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Abstract— We consider the problem of optimal decentralized
estimation of a linear stochastic process by multiple agents.
Each agent receives a noisy observation of the state of the
process and delayed observations of its neighbors (according
to a pre-specified, strongly connected, communication graph).
Based on their observations, all agents generate a sequence of
estimates of the state of the process. The objective is to minimize
the total expected weighted mean square error between the state
and the agents’ estimates over a finite horizon. In centralized
estimation with weighted mean square error criteria, the
optimal estimator does not depend on the weight matrix in
the cost function. We show that this is not the case when
the information is decentralized. The optimal decentralized
estimates depend on the weight matrix in the cost function. In
particular, we show that the optimal estimate consists of two
parts: a common estimate which is the conditional mean of
the state given the common information and a correction term
which is a linear function of the offset of the local information
from the conditional expectation of the local information given
the common information. The corresponding gain depends on
the weight matrix as well as on the covariance between the offset
of agents’ local information from the conditional expectation
of the local information given the common information. We
show that the common estimate can be computed from single
Kalman filter and derive recursive expressions for computing
the offset covariances and the estimation gains.

I. INTRODUCTION

In his seminal counterexample [1], Witsenhausen showed
that non-linear strategies may outperform the best linear (or
affine) strategy in decentralized system with non-classical
information structure, even if the dynamics are linear, the
cost is quadratic, and the disturbances are Gaussian. Broadly
speaking, three directions have been pursued in the subsequent
literature: identifying conditions under which linear strategies
are optimal; identifying conditions under which the domain
of the control strategies may be restricted to a sufficient
statistic or an information state; and identifying conditions
under which a dynamic programming decomposition may be
obtained. Due to lack of space, we provide a brief overview
of only the first direction and refer the reader to [2], [3] for
a detailed overview.

The simplest form of decentralized LQG (linear quadratic
Gaussian) model is the static team problem in which all agents
take a single action to minimize a common cost. Static team
problems were first investigated in [4], [5], who identified
necessary and sufficient conditions to determine team optimal
strategies. In the special case when all primitive random
variables are Gaussian and the cost is quadratic, it was shown
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that the optimal strategies are linear in the observation; the
corresponding optimal gains are given by the solution of a
system of simultaneous matrix equations.1

Based on the results for static teams, Witsenhausen [6]
asserted that linear strategies are optimal for LQG dynamic
teams with delayed sharing information structure. This
assertion was shown to be true for one-step delayed sharing
in [7], [8]. One-step delayed sharing is a special case of
partially nested information structure. Ho and Chu [9] showed
that linear strategies are optimal for general partially nested
teams. Their proof was based on showing that a linear
transformation reduces a partially nested team to a static
team. The linear strategies obtained via such a transformation
depend on the entire history of observations rather than a
sufficient statistic. Subsequently, various models with partially
nested information structure have been investigated where
sufficient statistics are identified [10]–[12]. However, in many
of these results, the equations for updating the sufficient
statistics are coupled with those for computing the controller
gain. This is in contrast to the celebrated two way separation
in centralized LQG systems where the Kalman filtering
equations are decoupled from the Riccati equations.

In view of this, the motivation of the current work is
two-fold. Our first motivation is to understand the role of
sufficient statistics in static team problems. To do so, we pose
and solve a decentralized state estimation problem. Although
the problem is a static team, directly using the results of [4],
[5] gives estimation strategies that depend on the entire history
of observations. We modify the proof of [4], [5] to obtain
optimal strategies in terms of the common sufficient statistics
and the innovation. We believe that the structure of optimal
estimation strategies that is identified in this paper might be
useful for general partially nested team problems as well.

Our second motivation is to study the decentralized state
estimation problem in its own right. Decentralized estimation
is a key component of many large scale systems including
wireless sensor networks, power systems, target tracking,
vehicle platooning, and networked control systems. Broadly
speaking, the literature on decentralized state estimation
can be classified into three categories. The first category
consists of models where agents communicate a function
of their observations (typically their local estimates and
some correction terms) to a fusion center and the objective
is to compute the centralized estimate (see [13]–[18] and
subsequent work). The second category consists of models
where agents communicate a function of their observations to

1This system of matrix equations can be transformed into a system of
simultaneous linear equations by vectorization.



other agents over a pre-specified communication graph and
the objective is the asymptotic stability of the mean-squared
error (see [19]–[21] and subsequent work). The third category
consists of models where there is no fusion center and no
inter-agent communication and the objective is to minimize a
coupled cost function [22], [23]. The model that we consider
is similar in spirit to [22], [23] but we allow inter-agent
communication.

Our results highlight a feature of decentralized state
estimation problem that makes it fundamentally different
from centralized state estimation. To explain this difference,
we consider the one-step version of both problems below.

A. A remark on centralized vs decentralized state estimation

First consider a centralized (one-step) state estimation
problem. Let x ∈ Rdx , x ∼ N (0,Σx), denote the state
of a system. An agent observes y ∈ Rdy , where y = Cx+ v,
where C is a dy × dx matrix and v ∈ Rdy , v ∼ N (0, R),
is independent of x. The objective is to choose an estimate
ẑ ∈ Rdz of the state according to ẑ = g(y) (where g can be
any measurable function) to minimize

E[(Lx− ẑ)ᵀS(Lx− ẑ)],

where S is a dz × dz dimensional positive definite matrix
and L is a dz × dx matrix. It is well known that the optimal
estimate is given by L times the conditional mean x̂ of the
state given the observation, i.e.,

ẑ = Lx̂, where x̂ := E[x|y].

Alternatively, the optimal estimate may be written as a linear
function of the observation y, i.e.,

ẑ = LKy, where K = ΣxC
ᵀ
(CΣxC

ᵀ
+R)−1

It is worth highlighting the fact that the optimal estimate
does not depend on the weight matrix S. It is perhaps for this
reason that most standard texts on state estimation assume
that the weight matrix S = I . However, when it comes to
decentralized state estimation, the weight matrix S plays an
important role.

To see this, consider a two-agent (one-step) decentralized
state estimation problem. Let x ∈ Rdx , x ∼ N (0,Σx), denote
the state of a system. There are two agents indexed by i ∈
{1, 2}. Agent i, i ∈ {1, 2}, observes yi = Cix+vi, y ∈ Rd

i
y ,

where Ci is a diy × dx matrix and vi ∈ Rd
i
y , vi ∼ N (0, Ri).

Assume that (x, v1, v2) are independent. The objective is for
each agent to choose an estimate ẑi ∈ Rd

i
z according to

ẑi = gi(yi) (where gi is a measurable function) to minimize

E

[[
L1x− ẑ1
L2x− ẑ2

]ᵀ
S

[
L1x− ẑ1
L2x− ẑ2

]]
,

where Li and S are matrices of appropriate dimensions and
S is positive definite.

Theorem 1 shows that the optimal estimates are given by

ẑi = Fiyi,

where Fi is given by the solution of the following system of
matrix equations:∑

j∈{1,2}

[
SijFjΣji − SijLjΘi

]
= 0, ∀i ∈ {1, 2},

where Σij = cov(yi, yj) = CiΣxC
ᵀ
j + δijRi, Θi =

cov(x, yi) = ΣxC
ᵀ
i , and δij is the Dirac function.

In contrast to the centralized case, the gains Fi depend
on the weight matrix S. Thus, in decentralized state esti-
mation, the weight matrix S plays an important role, which
makes decentralized state estimation fundamentally different
from centralized state estimation.

B. Notations
Given a matrix A, Aij denotes its (i, j)-th element, Aᵀ

denotes its transpose, vec(A) denotes the column vector of
A formed by vertically stacking the columns of A. Given
matrices A and B, diag(A,B) denotes the matrix obtained
by putting A and B in diagonal blocks. Given matrices A and
B with the same number of columns, rows(A,B) denotes
the matrix obtained by stacking A on top of B. Given a
square matrix A, Tr(A) denotes the sum of its diagonal
elements. Given a positive symmetric matrix A, the notation
A > 0 and A ≥ 0 mean that A is positive definite and semi-
definite, respectively. Given a vector x, ‖x‖2 denotes xᵀx.
In is the n× n identity matrix. We omit the subscript when
the dimensions are clear from context.

Given any vector valued process {y(t)}t≥1 and any time
instances t1, t2 such that t1 ≤ t2, y(t1:t2) is a short
hand notation for vec(y(t1), y(t1 + 1), . . . , y(t2)). Given
matrices {A(i)}ni=1 with the same number of rows and
vectors {w(i)}ni=1, rows(

⊙n
i=1Ai) and vec(

⊙n
i=1 w(i)) de-

note rows(A(1), . . . , A(n)) and vec(w(1), . . . , w(n)), re-
spectively.

Given random vectors x and y, E[x] and var(x) denote
the mean and variance of x while cov(x, y) denotes the
covariance between x and y.

C. Preliminaries on graphs
A directed weighted graph G is an ordered set (N,E, d)

where N is the set of nodes, E ⊂ N×N is the set of ordered
edges, and d : E → Rk is a weight function. An edge (i, j)
in E is considered directed from i to j; i is the in-neighbor
of j; j is the out-neighbor of i; and i and j are neighbors.
The set of in-neighbors of i, called the in-neighborhood of i,
is denoted by N−i ; the set of out-neighbors of i, called the
out-neighborhood, is denoted by N+

i .
In a directed graph, a directed path (v1, v2, . . . , vk) is a

sequence of distinct nodes such that (vi, vi+1) ∈ E. The
length of a path is the number of edges in the path. The
geodesic distance between two nodes i and j, denoted by
`i,j , is the length of the shortest path connecting the two
nodes. The diameter of the graph is the largest geodesic
distance between any two nodes. A directed graph is called
strongly connected if for every pair of nodes i, j ∈ N , there
is a directed path from i to j and from j to i. A directed
graph is called complete if for every pair of nodes i, j ∈ N ,
there is a directed edge from i to j and from j to i.



II. PROBLEM FORMULATION AND MAIN RESULTS

A. Observation Model

Consider a linear stochastic process {x(t)}t≥1, x(t) ∈
Rdx , where x(1) ∼ N (0,Σx) and for t ≥ 1,

x(t+ 1) = Ax(t) + w(t), (1)

where A is a dx × dx matrix and w(t) ∈ Rdx , w(t) ∼
N (0, Q), is the process noise. There are n agents, indexed
by N = {1, . . . , n}, which observe the process with noise.
At time t, the observation yi(t) ∈ Rd

i
y of agent i ∈ N is

given by
yi(t) = Cix(t) + vi(t), (2)

where Ci is a diy × dx matrix and vi(t) ∈ Rd
i
y , vi(t) ∼

N (0, Ri), is the observation noise. Eq. (2) may be written
in vector form as

y(t) = Cx(t) + v(t),

where C = rows(C1, . . . , Cn), y(t) = vec(y1(t), . . . , yn(t)),
and v(t) = vec(v1(t), . . . , vn(t)).

The agents are connected over a communication graph G,
which is a strongly connected weighted directed graph with
vertex set N . For every edge (i, j), the associated weight dij
is a positive integer that denotes the communication delay
from node i to node j.

Let Ii(t) denote the information available to agent i at
time t. We assume that agent i knows the history of all
its observations and dji step delayed information of its in-
neighbor j, j ∈ N−i , i.e.,

Ii(t) = {yi(1:t)} ∪
( ⋃
j∈N−

i

{Ij(t− dji)}
)
. (3)

In (3), we implicitly assume that Ii(t) = ∅ for any t ≤ 0.
Let ζi(t) = Ii(t)\Ii(t−1) denote the new information that

becomes available to agent i at time t. Then, ζi(1) = yi(1)
and for t > 1,

Ii(t) = vec(yi(t), {ζj(t− dji)}j∈N−
i

).

It is assumed that at each time t, agent j, j ∈ N , communi-
cates ζj(t) to all its out-neighbors. This information reaches
the out-neighbor i of agent j at time t+ dji.

Some examples of the communication graph are as follows.

Example 1 Consider a complete graph with d-step delay
along each edge. The resulting information structure is

Ii(t) = {y(1:t− d), yi(t− d+ 1:t)},

which is the d-step delayed sharing information
strucutre [6]. �

Example 2 Consider a strongly connected graph with unit
delay along each edge. Recall that `ij denotes the geodesic
distance between nodes i and j. Let d∗ = maxi,j∈N `ij ,
denote the diameter of the graph and Nk

i = {j ∈ N : `ji =

k}, denote the k-hop in-neighbors of i with N0
i = {i}. The

resulting information structure is

Ii(t) =

d∗⋃
k=0

⋃
j∈Nk

i

{yj(1:t− k)},

which we call the neighborhood sharing information struc-
ture. �

At time t, agent i ∈ N generates an estimate ẑi(t) ∈ Rd
i
z

of Lix(t) (where Li is a Rd
i
z×dx matrix) according to

ẑi(t) = gi,t(Ii(t)),

where gi,t is a measurable function called the estimation rule
at time t. The collection gi := (gi,1, gi,2, . . . ) is called the
estimation strategy of agent i and g := (g1, . . . , gn) is the
team estimation strategy profile of all agents.

B. Estimation Cost

Let ẑ(t) = vec(ẑ1(t), . . . , ẑn(t)) denote the estimate of all
agents. Then the estimation error c(x(t), ẑ(t)) is a weighted
quadratic function of (Lx(t)− ẑ(t)). In particular,

c(x(t), ẑ(t)) = (Lx(t)− ẑ(t))ᵀS(Lx(t)− ẑ(t)), (4)

where S and L are defined as follows:

S =

S11 · · · S1n

...
. . .

...
Sn1 · · · Snn

 and L =

L1

...
Ln

 . (5)

As an example of the cost function of the form (4),
consider the following scenario. Suppose x(t) =
vec(x1(t), . . . , xn(t)), where we may think of xi(t) as the
local state of agent i ∈ N . Suppose the agents want to
estimate their own local state, but at the same time, want
to make sure that the average z̄(t) := 1

n

∑
i∈N ẑi(t) of their

estimates is close to the average x̄(t) := 1
n

∑
i∈N xi(t) of

their local states. In this case, the cost function is

c(x(t), ẑ(t)) =
∑
i∈N
‖xi(t)− ẑi(t)‖2 + λ‖x̄(t)− z̄(t)‖2, (6)

where λ ∈ R>0. This can be written in the form (4) with
L = I, and

S =


(1 + λ

n2 )I λ
n2 I · · · λ

n2 I
λ
n2 I (1 + λ

n2 )I · · · λ
n2 I

...
...

. . .
...

λ
n2 I

λ
n2 I · · · (1 + λ

n2 )I

 ,
As an other example, suppose the agents are moving in

a line (e.g.. a vehicular platoon) and want to estimate their
local state but, at the same time, want to ensure that the
difference d̂i(t) := ẑi(t)− ẑi+1(t) between their estimates is
close to the difference di(t) := xi(t)− xi+1(t) of their local
states.

In this case, the cost function is

c(x(t), ẑ(t)) =
∑
i∈N
‖xi(t)− ẑi(t)‖2 +λ

n−1∑
i=1

‖di(t)− d̂i(t)‖2,

(7)



where λ ∈ R>0. This can be written in the form (4) with
L = I and

S =


(1 + λ)I −λI 0 · · · 0
−λI (1 + 2λ)I −λI · · · 0

...
...

. . . · · · · · ·
...

... −λI (1 + 2λ)I −λI
0 · · · · · · −λI (1 + λ)I

 ,

C. Problem Formulation

We consider the following assumptions on the model.
(A1) The cost matrix S is positive definite.
(A2) The noise covariance matrices {Ri}i∈N are positive

definite and Q and Σx are positive semi-definite.
(A3) The primitive random variables (x(1), {w(t)}t≥1,

{v1(t)}t≥1, . . . , {vn(t)}t≥1) are independent.
We are interested in the following optimization problem.

Problem 1 Given matrices A, {Ci}i∈N , Σx, Q, {Ri}i∈N , L,
S, a communication graph G (and the corresponding weights
dij), and a horizon T , choose a team estimation strategy
profile g to minimize JT (g) given by

JT (g) = Eg
[ T∑
t=1

c(x(t), ẑ(t))

]
. (8)

III. MAIN RESULTS

A. Preliminaries on centralized Kalman filtering

Consider a centralized agent that observes y(1:t) and wants
to generate an estimate ẑ∗(t) to minimize

E[(Lx(t)− ẑ∗(t))ᵀ(Lx(t)− ẑ∗(t))].

It is well known from Kalman filtering theory [24] that

ẑ∗(t) = Lx̂∗(t)

where x̂∗(t) = E[x(t)|y(1:t)]. We have that x̂∗(0) = 0 and
for t ≥ 0, x̂∗(t) can be recursively updated as

x̂∗(t+ 1) = Ax̂∗(t) +K∗(t)[y(t+ 1)− CAx̂∗(t)], (9)

where

K∗(t) = [AP ∗(t)A
ᵀ
C
ᵀ

+QC
ᵀ
]

[CAP ∗(t)A
ᵀ
C
ᵀ

+ CQC
ᵀ

+R]−1, (10)

R = diag(R1, . . . , Rn), and P ∗(t) = var(x(t)−x̂∗(t)) is the
covariance of the error x̃∗(t) := x(t)− x̂∗(t). P ∗(t) can be
pre-computed recursively using the forward Riccati equation:
P ∗(0) = 0 and for t ≥ 0,

P ∗(t+1) = AP ∗(t)A
ᵀ−K∗(t)[AP ∗(t)AᵀCᵀ+QC

ᵀ
]+Q.

(11)
In a second scenario, consider the centralized agent that

observes y(1:t−1) to generate an estimate ẑcen(t) to minimize

E[(Lx(t)− ẑcen(t))
ᵀ
(Lx(t)− ẑcen(t))].

Again from [24],

ẑcen(t) = Lx̂(t),

where x̂(t) = E[x(t)|y(1:t − 1)] is the delayed centralized
estimate of the state. We have that x̂(1) = 0 and for t ≥ 1,

x̂(t+ 1) = Ax̂(t) +AK(t)[y(t)− Cx̂(t)], (12)

where
K(t) = P (t)C

ᵀ
[CP (t)C

ᵀ
+R]−1, (13)

and P (t) = var(x(t) − x̂(t)) is the covariance of the error
x̃(t) := x(t) − x̂(t). P (t) can be pre-computed recursively
using the forward Riccati equation: P (1) = Σx and for t ≥ 1,

P (t+ 1) = A∆(t)P (t)∆(t)
ᵀ
A
ᵀ

+AK(t)RK(t)
ᵀ
A
ᵀ

+Q,
(14)

where ∆(t) = I −K(t)C.

B. Structure of optimal estimation strategy

Following [25], we define

Icom(t) =
⋂
i∈N

Ii(t)

as the common information among all agents2. Since the
information is shared over a strongly connected graph, the
common information is

Icom(t) = y(1:t− d∗),

where d∗ is the diameter of the graph.
We define the local information at agent i as

I loci (t) = Ii(t) \ Icom(t).

Then, Ii(t) = Icom(t) ∪ I loci (t).
Furthermore, we define

x̂com(t) = E[x(t)|Icom(t)]

as the common estimate of the state and

Î loci (t) = E[I loci (t)|Icom(t)]

as the common estimate of local information of agent i.
Here we assume that I loci (t) (ande hence Î loci (t)) is a vector.
Following [26], we define

Ĩ loci (t) = I loci (t)− E[I loci (t)|Icom(t)] (15)

as the innovation in the local information at agent i.
To find a convenient expression for the innovation Ĩ loci (t),

we follow [6] and express I loci (t) in terms of the delayed
state x(t−d∗+1). For that matter, for any t, ` ∈ Z>0, define
the dx × 1 random vector w(k)(`, t) as follows:

w(k)(`, t) =

t−`−1∑
τ=max{1,t−k}

At−`−τ−1w(τ). (16)

Note that w(k)(`, t) = 0 if t ≤ min{k, `+ 1} or ` ≥ k. For
any t ≥ k, we may write

x(t) = Akx(t− k) + w(k)(0, t), (17)

yi(t) = CiA
kx(t− k) + Ciw

(k)(0, t) + vi(t). (18)

2Our mothodology relies on the split of the total information into common
and local information as proposed in [25]. However, the specific details on
how the common information is used is different from [25].



By definition I loci (t) ⊆ y(t−d∗+1:t). Thus, for any i ∈ N ,
we can identify matrix C loc

i and random vectors wloc
i (t) and

vloci (t) (which are linear functions of w(t−d∗+ 1:t−1) and
vi(t− d∗ + 1:t)) such that

I loci (t) = C loc
i x(t− d∗ + 1) + wloc

i (t) + vloci (t). (19)

To write the expressions for (C loc
i , wloc

i (t), vloci (t)) for
the delayed sharing and neighborhood sharing information
structures below, we define for any ` ≤ d∗,

Wi(`, t) =


Ciw

(d∗−1)(d∗ − 1, t)

Ciw
(d∗−1)(d∗ − 2, t)

...
Ciw

(d∗−1)(`, t)

 ,

Ci(`) =


Ci
CiA

...
CiA

d∗−`−1

 , Vi(`, t) =


vi(t− d∗ + 1)
vi(t− d∗ + 2)

...
vi(t− `)

 .
�

Example 1 (cont.) For the d-step delayed sharing informa-
tion structure I loci (t) = yi(t− d∗ + 1:t). Thus,

C loc
i = Ci(0), wloc

i (t) =Wi(0, t), vloci (t) = Vi(0, t).

Example 2 (cont.) For the neighborhood sharing informa-
tion structure, Ii(t) =

⋃d∗
k=0

⋃
j∈Nk

i
{yj(1:t− k)}. Thus,

C loc
i = rows

( d∗−1⊙
`=0

⊙
j∈N`

i

Cj(`)
)
,

wloc
i (t) = vec

( d∗−1⊙
`=0

⊙
j∈N`

i

Wj(`, t)

)
,

vloci (t) = vec

( d∗−1⊙
`=0

⊙
j∈N`

i

Vj(`, t)
)
. �

Now define,

x̂(t− d∗ + 1) = E[x(t− d∗ + 1) | Icom(t)]

= E[x(t− d∗ + 1) | y(1:t− d∗)] (20)

as the delayed centralized estimate of the state and

x̃(t− d∗ + 1) = x(t− d∗ + 1)− x̂(t− d∗ + 1)

as the error of the delayed centralized estimate. Note that
this notation is consistent with the notation for the delayed
centralized Kalman filtering used in Section III-A. Thus,
x̂(t− d∗ + 1) can be updated recursively using (12).

Lemma 1 wloc
i (t), vloci (t), x̃(t − d∗ + 1), and Icom(t) are

independent. 2

Proof: The proof is omitted due to space limitations.
From Lemma 1 and from (19), we get

Î loci (t) = C loc
i (t)x̂(t− d∗ + 1), (21)

Our main result is as follows:

Theorem 1 Under (A1)–(A3), we have the following:
1) Optimal decentralized estimates are

ẑi(t) = Lix̂
com(t) + Fi(t)Ĩ

loc
i (t), (22)

where
x̂com(t) = Ad

∗−1x̂(t− d∗ + 1), (23)

x̂(t − d∗ + 1) is computed according to the delayed
centralized Kalman filter (12)–(14), and

Ĩ loci (t) = I loci (t)− C loc
i x̂(t− d∗ + 1)

= C loc
i x̃(t− d∗ + 1) + wloc

i (t) + vloci (t),
(24)

2) The optimal gains {Fi(t)}i∈N are given by the (unique)
solution of the following system of matrix equations.∑
j∈N

[
SijFj(t)Σ̂ji(t)− SijLjΘ̂i(t)

]
= 0, ∀i ∈ N,

(25)
where Σ̂ij(t) = cov

(
Ĩi(t), Ĩj(t)

)
and is given by

Σ̂ij(t) = C loc
i P (t− d∗ + 1)C loc

j

ᵀ
+ Pwij (t) + P vij(t),

(26)
where Pwij (t) = cov(wloc

i (t), wloc
j (t)), P vij(t) =

cov(vloci (t), vlocj (t)) and Θ̂i(t) = cov(x, Ĩi(t)) and is
given by

Θ̂i(t) = [Ad
∗−1P (t− d∗ + 1)C loc

i

ᵀ
+ Pσi (t)] (27)

where Pσi (t) = cov(w(d∗−1)(0, t), wloc
i (t)).

3) Finally, the optimal performance is given by

J∗T =

T∑
t=1

[
Tr(L

ᵀ
SLP0(t))

−
∑
i∈N

Tr

(
F
ᵀ
i

∑
j∈N

SijLjΘ̂i(t)

)]
. (28)

where P0(t) = var(x(t)− x̂com(t)) and is given by

P0(t) = Ad
∗−1P (t− d+ 1)(Ad

∗−1)
ᵀ

+ Σw(t), (29)

and Σw(t) = var(w(d∗−1)(0, t)). 2

Proof: Since the choice of the estimates does not affect
the evolution of the system, choosing an estimation profile
g = (g1, . . . , gn) to minimize JT (g) is equivalent to solving
the following T separate optimization problems.

min
(g1,t,...,gn,t)

E[c(x(t), ẑ(t))], ∀t ∈ {1, . . . , t}. (30)

From [27, Theorem 1], we get that the strategy given by (22)
is optimal for (30). We defer the proof of existence and
uniqueness of the solution of (25) to Theorem 2.

The expression (23) for x̂com(t) follows from (17). The
expression (24) for Ĩ loci (t) follows from (19) and (21).
Substituting (19) in (24), we get

Ĩ loci (t) = C loc
i x̃(t− d∗ + 1) + wloc

i (t) + vloci (t). (31)

Thus, we get the expression (26) for Σ̂ij(t) from Lemma 1.



From (17) and (31), and Lemma 1, we get the expres-
sion (27) for Θ̂i(t). Finally the expression for P0(t) follows
from (17) and (23) and the performance of the strategy is
given by (28).

Theorem 2 Equation (25) has a unique solution and can be
written more compactly as

F (t) = Γ(t)−1η(t), (32)

where

F (t) = vec(F1(t), . . . , Fn(t)),

η(t) = vec(S1LΘ̂1(t), . . . , SnLΘ̂n(t)),

Si = [Si1, . . . , Sin],

Γ(t) = [Γij(t)]i,j∈N , where Γij(t) = Σ̂ij(t)⊗ Sij .

Furthermore, the optimal performance can be written as

J∗T =

T∑
t=1

[
Tr(L

ᵀ
SLP0(t))− η(t)

ᵀ
Γ(t)−1η(t)

]
. (33)

2

Proof: First, we start by observing that Σ̂ii > 0. This
follows from the fact that Σ̂ii is the variance of the innovation
in the standard Kalman filtering equation. Thus, the positive
definiteness of Ri in assumption (A2) ensures that Σ̂ii is
positive definite [24, Section 3.4]. The result then follows
from [7, Lemma 1]

Remark 1 Let us contrast the results of Theorem 2 with the
Kalman estimator

ZKal
i (t) = Lix̂i(t)

where x̂i(t) = E[x(t)|Ii(t)]. We can view x̂i(t) as a
Kalman filter update when the agent has information Icom(t)
and receives new information I loci (t). Hence, from Kalman
filtering update, we have

x̂i(t) = x̂com(t) +Ki(t)Ĩ
loc
i (t),

where Ki(t) = Θ̂i(t)Σ̂
−1
ii . 2

Therefore, we have

ZKal
i (t) = Lix̂

com(t) + LiKi(t)Ĩ
loc
i (t). (34)

Thus, the structure of the optimal estimator in Theorem 1 is
the same as the Kalman estimator (34). The difference is that,
in the optimal estimator, the gains {Fi(t)}i∈N are obtained
by solving a system of simultaneous matrix equations that
depend on the weight matrix S where in the Kalman estimator
the gains {LiKi(t)}i∈N do not depend on the cost matrix S.

When S is block diagonal, the optimal estimator is same
as the Kalman estimator, as shown in the following.

Corollary 1 If Sij = 0 for all i, j ∈ N , i 6= j, then

ẑi(t) = Lix̂i(t). 2

Proof: For a block diagonal S, Eq. (25) reduces to

SiiFi(t)Σ̂ii(t) = SiiLiΘ̂i(t). (35)

1 2

34

(a) A system with 2-step delay
sharing information structure.

1 2

34

(b) A system with neighbor-
hood sharing information struc-
ture.

Fig. 1: Two systems with different information structures.

Note that when S is block diagonal, (A3) implies that each
Sii is postive-definite, and hence invertible. Moreover, Σ̂ii(t)
is positive definite and invertible [24, Section 3.4]. Thus,
Eq. (35) simplifies to Fi(t) = LiΘ̂i(t)Σ̂

−1
ii (t). Substituting

this in (22) gives

ẑi(t) = Lix̂
com(t) + LiΘ̂i(t)Σ̂

−1
ii (t)Ĩ loci (t)

(a)
= Li

[
E[x(t)|Icom(t)] + E[x(t)|Ĩ loci (t)]

]
(b)
= Li

[
E[x(t)|Ii(t)],

where (a) uses x̂com(t) = E[x(t)|Icom(t)] and the following
equation for Gaussian zero mean random variables a and b:

E[a|b] = cov(a, b) var(b)b,

and (b) uses the orthogonal projection because Ĩ loci (t) is
orthogonal to Icom(t) [26].

IV. SOME EXAMPLES

To illustrate our main results, we consider two exam-
ples of four node networks with different information
structures shown in Fig. 1 and show the computations
C loc
i , wloc

i (t), vloci (t), Pσi (t), Pwij (t), and P vij(t).

A. Four node network with 2-step delayed sharing

Consider the complete graph with 2-step delay information
structure shown in Fig. 1(a). The information structure is
given by

Ii(t) = {y(1:t− 2), yi(t− 1:t)}.

Thus, Icom(t) = y(1:t − 2), I loci (t) = yi(t − 1:t),
C loc
i = rows(Ci, CiA), wloc

i (t) = vec(0, Ciw(t− 1)), and
vloci (t) = vec(vi(t− 1), vi(t)). Using these, we get that
• For t = 1,

Σw(1) = 0, Pσi (t) =
[
0 0

]
,

Pwii (1) = diag(0, 0), Pwij (1) = diag(0, 0),

P vii(1) = diag(0, Ri), P vij(1) = diag(0, 0).

• For t ≥ 2,

Σw(t) = Q, Pσi (t) =
[
0 QCᵀi

]
,

Pwii (t) = diag(0, CiQC
ᵀ
i ), Pwij (t) = diag(0, CiQC

ᵀ
j ),

P vii(t) = diag(Ri, Ri), P vij(t) = diag(0, 0).



Substituting these, we get that Σ̂ij(1) = δijdiag(0, Ri),
and for t ≥ 2,

Σ̂ij(t) =

[
Ci
CiA

]
P (t−1)

[
Cj
CjA

]ᵀ
+

[
δijRi 0

0 CiQC
ᵀ
i + δijRi

]
.

Finally, substituting Σ̂ij(t) in (25) or (32) gives us the optimal
gains.

B. Four node network with neighborhood sharing

Consider the graph with neighborhood sharing information
structure shown in Fig 1(b). The information structure is
given by

Ii(t) = {y(1:t− 2), yi−1(t− 1), yi(t− 1:t), yi+1(t− 1)},

where we have assumed that the subscripts i+ 1 and i− 1
are evaluated modulo 4 over the residue system {1, 2, 3, 4}.
Thus, Icom(t) = y(1:t− 2) and

I loci (t) = {yi−1(t− 1), yi(t− 1:t), yi+1(t− 1)}.

Thus, C loc
i = rows(Ci−1, Ci, CiA,Ci+1),

wloc
i (t) =

[
0
0

Ciw(t−1)
0

]
, vloci (t) =

[
vi−1(t−1)
vi(t−1)
vi(t)

vi+1(t−1)

]
.

Using these, we get that
• For t = 1,

Σw(1) = 0, P σi (t) =
[
0 0 0 0

]
,

Pwii (1) = diag(0, 0, 0, 0), Pwij (1) = diag(0, 0, 0, 0),

P vii(1) = diag(0, 0, Ri, 0), P vij(1) = diag(0, 0, 0, 0).

• for t ≥ 2,

Σw(t) = Q,

Pwij (t) = diag(0, 0, CiQC
ᵀ
j , 0),

Pσi (t) = [0, 0, QC
ᵀ
i , 0],

P vii(t) = diag(Ri−1, Ri, Ri, Ri+1)

P vi,i+1(t) =

[ 0 0 0 0
Ri 0 0 0
0 0 0 0
0 Ri+1 0 0

]
, P vi,i+2(t) =

[
0 0 0 Ri−1

0 0 0 0
0 0 0 0

Ri+1 0 0 0

]
,

P vi+1,i(t) = P vi,i+1(t)ᵀ, and P vi+2,i(t) = P vi,i+2(t)ᵀ.

V. CONCLUSIONS

We investigated the problem of decentralized state esti-
mation and identified the structure of optimal estimation
strategies. The optimal estimates are linear function of the
common estimate and the offset of the local observation from
its conditional expectation given the common information.
The gain of the offset term depends on the weight matrix of
the cost function. This feature makes the decentralized state
estimation problem fundamentally different from centralized
state estimation. We restricted attention to finite horizon
models. It can be shown that the results generalize to infinite
horizon long run average setup under standard conditions on
stabilizability and observability.

We believe that decentralized estimation plays a funda-
mental role in decentralized control problems and plan to
investigate this relationship in the future.
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