimal strategy for Problem 1.

Remark 1 The fictitious coordinated system is described

only for ease of exposition. The dynamic program of (13)

and (14) uses zt as the information state. Since zt is observed

by each controller, each controller can independently solve

the dynamic program; agreeing upon a deterministic rule to

break ties while using argmin ensures that all controllers

compute the same optimal strategy.

Remark 2 The space Mn of realization of zt is finite

and has cardinality less than (n + 1)|X |. Thus, the solution

complexity increases polynomially with the number of con-

trollers.

III. GENERALIZATION TO PARTIALLY OBSERVED

MEAN-FIELD SHARING

In this section, we consider a case where mean-field is not

completely observable. Let Yt ∈ Y be a noisy measurement

of Zt at time t as follows:

Yt = ht(Zt, Nt) (16)

where Nt is a random variable which takes value on a finite

set N . {Nt}
T
t=1 is an independent random process with PMF

PNt
, at time t, and is also mutually independent from all

primitive random variables in Section I-C.1. Similar to (5),

we consider the following information structure:

U i
t = gt(Y1:t, X

i
t), i ∈ {1, . . . , n} (17)

where gt : Y
t ×X → U .

Problem 3 Given the information structure in (17), the

horizon T , the plant functions {ft}
T
t=1, the cost functions

{ℓt}
T
t=1, the PMF PX on the initial states, the PMFs

{PNt
}Tt=1 on observation noise, and the PMFs {PWt

}Tt=1

on the plant disturbance, identify a control strategy g∗ to

minimize the total cost J(g) given by (6).

We follow the two-step approach of Section II. In step 1,

we construct a centralized coordinated system in which a

coordinator observes Y1:t and chooses

Γt = ψt(Y1:t). (18)

The rest of the setup is same as before. Similar to Problem 2,

we get
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Problem 4 Given the information structure in (18), the

horizon T , the plant functions {ft}
T
t=1, the cost functions

{ℓt}
T
t=1, the PMF PX on the initial states, the PMFs

{PNt
}Tt=1 on observation noise, and the PMFs {PWt

}Tt=1

on the plant disturbance, identify a control strategy ψ∗ to

minimize the total cost Ĵ(ψ) given by (11).

As in Lemma 1, Problem 3 is equivalent to Problem 4.

In particular, for any control strategy g = (g1, . . . , gT ) in

Problem 3, one can construct a coordination strategy ψ =
(ψ1, . . . , ψT ) in Problem 4 that yields the same performance

and vice versa.

In step 2, we show that Πt(z) := P(Zt = z|Y1:t,Γ1:t−1)
is an information state for Problem 4. In particular:

Lemma 5 There exists a function ℓ̃t (that does not depend

on strategy ψ) such that

E[ℓt(Xt,Γt)|Y1:t,Γ1:t] =: ℓ̃t(Πt,Γt). (19)

Lemma 6 There exists a function φt (that does not depend

on strategy ψ) such that

Πt+1 = φt(Πt,Γt, Yt+1). (20)

Proofs of Lemma 5 and Lemma 6 are omitted due to lack

of space. Similar to Theorem 1, we have that

Theorem 2 In Problem 4, there is no loss of optimality

in restricting attention to Markovian strategy i.e. Γt =
ψt(Πt). Also, optimal strategy ψ∗ is obtained by solving the

following dynamic program. Let ∆(Mn) denote the space

of probability distributions on Mn. Define recursively value

functions:

VT+1(πT+1) = 0, ∀πT+1 ∈ ∆(Mn) (21)

and for t = T, . . . , 1, and for πt ∈ ∆(Mn),

Vt(πt) = min
γt

(ℓ̃t(πt, γt)+E[Vt+1(Πt+1)|Πt = πt,Γt = γt])

(22)

where the minimization is over all functions γt : X → U .

Let ψ∗
t (πt) denote any argmin of the right-hand side of

(22). Then, the coordination strategy ψ∗ = (ψ∗
1 , . . . , ψ

∗
T )

is optimal.

Proof: Πt is an information state for Problem 4 because:

1) As shown in Lemma 5, the expected per-step cost can be

written as a function of Πt and Γt.

2) As shown in Lemma 6, {Πt}
T
t=1 is a controlled Markov

process with control action Γt.

Thus, the result follows from standard results in Markov

decision theory [20]. �

Based on the equivalence between Problem 3 and Problem

4, we get

Corollary 2 Let ψ∗
t (π) be a minimizer of (22) at time t.

Define

g∗t (π, x) := ψ∗
t (π)(x). (23)

Then, g∗=(g∗1 , . . . , g
∗
T ) is an optimal strategy for Problem 3.

IV. AN EXAMPLE

In this section we consider an example of mean-field

sharing that is motivated by applications in smart grids.

Consider a system with n-devices where X = {1, . . . , k}
denotes the state space of each device and U = {0, 1, . . . , k}
denotes the set of k + 1 actions available at each device.

Let P (u) be the controlled transition matrix under action

u ∈ U , i.e.

[P (u)]xy = P(Xi
t+1 = y | Xi

t = x, U i
t = u), x, y ∈ X .

Action u = 0 is a free action under which each device

evolves in an uncontrolled manner, i.e. P (0) = Q, where Q

represents the natural dynamics of the system. Action u 6= 0
is a forcing action under which a fraction 1− ǫu, ǫu ∈ [0, 1],
of devices switch to state u, and remaining ǫu devices follow

the natural dynamics. Thus,

P (u) = (1− ǫu)Ku + ǫuQ

where Ku is a k×k matrix where column u is all ones, and

other columns are all zeros.

Action u = 0 is free and it does not incur any cost, while

action u 6= 0 incurs a cost c(u). For notational convenience,

let c(0) = 0.

The objective is to keep the mean-field (i.e. the empirical

distribution) of the state of the devices close to a reference

distribution ζ ∈ ∆(X ). The loss function is given by

ℓt(Xt,Ut) =
1

n

n
∑

i=1

c(U i
t ) +D(Zt ‖ ζ)

where D(p ‖ q) denotes the Kullback-Leibler divergence

between p, q ∈ ∆(X ) i.e. D(p ‖ q) =
∑

x∈X p(x) log
p(x)
q(x) .

The information structure is given by (4). The objective is

to choose a control strategy to minimize the infinite horizon

discounted cost1

J(g)= E

[

∞
∑

t=1

βt

(

1

n

n
∑

i=1

c(U i
t ) +D(Zt ‖ ζ)

)]

(24)

where β ∈ (0, 1) is the discounted factor.

A more elaborate variation of the above model is consid-

ered in [21] for controlling the operation of pool pumps.

Consider the above model for the following parameters

n = 100, k = 2, ǫ1 = 0.2, ǫ2 = 0.2,

c(0) = 0, c(1) = 0.1, c(2) = 0.2, β = 0.9,

ζ =

[

0.7
0.3

]

, Q =

[

0.25 0.75
0.375 0.625

]

, PX =

[

1
3
2
3

]

.

The optimal time-homogeneous strategy for these parameters

is shown in Fig. 1. Since state space is binary, z(1) is

sufficient to characterise the empirical distribution z =
[z(1), z(2)]. Hence, for ease of presentation, we plot the

optimal control law and value function as a function of the

first component z(1) of z = [z(1), z(2)].

1Although we have only presented the details for finite horizon setup in
this paper, the results generalize naturally to infinite horizon setup under
standard assumptions. See Section V-B for a brief explanation.
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Fig. 1. Plots (a) and (b) show the optimal strategy as a function of z(1). Plot (c) shows the sample path of z(1) for simulation time of 100. Plot (d)
depicts the value function with respect to z(1).

V. CONCLUSION

In this paper, we considered the team optimal control of

decentralized systems with mean-field sharing. We follow a

two-step approach: in the first step we construct an equivalent

centralized system using the common information approach

of [12]; in the second step, we exploit the symmetry of the

system to identify information state and dynamic program-

ming decomposition of the problem. We generalize our result

to the case of partial observation of the mean field. We

illustrate our results using an example motivated by smart

grids. Our results extend naturally to the following setups.

A. Randomized Strategies

As mentioned earlier, if attention is restricted to identical

control laws, then randomized strategies may perform better

than pure strategies [15, Theorem 2.3]. Our results extend

naturally to randomized strategies by considering ∆(U), the

space of probability distributions on U , as the action space.

B. Infinite Horizon

The results of Lemma 3 and Lemma 4 are valid for

the infinite horizon setup as well. Hence, the results of

Theorem 1 generalizes to infinite horizon setup and under

standard assumptions, the optimal coordination strategy is

time-homogeneous and is given by the solution of a fixed

point equation.

C. Multiple Types of Subsystems

We assumed that all subsystems are homogeneous. Con-

sider a setup where subsystem i has a type θi, θi ∈ Θ, and the

dynamics are given by Xi
t+1 = ft(θ

i, Xi
t , U

i
t ,W

i
t , Zt). Our

results generalize to such a setup with Zt =
1
n

∑n
i=1 δXi

t
,θi .
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