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Optimal Decentralized Control of Coupled Subsystems
With Control Sharing
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Abstract—Subsystems that are coupled due to dynamics and costs arise
naturally in various communication applications. In many such applica-
tions the control actions are shared between different control stations giving
rise to a control sharing information structure. Previous studies of control-
sharing have concentrated on the linear quadratic Gaussian setup and a so-
lution approach tailored to continuous valued control actions. In this paper
a three step solution approach for finite valued control actions is presented.
In the first step, a person-by-person approach is used to identify redundant
data or a sufficient statistic for local information at each control station.
In the second step, the common-information based approach of Nayyar et
al. (2013) is used to find a sufficient statistic for the common information
shared between all control stations and to obtain a dynamic programming
decomposition. In the third step, the specifics of the model are used to sim-
plify the sufficient statistic and the dynamic program.

Index Terms—Decentralized control, nonclassical information struc-
tures, stochastic optimal control.

I. INTRODUCTION

Signaling, or the ability of one control station to communicate in-
formation about its observation to another control station, is a funda-
mental aspect of decentralized control. As shown in [1], the absence
of signaling simplifies the structure of optimal decentralized control
strategies. In this paper, we show that the reverse is also true: the pres-
ence of signaling may also simplify the structure of optimal decentral-
ized control strategies.
To illustrate the above point, we investigate a model with explicit

signaling: the control sharing information structure. In such an infor-
mation structure, each control station observes the control actions of
all other control stations after a one-step delay.
Control sharing information structures arise naturally in many

communication applications such as multi-access broadcast [2], [3],
paging and registration in mobile cellular systems [4], and real-time
communication with feedback [5]. In these applications, each node
may be treated as a controlled subsystem. These subsystems are
coupled through dynamics and cost. In Section II we propose a model
of coupled subsystems with control sharing that captures the different
dynamical models used in the above [2]–[5].
The model considered in this paper has a nonclassical information

structure. We refer the reader to [6] for an overview of the various solu-
tion approaches to decentralized control systems with nonclassical in-
formation structures. We briefly describe two approaches that are most
relevant to our model.
For a linear quadratic Gaussian (LQG) model with control sharing

information structure, the following solution methodology was pro-
posed in [7], [8]. Embed the local observations in the control actions to
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convert the control sharing model to a one-step delay sharing model,
and then solve the latter system. This embedding technique works be-
cause: i) control actions are real-valued random variables and, as such,
convey infinite information (in an information theoretic sense) and ii)
measurable bijections exist between Euclidean spaces. In the model of
this paper, control actions take finite values. Therefore, the embedding
technique of [7], [8] does not work.
Control sharing information structure is a special case of partial his-

tory sharing information structure, for which the following solution
methodology was proposed in [9]. Split the data available at each con-
trol station into two parts: a common information part that is commonly
known to all control stations, and a local information part that con-
sists of the remaining data. Then, the decentralized stochastic control
system is equivalent to a centralized stochastic control system in which
a fictitious coordinator observes the common information and chooses
functions that map the local information at each control station to its ac-
tion. This solution approach extends to infinite horizons only when the
equivalent centralized system is time-homogeneous. When the model
of this paper is converted to a centralized system, the local information
at a control station is the history of local state observations which is in-
creasing with time and, hence, not time-homogeneous. Therefore, the
common information approach of [9] is not directly applicable to the
model of this paper.
The rest of this paper is organized as follows. In Section II, we

present two models for coupled subsystems with control sharing: the
full and the partial observation models. In Section III, we present the
following three-step solution approach for the full observation model.
In the first step, we use a person-by-person approach to identify redun-
dant data or a sufficient statistic for local information at each control
station. In the second step, we use the common-information approach
[9] to find a sufficient statistic for the common information shared be-
tween all control stations and to obtain a dynamic programming de-
composition. In the third step, we use the specifics of the model to sim-
plify the sufficient statistic and the dynamic program. In Section IV,
we extend this three-step approach to the partial observation model. In
Section V we conclude by discussing some of the salient features of
our solution approach.

Notation

Random variables are denoted with upper case letters ( , , etc.),
their realization with lower case letters ( , , etc.), and their space of
realizations by script letters ( , , etc.). Subscripts denote time and
superscripts denote the subsystem; e.g., denotes the state of sub-
system at time . The short hand notation denotes the vector

. Bold face letters denote the collection of variables
at all subsystems; e.g., denotes . The notation

denotes the vector .
denotes the probability simplex for the space . de-

notes the probability of an event . denotes the expectation of
a random variable . denotes the indicator function of the
statement , i.e., is 1 if and 0 otherwise.

II. COUPLED SUBSYSTEMS WITH CONTROL SHARING

1) SystemComponents: Consider a discrete-time networked control
system with subsystems. The state of subsystem ,

, has two components: a local state and a shared
state , which is identical for all subsystems. The initial shared
state has a distribution . Conditioned on the initial shared state
, the initial local state of all subsystems are independent; initial local

state is distributed according to , . Let
denote the local state of all subsystems.
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A control station is co-located with each subsystem. Let
denote the control action of control station and

denote the collection of all control
actions.
2) System Dynamics: The shared and the local state of each sub-

system are coupled through the control actions; the shared state evolves
according to

(1)

while the local state of subsystem , , evolves according
to

(2)

where , , is the plant disturbance with distri-
bution . The processes , , are assumed to
be independent across time, independent of each other, and also inde-
pendent of the initial state of the system.
Note that the updated local state of subsystem depends only on the

previous local state of subsystem and the previous shared state but is
controlled by all control stations.
3) Observation Models and Information Structures: We consider

two observation models that differ in the observation of the local state
at control station . In the first model, called full observation model,

control station perfectly observes the local state ; in the second
model, called partial observation model, control station observes a
noisy version of the local state given by

(3)

where is the observation noise with distribution . The
processes , are assumed to be independent
across time, independent of each other, independent of ,

, and independent of the initial state .
In bothmodels, in addition to the local measurement of the state of its

subsystem, each control station perfectly observes the shared state
and the one-step delayed control actions of all control stations.
The control stations perfectly recall all the data they observe. Thus, in
the full observation model, control station chooses a control action
according to

(4)

while in the partial observation model, it chooses a control action ac-
cording to

(5)

The function is called the control law of control station . The
collection of control laws at control station
is called the control strategy of control station . The collection

of control strategies of all control stations is called
the control strategy of the system.
4) Cost and Performance: At time , the system incurs a cost

that depends on the shared state, the local state of
all subsystems, and the actions of all control stations. Thus, the
subsystems are also coupled through cost.
The system runs for a time horizon . The performance of a con-

trol strategy is measured by the expected total cost incurred by that
strategy, which is given by

(6)

where the expectation is with respect to a joint measure of
induced by the choice of the control strategy .

We are interested in the following optimal control problem.
5) Problem 1: Given the distributions , , , of the

initial shared state, initial local state, plant disturbance of subsystem
, and observation noise of subsystem (for the partial observation
model), , a horizon , and the cost functions ,

, find a control strategy that minimizes the expected total
cost given by (6).
The abovemodel and optimization problem arise in a variety of com-

munication applications such as multi-access broadcast [2], [3], paging
and registration in mobile cellular systems [4], and real-time commu-
nication with feedback [5] (see [10] for details).

III. MAIN RESULT FOR THE FULL OBSERVATION MODEL

In this section, we derive the structure of optimal control laws and
a dynamic programming decomposition for the full observation model
using the following three-step approach:
1) Use a person-by-person approach to show that the past values of
the local state are irrelevant at control station at time
. Thus, for any control strategy of control station that uses

, we can choose a control strategy that uses
only without any loss in performance.

2) When attention is restricted to control strategies of the form de-
rived in Step 1, the common information is and
the local information at control station is . Following the
common information approach of [9] show that

is a sufficient statistic for the common information .
Use to identify the structure of optimal control laws and dy-
namic programming decomposition.

3) Define and . Use the
system dynamics to show that is sufficient to compute
. Based on this sufficiency, replace by in the

structural results and the dynamic programming decomposition
of Step 2.

Now, we describe each of these steps in detail. For simplicity of
exposition, we assume that , , , and , , are
finite. The results extend to general alphabets under suitable technical
conditions (similar to those for centralized stochastic control [11]).

A. Step 1: Shedding of Irrelevant Information

In the full observation model, the local states of all subsystems are
conditionally independent given the history of shared state and control
actions. In particular,
Proposition 1: For any realization , and

of and , , , we have

(7)

See Appendix A for proof. An immediate consequence of the above
Proposition is the following:
Lemma 2: Consider the full observation model for an arbitrary but

fixed choice of control strategy . Define .
Then:
1) The process is a controlled Markov process with control
action , i.e., for any , , ,

, , ,
and ,
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2) The instantaneous conditional cost simplifies as follows:

See Appendix D for proof.
In light of Lemma 2, lets reconsider the subproblem of finding the

optimal control strategy for control station when the control strategy
of all other control stations is fixed arbitrarily. In this subproblem,

control station has access to , chooses , and incurs an ex-
pected instantaneous cost . Lemma 2
implies that the subproblem of finding the optimal control strategy
is aMarkov decision process. Thus, usingMarkov decision theory [11],
we get that restricting attention to control laws of the form (8) at con-
trol station is without loss of optimality. By cyclically using the same
argument for all control stations we obtain the following:
Proposition 3: In the full observation model, restricting attention to

control laws of the form

(8)

at all control stations , , is without loss of optimality.
Thus, the past values of local state are irrelevant at control

station at time , . However, even after shedding ,
the data at each control station is still increasing with time. In the next
step, we show how to “compress” this data into a sufficient statistic.

B. Step 2: Sufficient Statistic for Common Data

Consider Problem 1 for the full observation model and restrict con-
trol strategies of the form (8). Proposition 3 shows that this restriction
is without loss of optimality. We use the results of [9] for this restricted
setup.
Split the data at each control station into two parts: the common data

that is observed by all control stations and the
local (or private) data that is observed by only control sta-
tion . Note that the common information is increasing with time (i.e.,

), while the local information has a fixed size. Thus,
the system has partial history sharing information structure with finite
local memory. Nayyar et al. [9] derived structural properties of optimal
controllers and a dynamic programming decomposition for such an in-
formation structure.
To present the result, we first define the following:
Definition 1: Given any control strategy of the form (8), let ,

, denote the posterior probability of given the
common information ; i.e., for any and , the compo-
nent of is given by

The update of follows the standard nonlinear filtering equation. It
is shown in [9] that is a sufficient statistic for ; in particular, we
have the following structural result.
Proposition 4: ([9, Theorem 2] applied to model of Proposition 3)

In the full observation model, restricting attention to control laws of
the form

(9)

at all control stations , , is without loss of optimality.
To obtain a dynamic programming decomposition to find optimal

control strategies of the form (9), the following partially evaluated con-
trol laws were defined in [9]: For any control strategy of the form (9),
and any realization of , let

denote a mapping from to . When is a random variable,
the above mapping is a random mapping denoted by . Let

and . Then optimal control strate-
gies of the form (9) are obtained as follows.
Proposition 5: ([9, Theorem 3] applied to model of Proposition 3)

For any , define

and for ,

Let denote the set of of the right hand side of ,
and denote the -th component of . Then, a control strategy

is optimal for Problem 1 with the full observation model.

C. Step 3: Simplification of the Sufficient Statistic

In this step, we use Proposition 1 to simplify the sufficient statistic
used in Step 2, and thereby simplify Propositions 4 and 5. For that

matter, we define the following.
Definition 2: Given any control strategy of the form (9), let ,

, denote the posterior probability of given the common
information , i.e., for any , the component
of is given by

We now show that is a sufficient to compute . More pre-
cisely:
Lemma 6: For any , , , the values

are sufficient to compute .
Proof: The proof follows directly from the definition of ,

and Proposition 1. Let and consider the compo-
nent of :

where follows form the law of total probability and follows
from Proposition 1.
Therefore, we can substitute for in Proposition 4 to get

the following:
Theorem 1 (Structure of Optimal Controllers): In the full observa-

tion model, restricting attention to control laws of the form

(10)

at all control stations , , is without loss of optimality.
To obtain a similar simplification for the dynamic program of Propo-

sition 5, we need to show that updates in a state-like manner
(i.e., it is an information state). That is established by the following
Lemma.
Lemma 7: There exists a deterministic function such that

(11)
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Furthermore,

(12)

See Appendix B for proof.
To simplify the dynamic program of Proposition 5, proceed as fol-

lows. For any control strategy of the form (10), and any realization
of , let

denote a mapping from to . When is a random variable,
the above mapping is a random mapping denoted by . Let

and . Then optimal control strate-
gies of the form (9) are obtained as follows.
Theorem 2 (Dynamic Programming Decomposition): For any
and , , define

and for ,

Let denote the set of of the right hand side of
, and denote the -th component of . Then, a control

strategy

is optimal for Problem 1 with the full observation model.

IV. MAIN RESULT FOR THE PARTIAL OBSERVATION MODEL

In this section, we derive the structure of optimal control laws and
a dynamic programming decomposition for the partial observation
model. As in the full observation model, we cannot directly use the
results of [9] because the local observations at each control station
are increasing with time. To circumvent this difficulty, we follow a
three step approach, similar to the one taken for the full observation
model.

A. Step 1: Sufficient Statistic for Local Observations

In this step, we find a sufficient statistic for the local observations
at control station . For that matter, we define the following:
Definition 3: Given any control strategy of the form (5), let ,

, denote the posterior probability of the local
state of substation given all the information
at control station , i.e., for any , the component of is
given by

where follows because is independent of .
The update of follows a nonlinear filtering equation as shown

below.
Lemma 8: For every , , there exist a deterministic

function such that

(13)

The proof follows from the law of total probability and Bayes rule and
is similar to the proof of Appendix B.
Wewant to establish that is a sufficient statistic for the local obser-

vations at control station . For that matter, we need the following
two conditional independence properties.

Proposition 9: Proposition 1 is also true for the partial observation
model for an arbitrary but fixed choice of control strategy of the
form (5).
The proof is along the same lines as the proof of Proposition 1. See

[10] for details.
Proposition 10: In the partial observation model, the posterior prob-

ability of the local states of all subsystems are conditionally inde-
pendent given the history of shared state and control actions. Specifi-
cally, for any Borel subsets of , ,
, , and , we have

(14)

See Appendix C for proof.
An immediate consequence of Proposition 10 and Lemma 8 is the

following.
Lemma 11: Lemma 2 is also true for the partial observation model

with defined as .
The proof is omitted due to space limitation. See [10] for details.
By repeating an argument similar to the argument after Lemma 2,

we get the following:
Proposition 12: In the partial observation model, restricting atten-

tion to control laws of the form

(15)

at all control stations , , is without loss of optimality.

B. Steps 2 and 3: Sufficient Statistic for Common Data and Its
Simplification

Compare Proposition 3 of the full observation model with Proposi-
tion 12 of the partial observation model. The posterior probability
in the latter model plays the role of local state in the former model.
This suggests that we may follow Steps 2 and 3 of the full observation
model in the partial observation model by replacing by . Fol-
lowing this suggestion, define:
Definition 4: Let denote the posterior probability on

given the common information , i.e., for any and any Borel
subsets of and ,

(16)

Definition 5: Let , , denote the posterior probability
of given the common information , i.e., for any Borel
subset of ,

Now, by following the exact same argument as in Steps 2 and 3 for
the full observation model, we get that Propositions 4 and 5 and Theo-
rems 1 and 2 are also true for the partial observationmodel if we replace
and by and , respectively.

V. DISCUSSION AND CONCLUSION

A. Infinite Horizon Setup

Although we restricted attention to a finite horizon setup, our results
also extend to the infinite horizon setup as follows. Step 1 of our ap-
proach remains valid for the infinite horizon setup as well. In Step 2,
the local information takes value in a time-invariant space. Therefore,
the result of Proposition 5 generalizes to infinite horizon setup along
the lines of [9, Theorem 5]. The simplification of Step 3, which relies
on Lemma 6, proceeds as in the finite horizon setup.
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B. Salient Features of the Result

It is generally believed that signaling makes decentralized control
problems harder. The results of this paper show that when signaling
induces common information between control stations, it may simplify
a decentralized control problem. The reason for this simplification is
two-fold.
Firstly, common information allows us to use the solution frame-

work of [9]. Secondly, common information may induce appropriate
conditional independence which, in turn, may simplify the structure of
optimal control laws (Step 1) and the information state (Step 3). For
example, in our model, is not conditionally independent of
given , but is conditionally independent when also conditioned on
the signaled information .
Whether or not the signaled common information leads to an appro-

priate conditional independence hinges on the system dynamics. For
example, the above conditional independence between and
given would break if the system dynamics were

The above conditional independence is critical for Step 1 of our ap-
proach. If it were not true, the local information in Step 2 would not
be time-invariant, and our result would not extend to infinite horizon
setup (see Section V-A).
The above conditional independence is also critical for Step 3 of our

approach. It allows us to use instead of as the information
state in the dynamic program. , so its
size is doubly exponential in the number of subsystems. On the other
hand , so its size is exponential in the
number of subsystems. Consequently, Step 3 reduces the size of the
information state by an exponential factor.
In our model, the induced common information is equal to the sig-

naled information. In general, this need not be the case. A natural next
step is to investigate the relationship between signaling and common in-
formation when the signaling is implicit through the system dynamics.

APPENDIX A
PROOF OF PROPOSITION 1

For simplicity of notation, we use to denote
and a similar notation

for conditional probability. Define:
• ,

, ; and
• , , .
From the law of total probability it follows that

Summing over

all realizations of and observing that and depend only
on , we get

Thus, using Bayes rule we get

(17)

Summing both sides over , , we get

(18)

The result follows from combining (17) and (18).

APPENDIX B
PROOF OF LEMMA 7

Consider the system for a particular realization
of . For

ease of notation, we use to denote
.

Define

The system dynamics and Proposition 1 implies that

(19)

Consider component- of the realization of

(20)

where follows from (19). Combining (20) for all , ,
proves (11).
Now to prove (12), consider

(21)

APPENDIX C
PROOF OF PROPOSITION 10

Consider



2382 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 9, SEPTEMBER 2013

From Proposition 9 and the law of total probability, we get

which completes the proof of the Proposition.

APPENDIX D
PROOF OF LEMMA 2

For ease of notation, we use to denote
and a similar notation for

other probability statements.
Consider

(22)

Simplify the last term of (22) as follows:

(23)

where is true because is determined by and and
follows from Proposition 1. Substituting (23) in (22), we get

(24)

This completes the proof of part 1) of the Lemma.
To prove part 2), it is sufficient to show that

. Consider

(25)

where (c) follows from an argument similar to (23) . This completes
the proof of part 2) of the Lemma.

1Recall that denotes the vector .
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