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Abstract— A decentralized control system with linear dynam-
ics, quadratic cost, and Gaussian disturbances is considered.
The system consists of a finite number of subsystems whose
dynamics and per-step cost function are coupled through their
mean-field (empirical average). The system has mean-field
sharing information structure, i.e., each controller observes the
state of its local subsystem (either perfectly or with noise)
and the mean-field. It is shown that the optimal control law
is unique, linear, and identical across all subsystems. Moreover,
the optimal gains are computed by solving two decoupled
Riccati equations in the full observation model and by solving
an additional filter Riccati equation in the noisy observation
model. These Riccati equations do not depend on the number of
subsystems. It is also shown that the optimal decentralized per-
formance is the same as the optimal centralized performance.
An example, motivated by smart grids, is presented to illustrate
the result.

I. INTRODUCTION

A. Motivation and literature overview

Team theory investigates multi-agent decision problems

in which all agents share a common objective. Such prob-

lems arise in various applications including cyber-physical

systems, networked control systems, surveillance and sensor

networks, communication networks, smart grids, robotics,

and organizational economics.

Not much is known regarding the optimal control of

general team problems. Most of the results in the litera-

ture are for specific information structures such as delayed

state sharing [1], delaying observation sharing [2], periodic

sharing [3], belief sharing [4], mean-field sharing [5] and

partial-history sharing [6]. We refer the reader to [7] for an

overview.

There are two main challenges in solving team problems:

1) Team problems are conceptually difficult due to the

decentralized nature of the information available to the

controllers. In particular, controllers need to cooper-

ate and coordinate to minimize a common cost but

they have different information about the state of the

environment. Due to this discrepancy of information,

dynamic programming, which is one of the main

solution techniques for the optimal design of stochastic

systems, does not work directly for team problems.

2) Team problems are computationally difficult. Even

when a dynamic programming decomposition is ob-

tained, the solution complexity increases exponentially
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or double exponentially with the number of controllers.

So, it is difficult to use the dynamic programming

solution for systems with large number of controllers.

Similar challenges exist in dynamic games; however,

they have been successfully resolved for a class of models

known as mean-field games [8]–[14]. The salient feature

of these models is that the agents/players/controllers are

coupled in their dynamics and per-step cost functions only

through the mean-field (i.e., the empirical average or the

empirical distribution). If the number of players are large,

then an approximately optimal solution for these models

can be obtained by solving the infinite population limit.

The infinite population limit is easier to solve than the

finite population model because, when the population is

asymptotically large, the action of a single controller does

not affect the mean-field. Therefore, the optimal solution can

be obtained by solving two coupled equations: a backward

dynamic programming equation that determines the best-

response of a controller given the trajectory of the mean-

field; and a forward Fokker-Planck equation that determines

the evolution of the mean-field given the strategies of the in-

dividual controllers. A consistent solution of these equations

determine Nash equilibrium strategies. A desirable feature

of the solution is that the resultant control laws and the

complexity of the solution do not depend on the number

of controllers.

Motivated by these results, we investigate team-optimal

(rather than Nash equilibrium) solution of mean-field models.

In this paper, we focus on linear-quadratic models. In partic-

ular, the system consists of a finite number of subsystems; the

dynamics of the subsystems are coupled through the mean-

field of the states. The per-step cost is also coupled through

the mean-field. We assume that the controllers have mean-

field sharing information structure introduced in [5]; that is,

each controller observes it’s local state (either completely or

with noise) and the mean-field of the states of all subsystems.

In some applications such as communication networks, the

sharing of the mean-field happens naturally. In other appli-

cations, such as robotic teams, it is possible to share the

mean-field using distributed consensus algorithms.

The main difference between our setup and mean-field

games is the following: (i) We assume a finite number of

controllers and obtain team-optimal control strategies. In

mean-field games, one assumes asymptotically large number

of controllers and obtains Nash equilibrium strategies. (ii) We

assume that each controller observes the mean-field. In mean-

field games, this assumption is not made. However, when the

number of controllers goes to infinity, both the information
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structures are equivalent because the mean-field becomes a

deterministic process.

B. Contributions and salient features of the results

The linear quadratic mean-field model is a decentralized

system with non-classical information structure. Our main

result is to show that linear control strategies are optimal.

The model is neither partially nested nor quadratic invariant.

In contrast, almost all positive results for linear quadratic

systems with non-classical information structures are for

models that are either partially nested or quadratic invariant.

We also show that the optimal control laws at each

subsystem are identical. In general, identical control laws

are not optimal for systems with exchangeable subsystems

(see [5] for one an example). So, a natural question is the

following: Given a decentralized system with exchangeable

subsystems, under what conditions are optimal control laws

identical across subsystems. This question warrants further

investigation.

Our solution, and the solution complexity, do not depend

on the number of subsystems. Irrespective of the number

of subsystems, the optimal control law is given by the

solution of two (backward) Riccati equations in the full

observation model, and an additional filter Riccati equation in

the noisy observation model. The parameters of these Riccati

equations do not depend on the number of subsystems. Thus,

the optimal control laws can be computed without any

knowledge of the number of subsystems.

Since the optimal control laws do not depend on the

number of subsystems, our results remain valid in the

infinite population limit. In the infinite population limit,

the mean-field becomes a deterministic process that can be

pre-computed at all controllers. Thus, mean-field sharing

is equivalent to the completely decentralized information

structure (where each controller only observes its local state)

considered in [8], [9]. Thus, our results may be viewed as an

alternative derivation of the infinite population mean-field

games solution.

As an intermediate step of the proof, we show that the

decentralized control laws—and, hence, the decentralized

performance—are same as centralized (i.e., when all control

actions are chosen by a single controller that observes all the

information available to all the decentralized controllers).

A natural follow up question that warrants further inves-

tigation is the following: In general decentralized control

problems, when is decentralized performance the same as

the centralized performance? Or more generally, when is the

performance under one information structure the same as the

performance under a finer information structure?

From an implementation point of view, the above feature

has an interesting consequence. If we have the freedom to

design the information structure, then in the linear-quadratic

mean-field systems there is no advantage of sharing any-

thing beyond the mean-field. Since, it is easy to share

the mean-field using distributed consensus algorithms, it is

relatively easy to implement the optimal centralized solution

in a distributed manner.

Furthermore, as we already argued, in the infinite popula-

tion limit, mean-field sharing is equivalent to the completely

decentralized setup (i.e., each controller only observes its

own local state). Since, there is no advantage of sharing

any information beyond the mean-field—which is already

computable at each controller—the optimal completely de-

centralized solution is also the optimal centralized solution.

An immediate corollary is that the control laws obtained

using the approach of mean-field games are also the

optimal centralized solution.

II. PROBLEM FORMULATION AND THE MAIN RESULTS

A. Notation

Uppercase letters denote random variables/vectors and

lowercase letters denote their realization. P(·) denotes the

probability of an event and E[·] denotes the expectation of a

random variable. R denotes the set of real numbers.

For a sequence of (column) vectors X , Y , Z, . . . , the

notation vec(X,Y, Z, . . . ) denotes the vector [X⊺, Y ⊺, Z⊺]⊺.

The vector vec(X1, . . . , Xt) is also denoted by X1:t.

Superscripts index subsystems and subscripts index time.

Thus, Xi
t denotes a variable at subsystem i at time t. Bold

letters denote collection of variables at all subsystems. For

example, X denotes (X1, . . . , Xn). 〈X〉 denotes the mean-

field of X, i.e, 〈X〉 = 1
n

∑n

i=1 X
i.

B. Model and problem formulation

Consider a decentralized control system with n homo-

geneous subsystems that operate for a finite horizon T . A

controller is co-located with each subsystem. Let Xi
t ∈ R

dx

denote the state of subsystem i and U i
t ∈ R

du denote the

control action taken by controller i, i ∈ {1, . . . , n}, at time

t. Let Zt = 〈Xt〉 denote the mean-field of the states at time t.

1) System dynamics: The initial states {Xi
1}

n

i=1
are in-

dependent Gaussian random variables with zero mean and

covariance ΣX . They evolve in time as follows:

Xi
t+1 = AtX

i
t +BtU

i
t +DtZt+W i

t , i ∈ {1, . . . , n}, (1)

where At, Bt, and Dt are matrices of appropriate dimen-

sions and {W i
t }

T

t=1
is an i.i.d. noise process where W i

t is

Gaussian with zero mean and covariance ΣW . We assume

that the primitive random variables {Xi
1,W

i
1, . . .W

i
T }

n

i=1
are

independent.

Thus, the dynamics of the subsystems is coupled to the

others through the mean-field.

2) Per-step cost: At time t, the system incurs a cost that

depends on the local state of the subsystems and the mean-

field as follows:

ct(Xt,Ut, Zt) =
1

n

n
∑

i=1

[

Xi
t

⊺

QtX
i
t+U i

t

⊺

RtU
i
t

]

+Zt
⊺ PtZt

(2)

where Qt, Pt, St, and Rt are matrices of appropriate dimen-

sion; Qt and Pt are symmetric and non-negative definite and

Rt is symmetric and positive definite.
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Remark 1 The results derived in this paper also apply to a

more general per-step cost of the form

1

n

n
∑

i=1

[

Xi
t

⊺

QtX
i
t +Xi⊺StZt + U i

t

⊺

RtU
i
t

]

+ Zt
⊺ PtZt

because it can be rewritten in the form (2).

3) Observation model and information structure: We con-

sider two observation models that differ in the observation

of the local state Xi
t at controller i. In the first model, called

full observation model, controller i perfectly observes the

local state Xi
t ; in the second model, called noisy observation

model, controller i observes a noisy version Y i
t ∈ R

dy of the

local state Xi
t that is given by

Y i
t = Cx

t X
i
t + Cz

t Zt + V i
t , i ∈ {1, . . . , n}, (3)

where the observation noise {V i
t }

T
t=1 is i.i.d. Gaussian

process with zero mean and covariance ΣV . In addition,

we assume that the noise processes are independent across

subsystems and also independent of {Xi
1,W

i
1, . . .W

i
T }

n

i=1
.

In both models, in addition to the local measurement of the

state of its subsystem, each controller perfectly observes the

mean-field Zt. Following [5], we call this model mean-field

sharing information structure. Controllers perfectly recall all

the data they observe. Thus, in the full observation model,

controller i chooses control action according to

U i
t = git(X

i
1:t, U

i
1:t−1, Z1:t), (4)

while in the noisy observation model, controller i chooses

control action according to

U i
t = git(Y

i
1:t, U

i
1:t−1, Z1:t). (5)

The function git is called the control law of controller i. The

collection gi = (gi1, g
i
2, . . . , g

i
T ) is called the control strategy

of controller i. The collection g = (g1, . . . ,gn) of control

strategies of all controllers is called the control strategy of

the system.

4) The optimization problem: We are interested in the

following optimization problem.

Problem 1 In the model described above, find a joint strat-

egy g = (g1, . . . ,gn) that minimizes the following cost:

J(g) = E
g

[ T
∑

t=1

ct(Xt,Ut, Zt)

]

, (6)

where the expectation is with respect to the measure induced

on all system variables by the choice of the strategy g.

C. The main results

1) Full observation model: For the full observation

model, our main result is the following:

Theorem 1 The optimal control strategy of Problem 1 is

unique and given by

U i
t = Kx

t X
i
t + (Kz

t −Kx
t )Zt, i ∈ {1, . . . , n}. (7)

The optimal gains are given as follows. For the terminal

time-step Kx
T = Kz

T = 0du×dx
and for t ≤ T − 1,

Kx
t = −

(

B
⊺

t M
x
t+1Bt +Rt

)

−1
B

⊺

t M
x
t+1At, (8)

and

Kz
t = −

(

B
⊺

t M
z
t+1Bt +Rt

)

−1
B

⊺

t M
z
t+1Āt (9)

where Āt := At + Dt and {Mx
t }

T
t=1 and {Mz

t }
T
t=1 are

solutions of the following two decoupled Riccati equations:

Mx
T = QT , Mz

t = QT + PT ,

and for t = T − 1, . . . , 1,

Mx
t = −A

⊺

tM
x
t+1Bt

(

B
⊺

t M
x
t+1Bt +Rt

)

−1
B

⊺

t M
x
t+1At

+A
⊺

tM
x
t+1At +Qt, (10)

and

Mz
t = −Ā

⊺

tM
z
t+1Bt

(

B
⊺

t M
z
t+1Bt +Rt

)

−1
B

⊺

t M
z
t+1Āt

+ Ā
⊺

tM
z
t+1Āt +Qt + Pt. (11)

The above result may also be derived under the weaker

assumption that the initial state X1 = (X1
1 , . . . , X

n
1 ) as well

as the noise Wt = (W 1
t , . . . ,W

n
t ) are correlated across the

subsystems.

2) Noisy observation model: For the noisy observation

model, our main result is the following:

Theorem 2 For the noisy observation model, the optimal

control strategy for Problem 1 is unique and is given by

U i
t = Kx

t X̂
i
t + (Kz

t −Kx
t )Zt, i ∈ {1, . . . , n}, (12)

where optimal gains Kx
t and Kz

t are the same as in

Theorem 1 and X̂i
t = E[Xi

t | Y i
1:t, Z1:t, U

i
1:t−1] which

is generated by the following Kalman filtering equations:

X̂i
1 = 0 and for t > 1,

X̂i
t+1 = AtX̂

i
t +BtU

i
t +KF

t (Y i
t − Cx

t X̂
i
t − Cz

t Zt) (13)

where the Kalman filter gains are given by

KF
t = AtStC

x
t
⊺(Cx

t StC
x
t
⊺ +ΣV )

−1, (14)

and the state estimation error covariances satisfy the (filter)

Riccati equation: S1 = ΣX and for t > 1,

St+1 = −AtStC
x
t
⊺(Cx

t StC
x
t
⊺ +ΣV )

−1Cx
t StA

⊺

t

+AtStA
⊺

t +ΣW . (15)

III. PROOF OF THE MAIN RESULTS

The main idea of the proof is as follows. We construct

an auxiliary system whose state, control actions, and per-

step cost are equivalent to Xt, Ut, and ct(·), respectively

(modulo a change of variables to be described later). How-

ever, this auxiliary system is centrally controlled by a single

control that has access to all the information available to the

n decentralized controllers in the original system. We show

that the optimal centralized solution of this auxiliary system

can be implemented in the original decentralized system, and

is therefore also optimal for the decentralized system.
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A. The auxiliary system

Define X̄i
t = Xi

t − Zt and Ū i
t = U i

t − Uz
t , where

Uz
t = 〈Ut〉. The auxiliary system is a centralized system

with state X̃t = vec(X̄1
t , . . . , X̄

n
t , Zt) and actions Ũt =

vec(Ū1
t , . . . , Ū

n
t , U

z
t ). Note that X̃t is equivalent to Xt and

Ũt is equivalent to Ut.

The dynamics are the same as the model in Sec. II-B. In

particular,

X̄i
t+1 = AtX̄

i
t +BtŪ

i
t +W i

t − 〈Wt〉 (16)

and

Zt+1 = (At +Dt)Zt +BtU
z
t + 〈Wt〉 (17)

The per-step cost of the auxiliary model is given by

ct(Xt,Ut, Zt) defined in (2).

As in Sec. II-B, we consider two observation models for

the auxiliary system: full observation and noisy observation.

In both cases, there is a single centralized controller that

chooses Ũt based on the observations.

In the full observation model, the centralized controller

observes X̃t and chooses Ũt according to

Ũt = ḡt(X̃1:t, Ũ1:t−1).

In the noisy observation model, the centralized controller

observes Yt = vec(Y 1
t , . . . , Y

N
t ) where Y i

t is given by (3)

and chooses Ũt according to

Ũt = ḡt(Y1:t, Ũ1:t−1, Z1:t).

In both models, we are interested in the following opti-

mization problem:

Problem 2 In the model described above, find a strategy

ḡ = (ḡ1, . . . , ḡT ) that minimizes the following cost:

J̄(ḡ) = E
ḡ

[

T
∑

t=1

ct(Xt,Ut, Zt)
]

, (18)

where the expectation is with respect to the measure induced

on all system variables by the choice of strategy ḡ.

Let J∗ and J̄∗ denote the optimal cost for Problem 1 and

Problem 2 respectively. Since the per-step cost is the same in

both cases, but Problem 2 is centralized, we have that J∗ ≥
J̄∗. We identify the optimal control laws for the auxiliary

system and show that these laws can be implemented in, and

therefore are optimal for, the original decentralized system.

A critical step in the proof is to rewrite the cost

ct(Xt,Ut, Zt) in terms of X̃t and Ũt. For that matter, we

need the following key result.

Lemma 1 For any x = vec(x1, . . . , xn) and z = 〈x〉, let

x̄i = xi − z, i ∈ {1, . . . , n}. Then, for any matrix Q of

appropriate dimension,

1

n

n
∑

i=1

xi⊺ Qxi =
1

n

n
∑

i=1

x̄i⊺ Qx̄i + z⊺ Qz (19)

PROOF The result follows from elementary algebra and the

observation that
∑n

i=1 x̄
i = 0.

An immediate consequence of Lemma 1 is the following:

Corollary 1 For any time t, ct(Xt,Ut, Zt) = c̄t(X̃t, Ũt),
where

c̄t(X̃t, Ũt) =
1

n

n
∑

i=1

[

X̄i
t

⊺

QtX̄
i
t + Ū i

t

⊺

RtŪ
i
t

]

+ Zt
⊺ (Qt + Pt)Zt + Uz

t
⊺
RtU

z
t . (20)

Note that the auxiliary model has linear dynamics and

in Corollary 1 we have shown that the cost is quadratic in

the state and the control actions. Thus, the optimal control

actions are linear in the state and the corresponding optimal

gains can be obtained by solving an appropriate Riccati

equation. However, the state X̃t of the auxiliary system

belongs to R
(n+1)dx , thus, a naive attempt to obtain an

optimal solution will involve solving for (n+1)dx×(n+1)dx
dimensional Riccati equations. We present an alternative

approach in the next section that involves solving two dx×dx
dimensional Riccati equations (independent of n).

B. Full observation model

The auxiliary system is a stochastic linear quadratic

system. From the certainty equivalence principle [15], we

know that the optimal control law is unique and identical to

the control law in the corresponding deterministic problem,

whose dynamics are given by

X̄i
t+1 = AtX̄

i
t +BtŪ

i
t , i ∈ {1, . . . , n}, (21)

Zt+1 = (At +Dt)Zt +BtU
z
t . (22)

and the per-step cost is c̄(X̃t, Ũt) given by (20).

Note that this system consists on (n+ 1) components: n

components with state X̄i
t and control Ū i

t , i ∈ {1, . . . , n},

and one component with state Zt and control Uz
t . These

components have decoupled dynamics and decoupled cost;

and n of these are identical. Thus, the optimal control law

of each component may be identified separately. Therefore,

we have the following:

Theorem 3 The optimal control strategy of auxiliary model

is unique and given by

Ū i
t = Kx

t X̄
i
t , Uz

t = Kz
t Zt, i ∈ {1, . . . , N}, (23)

where the gains Kx
t and Kz

t are given as in Theorem 1.

To complete the proof of Theorem 1, note that

U i
t = Ū i

t + Uz
t = Kx(Xi

t − Zt) +KzZt.

Thus, the control laws specified in Theorem 1 are the

optimal centralized control laws, and, a fortrori, the optimal

decentralized control laws.

C. Noisy observation model

Define

X̊i
t = E[X̄i

t | Y1:t, Ũ1:t−1, Z1:t],

X̆i
t = E[Xi

t | Y1:t, Ũ1:t−1, Z1:t].

Since Xi
t = X̄i

t + Zt, we have that X̆i
t = X̊i

t + Zt.
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Fig. 1. An example of mean-field control of space heaters. The light lines show the temperature of individual heaters and the thick line depicts the
mean-field of the trajectories. Note that the individual trajectories adjust around their initial values so that the mean-field tracks the reference trajectory
zref = 25. The tracking is not perfect because of the friction between tracking the initial states locally and tracking the mean-field globally.

From the Separation Theorem for linear quadratic Gaus-

sian systems [15], we know that the optimal (centralized)

control law for the auxiliary system is given by

Ū i
t = Kx

t X̊
i
t , Uz

t = Kz
t Zt, i ∈ {1, . . . , N}.

Or equivalently,

U i
t = Kx

t X̆
i
t + (Kz

t −Kx
t )Zt, i ∈ {1, . . . , n}.

Thus, to prove Theorem 2, we need to show that X̆i
t = X̂i

t

(where X̂i
t is defined in Theorem 2). This is proved below.

Lemma 2 In the auxiliary system with noisy observation,

X̆i
t = X̂i

t .

PROOF Recall that Xi
t evolves according to (1) and Y i

t is

given by (3). Therefore, for any i, j ∈ {1, . . . , n} such

that i 6= j, (Xi
1:t, Y

i
1:t) is conditionally independent of

(Xj
1:t, Y

j
1:t). Consequently,

X̆i
t = E[Xi

t | Y1:t, Ũ1:t−1, Z1:t]

= E[Xi
t | Y

i
1:t, Ũ1:t−1, Z1:t]

= E[Xi
t | Y

i
1:t,U1:t−1, Z1:t]

(a)
= E[Xi

t | Y
i
1:t, U

i
1:t−1, Z1:t]

= X̂i
t ,

where (a) follows because Xi
t depends on U1:t−1 only

through U i
1:t−1.

IV. NUMERICAL EXAMPLE

We simulate an example of inspired by the collective target

tracking mean-field model of [16]. We consider a population

of space heaters. The state Xi
t denotes the room temperature

at heater i at time t. We assume that the inital mean temper-

ature is z1 degrees, with individual temperatures distributed

according to Gaussian distribution with unit variance around

z1 degrees. We assume that the temperature dynamics are

linearized around the operating point and are given by

Xi
t+1 = a(Xi

t − x0) + bU i
t +W i

t

where x0 is the ambient temperature, W i
t is the randomness

due to the environment and U i
t is the control action of a local

controller.

It is desired that the mean temperature increases to 21

degrees (denoted by zref ) in T time steps (we assume T =
90 minutes). The per-step cost function is

1

n

n
∑

i=1

[

q(Xi
t −Xi

1)
2 + rU i

t

2
]

+ p(Zt − zref )
2

The rationale of this cost function is as follows. It is assumed

that the inital temperature is the comfort level of user i; so

we penalize local deviations from the initial temperature. The

second term corresponds to the local control energy. The

last term is the penalty for the mean-field deviating from

the reference mean-field. The objective is to minimize the

expected total cost over a finite horizon.

The above model is a tracking problem. The results of

Theorem 1 extend to tracking problems in a natural manner.

We solve the Riccati equations for the following values of

the parameters:

n = 30, a = 0.8, b = 1,

q = 0.5, p = 1, r = 1,

x0 = 22, z1 = 22, zref = 25,

T = 90, W i
t ∼ N (0, 1), Xi

1 ∼ N (22, 2).

The resultant trajectories are shown in Fig. 1.

V. CONCLUSION

We consider team-optimal control of finite number of

mean-field coupled LQG subsystems with mean-field sharing
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information structure. The optimal control law is unique,

identical for all controllers, and linear in the current state

and the current mean-field; the optimal gains are obtained

by solving two decoupled Riccati equations for the full

observation case and an additional filter Riccati equation for

the noisy observation case. These Riccati equations do not

depend on the number of subsystems.

To prove the main results, we consider an auxiliary central-

ized system whose dynamics and cost are equivalent to the

original decentralized system. It is shown that the optimal

centralized control law are implementable with mean-field

sharing. Thus, the optimal decentralized control laws are

identical to the optimal centralized control laws.

Although we only presented the results for the finite

horizon optimal regulation problem, the results extend to

infinte horizon and to optimal tracking problems in a natural

manner. Moreover, it is possible to extend the results to non-

homogeneous population consisting of multiple types.

REFERENCES

[1] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal
control of Markov chains with a common past information set,” IEEE

Trans. Autom. Control, vol. 32, no. 11, pp. 1028–1031, 1987.
[2] A. Nayyar, A. Mahajan, and D. Teneketzis, “Optimal control strate-

gies in delayed sharing information structures,” IEEE Trans. Autom.

Control, vol. 56, no. 7, pp. 1606–1620, Jul. 2011.
[3] J. M. Ooi, S. M. Verbout, J. T. Ludwig, and G. W. Wornell, “A separa-

tion theorem for periodic sharing information patterns in decentralized
control,” IEEE Trans. Autom. Control, vol. 42, no. 11, pp. 1546–1550,
Nov. 1997.
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