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Abstract Decentralized stochastic control refers to the multi-stage optimization of a dynam-

ical system by multiple controllers that have access to different information. Decentralization

of information gives rise to new conceptual challenges that require new solution approaches.

In this expository paper, we use the notion of an information-state to explain the two com-

monly used solution approaches to decentralized control: the person-by-person approach and

the common-information approach.

Keywords Decentralized stochastic control · Dynamic programming · Team theory ·

Information structures

1 Introduction

Centralized stochastic control refers to the multi-stage optimization of a dynamical system by

a single controller. Stochastic control, and the associated principle of dynamic programming,

have roots in statistical sequential analysis (Arrow et al. 1949) and have been used in various

application domains including operations research (Powell 2007), economics (Stokey and

Lucas Robert 1989), engineering (Bertsekas 1995), computer science (Russell and Norvig

1995), and mathematics (Bellman 1957). The fundamental assumption of centralized sto-

chastic control is that the decisions at each stage are made by a single controller that has

perfect recall, that is, a controller that remembers its past observations and decisions. This

fundamental assumption is violated in many modern applications where decisions are made
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by multiple controllers. The multi-stage optimization of such systems is called decentralized

stochastic control or dynamic team theory.

Decentralized stochastic control started with seminal work of Radner (1962), Marschak

and Radner (1972) on static systems that arise in organizations and of Witsenhausen (1971a,b,

1973) on dynamic systems that arise in systems and control. We refer the reader to (Başar

and Bansal 1989; Ho 1980) for a discussion of the history of decentralized stochastic control

and to (Yüksel and Başar 2013; Mahajan et al. 2012; Oliehoek et al. 2013) for survey of

recent results.

Decentralized stochastic control is fundamentally different from, and significantly more

challenging than, centralized stochastic control. Dynamic programming, which is the pri-

mary solution concept of centralized stochastic control, does not directly work in decentral-

ized stochastic control. New ways of thinking need to be developed to address information

decentralization. The focus of this expository paper is to highlight the conceptual challenges

of decentralized control and explain the intuition behind the solution approaches. No new

results are presented in this paper; rather we present new insights and connections between

existing results. Since the focus is on conceptual understanding, we do not present proofs

and ignore the technical details, in particular, measurability concerns, in our description.

We use the following notation. Random variables are denoted by upper case letters; their

realizations by the corresponding lower case letters; and their space of realizations by the

corresponding calligraphic letters. For integers a ≤ b, Xa:b is a short hand for the set

{Xa, Xa+1, . . . , Xb}. When a > b, Xa:b refers to the empty set. In general, subscripts

are used as time index while superscripts are used to index controllers. P(·) denotes the

probability of an event andE[·] denotes the expectation of a random variable. For a collection

of functions g, the notations Pg(·) and Eg[·] indicate that the probability measure and the

expectation depend on the choice of the functions g. Z>0 denotes the set of positive integers

and R denotes the set of real numbers.

2 Decentralized stochastic control: models and problem formulation

2.1 State, observation, and control processes

Consider a dynamical system with n controllers. Let {X t }
∞
t=0, X t ∈ X , denote the state

process of the system. Controller i, i ∈ {1, . . . , n}, observes the process {Y i
t }∞t=0, Y i

t ∈ Y i ,

and generates a control process {U i
t }

∞
t=0, U i

t ∈ U i . The system yields a reward {Rt }
∞
t=0.

These processes are related as follows:

1. Let Ut := {U 1
t , . . . , U n

t } denote the control action of all controllers at time t . Then, the

reward at time t depends only on the current state X t , the future state X t+1, and the

current control actions Ut . Furthermore, the state process {X t }
∞
t=0 is a controlled Markov

process given {Ut }
∞
t=0, i.e., for any A ⊆ X and B ⊆ R, and any realization x1:t of X1:t

and u1:t of U1:t , we have that

P (X t+1 ∈ A, Rt ∈ B | X1:t = x1:t , U1:t = u1:t )

= P (X t+1 ∈ A, Rt ∈ B | X t = xt , Ut = ut ) . (1)

2. The observations Yt := {Y 1
t , . . . , Y n

t } depend only on current state X t and previous

control actions Ut−1, i.e., for any Ai ⊆ Y i and any realization x1:t of X1:t and u1:t−1 of
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U1:t−1, we have that

P

(

Yt ∈

n
∏

i=1

A
i
∣

∣

∣
X1:t = x1:t , U1:t−1 = u1:t−1

)

= P
(

Yt ∈

n
∏

i=1

A
i
∣

∣

∣
X t = xt , Ut−1 = ut−1

)

. (2)

2.2 Information structure

At time t , controller i, i ∈ {1, . . . , n}, has access to information I i
t which is a superset of the

history {Y i
1:t , U i

1:t−1} of the observations and control actions at controller i and a subset of

the history {Y1:t , U1:t−1} of the observations and control actions at all controllers, i.e.,
{

Y i
1:t , U i

1:t−1

}

⊆ I i
t ⊆ {Y1:t , U1:t−1} .

The collection (I i
t , i ∈ {1, . . . , n}, t = 0, 1, . . .), which is called the information structure

of the system, captures who knows what about the system and when. A decentralized system

is characterized by its information structure.

2.3 Control strategies and problem formulation

Based on the information I i
t available to it, controller i chooses action U i

t using a control law

gi
t : I i

t �→ U i
t . The collection of control laws gi := (gi

0, gi
1, . . .) is called a control strategy

of controller i . The collection g := (g1, . . . , gn) is called the control strategy of the system.

The optimization objective is to pick a control strategy g to maximize the expected dis-

counted reward

Λ(g) := Eg
[

∞
∑

t=0

β t Rt

]

(3)

for a given discount factor β ∈ (0, 1).

2.4 Relationship to other models

The decentralized control problem formulated above is closely related to dynamic games; in

particular to dynamic cooperative games. The key difference between the two models is that

in decentralized control all controllers have a common objective while in game theory each

player has an individual objective. To highlight this fact, decentralized control problems are

also referred to as dynamic teams.

In cooperative game theory, the concepts of bargaining and contracts are used to study

when coalitions are formed and how members of the coalition split the value. In decentralized

stochastic control, splitting of the value between the members is not modeled. In this regard,

decentralized control is simpler than cooperative games.

In dynamic game theory, the concepts of sequential rationality and consistency of beliefs

are used to refine Nash equilibria. In decentralized control, all controllers have the same

objective so many of the conceptual difficulties of non-cooperative game theory do not arise.

Although decentralized control is conceptually simpler than the corresponding game the-

oretic setup, the optimization problem formulated above is non-trivial and the corresponding

setup of dynamic cooperative games with incomplete information is an open area of research.
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2.5 An example

To illustrate these concepts, let’s consider a stylized example of a communication system in

which two devices transmit over a multiple access channel.

• Packet arrival at the devices. Packets arrive at device i, i ∈ {1, 2}, according to Bernoulli

processes {W i
t }

∞
t=0 with success probability pi . Device i may store N i

t ∈ {0, 1} packets

in a buffer. If a packet arrives when the buffer is full, the packet is dropped.

• Channel model. At time t , the channel-state St ∈ {0, 1} may be idle (St = 0) or busy

(St = 1). The channel-state process {St }
∞
t=0 is a Markov process with known initial

distribution and transition matrix P =

[

α0 1 − α0

1 − α1 α1

]

. The channel-state process is

independent of the packet-arrival process at the device.

• System dynamics. At time t , device i, i ∈ {1, 2}, may transmit U i
t ∈ {0, 1} packets, U i

t ≤

N i
t . If only one device transmits and the channel is idle, the transmission is successful

and the transmitted packet is removed from the buffer. Otherwise the transmission is

unsuccessful. The state of each buffer evolves as

N i
t+1 = min

{

N i
t − U i

t (1 − U
j

t )(1 − St ) + W i
t , 1

}

, ∀i ∈ {1, 2}, j = 3 − i. (4)

Each transmission costs c and a successful transmission yields a reward r . Thus, the total

reward for both devices is

Rt = −
(

U 1
t + U 2

t

)

c +
(

U 1
t ⊕ U 2

t

)

(1 − St )r

where ⊕ denotes the XOR operation.

• Observation model. Controller i, i ∈ {1, 2}, perfectly observes the number N i
t of packets

in the buffer. In addition, both controllers observe the one-step delayed control actions

(U 1
t−1, U 2

t−1) of each other and the channel state if either of devices transmit. Let Ht

denote this additional observation. Then Ht = St−1 if U 1
t−1 + U 2

t−1 > 0, otherwise

Ht = E (which denotes no channel-state observation).

• Information structure and objective. The information I i
t available at device i, i ∈ {0, 1},

is given by I i
t = {N i

1:t , H1:t , U 1
1:t−1, U 2

1:t−1}. Based on the information available to it,

device i chooses control action U i
t using a control law gi

t : I i
t �→ U i

t . The collection of

control laws (g1, g2), where gi := (gi
0, gi

1, . . .), is called a control strategy. The objective

is to pick a control strategy (g1, g2) to maximize the expected discounted reward

Λ(g1, g2) := E(g1,g2)
[

∞
∑

t=0

β t Rt

]

.

We make the following assumption in the paper.

(A) The arrival process at the two controllers is independent.

2.6 Conceptual difficulties in finding an optimal solution

There are two conceptual difficulties in the optimal design of decentralized stochastic control:

1. The optimal control problem is a functional optimization problem where we have to

choose an infinite sequence of control laws g to maximize the expected total reward.

2. In general, the domain I i
t of control laws gi

t increases with time. Therefore, it is not

immediately clear if we can solve the above optimization problem; even if it is solved, it

is not immediately clear if we can implement the optimal solution.
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Similar conceptual difficulties arise in centralized stochastic control where they are

resolved by identifying an appropriate information-state process (see Definition 1 below)

and solving a corresponding dynamic program. It is not possible to directly apply such an

approach to decentralized stochastic control problems.

In order to better understand the difficulties in extending the solution techniques of cen-

tralized stochastic control to decentralized stochastic control, we revisit the main results of

centralized stochastic control in the next section.

3 Overview of centralized stochastic control

A centralized stochastic control system is a special case of a decentralized stochastic control

system in which there is only one controller (n = 1), and the controller has perfect recall

(I 1
t ⊆ I 1

t+1), i.e., the controller remembers everything that it has seen and done in the past.

For ease of notation, we drop the superscript i and denote the observation, information,

control action, and control law of the controller by Yt , It , Ut , and gt , respectively. Using this

notation, the information available to the controller at time t is given by It = {Y1:t , U1:t−1}.

The controller uses a control law gt : It �→ Ut to choose a control action Ut . The collection

g = (g0, g1, . . .) of control laws is called a control strategy.

The optimization objective is to pick a control strategy g to maximize the expected dis-

counted reward

Λ(g) := Eg

[

∞
∑

t=0

β t Rt

]

(5)

for a given discount factor β ∈ (0, 1).

In the centralized stochastic control literature, the above model is sometimes referred

to a partially observable Markov decision process (POMDP). The solution to a POMDP is

obtained in two steps (Bertsekas 1995).

1. Consider a simpler model in which the controller perfectly observes the state of the

system, i.e., Yt = X t . Such a model is called a Markov decision process (MDP). Show

that there is no loss of optimality in restricting attention to Markov strategies, i.e., control

laws of the form gt : X t �→ Ut . Obtain an optimal control strategy of this form by solving

an appropriate dynamic program.

2. Define a belief state of a POMDP as the posterior distribution of X t given the information

at the controller, i.e., Bt (·) = P(X t = · | It ). Show that the belief state is a MDP, and

use the results for MDP.

A slightly more general approach is identify an information-state process of the system

and present the solution in terms of the information state. We present this approach below.

Definition 1 A process {Z t }
∞
t=0, Z t ∈ Zt , is called an information-state process if it satisfies

the following properties:

1. Z t is a function of the information It available at time t , i.e., there exist a series of

functions { ft }
∞
t=0 such that

Z t = ft (It ). (6)

2. The process Z t is a controlled Markov process controlled by {Ut }
∞
i=0, i.e., for any A ⊆

Zt+1 and any realization it of It and any choice ut of Ut , we have that

P (Z t+1 ∈ A | It = it , Ut = ut ) = P (Z t+1 ∈ A | Z t = ft (it ), Ut = ut ) . (7)
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3. Z t absorbs the effect all the available information on the current rewards, i.e., for any

B ⊆ R, and any realization it of It and any choice ut of Ut , we have that

P (Rt ∈ B | It = it , Ut = ut ) = P (Rt ∈ B | Z t = ft (it ), Ut = ut ) . (8)

In general, a system may have more than one information-state process. The following

theorems hold for any information-state process.

Theorem 1 (Structure of optimal control laws) Let {Z t }
∞
t=0, Z t ∈ Zt , be an information-

state process. Then,

1. The information state absorbs the effect of available information on expected future

rewards, i.e., for any realization it of the information state It , any choice ut of Ut and

any choice of future strategy g(t) = (gt+1, gt+2, . . .), we have that

E
g(t)

[

∞
∑

τ=t

βτ Rτ

∣

∣

∣

∣

It = it , Ut = ut

]

= Eg(t)

[

∞
∑

τ=t

βτ Rτ

∣

∣

∣

∣

Z t = ft (it ), Ut = ut

]

. (9)

2. Therefore, Z t is a sufficient statitistic for performance evaluation and there is no loss of

optimality in restricting attention to control laws of the form gt : Z t �→ Ut .

Theorem 2 (Dynamic programming decomposition) Assume that the probability distribu-

tions in the right-hand side of (1), (2), (7) and (8) are time homogeneous. Let {Z t }
∞
t=0, be

an information-state process such that the space of realization of Zt is time-invariant, i.e.,

Z t ∈ Z.

1. For any choice of future strategy g(t) = (gt+1, gt+2, . . .), where gτ , τ > t , is of the form

gτ : Zτ �→ Uτ and for any realization zt of Z t and any choice ut of Ut , we have that

E
g(t)

[

E
g(t+1)

[

∞
∑

τ=t+1

βτ Rτ

∣

∣

∣

∣

Z t+1, Ut+1 = gt+1(Z t+1)

]

∣

∣

∣

∣

Z t = zt , Ut = ut

]

= Eg(t)

[

∞
∑

τ=t+1

βτ Rτ

∣

∣

∣
Z t = zt , Ut = ut

]

(10)

2 There exists a time-invariant optimal strategy g∗ = (g∗, g∗, . . .) that is given by

g∗(z) = arg sup
u∈U

Q(z, u), ∀z ∈ Z (11a)

where Q is the fixed point solution of the following dynamic program1

Q(z, u) = E
[

Rt + βV (Z t+1) | Z t = z, Ut = u
]

, ∀z ∈ Z, u ∈ U; (11b)

V (z) = sup
u∈U

Q(z, u), ∀z ∈ Z. (11c)

The dynamic program can be solved using different methods such as value-iteration,

policy-iteration, or linear-programming. See Puterman (1994) for details.

The information-state based solution approach presented above is equivalent to the stan-

dard description of centralized stochastic control. In particular, the current state X t and the

belief state P(X t = · | It ) are, respectively, the information states in MDP and POMDP.

1 In general, a dynamic program may not have an unique solution, or any solution at all. In this paper, we
ignore the issue of existence of such a solution and refer the reader to (Hernández-Lerma and Lasserre 1996)
for details.
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An important property of the information state is that the conditional future reward, which

is given by (9), does not depend on the past and current control strategy (g0, g1, . . . , gt ).

This strategy independence of future cost is critical to obtain a recurrence relation for the

conditional future cost (10) that does not depend on the current control law gt . Based on this

recurrence, we can convert the functional optimization problem of finding the best control

law gt into a set of parametric optimization problem of finding the best control action Ut

for each realization of the information state Z t . This resolves the first conceptual difficulty

described in Sect. 2.6.

In addition, when the information-state process as well as the probability distributions in

the right hand side of (7) and (8) are time-homogeneous, time-invariant strategies perform

as well as time-varying strategies. Restricting attention to time-invariant strategies resolves

the second conceptual difficulty described in Sect. 2.6.

3.1 An example

To illustrate the concepts described above, consider an example of a device transmitting

over a communication channel. This may be considered as a special case of the example of

Sect. 2.5 in which one of the devices never transmits.

• Packet arrival at the device. The packet arrival model is the same as that of Sect. 2.5.

Since there is only one device, we omit the superscripts in Wt , Nt , and p.

• Channel model. The channel model is exactly same as that of Sect. 2.5.

• System dynamics. At time t , the device transmits Ut ∈ {0, 1} packets, Ut ≤ Nt . If the

device transmits when the channel is idle, the transmission is successful and the trans-

mitted packet is removed from the buffer. Otherwise, the transmission is unsuccessful.

Thus, the state of the buffer evolves as

Nt+1 = min {Nt − Ut (1 − St ) + Wt , 1}

and the total reward is given by

Rt = Ut [−c + r(1 − St )] .

• Observation model. The controller perfectly observes the number Nt of packets in the

buffer. In addition, it observes a channel-state only if it transmits. Let Ht denote this

additional observation. Then Ht = St−1 if Ut−1 = 1, otherwise Ht = E (which denotes

no observation).

• Information structure. The information It available at the device is given by It =

{N1:t , U1:t−1, H1:t }. The device chooses Ut using a control law gt : It �→ Ut . The objec-

tive is to pick a control strategy g = (g0, g1, . . .) to maximize the expected discounted

reward.

The model described above is a centralized stochastic control system with state X t =

(Nt , St ), observation Yt = (Nt , Ht ), reward Rt , and control Ut ; one may verify that these

processes satisfy (1) and (2) (with n = 1).

Let ξt ∈ [0, 1] denote the posterior probability that the channel is busy, i.e.,

ξt := P(St = 1 | H1:t ).

One may verify that Z t = (Nt , ξt ) is an information state that satisfies (7) and (8). So, there

is no loss of optimality in using control laws of the form gt : (Nt , ξt ) �→ Ut . The information

state takes value in the uncountable space {0, 1} × [0, 1]. Since ξt is a posterior distribution,
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we can use the computational techniques of POMDPs (Zhang 2001; Shani et al. 2013) to

numerically solve the corresponding dynamic program.

However, a simpler dynamic programming decomposition is possible by characterizing

the reachable set of ξt , which is given by

Q :=
{

q0,m | m ∈ Z>0

}

∪
{

q1,m | m ∈ Z>0

}

(12a)

where

qs,m := P (Sm = 1 | S0 = s) , ∀s ∈ {0, 1}, m ∈ Z>0. (12b)

Therefore, {(Nt , ξt )}
∞
t=0, (Nt , ξt ) ∈ {0, 1}×Q, is an alternative information-state process. In

this alternative characterization, the information state is denumerable and we may use finite-

state approximations to solve the corresponding dynamic program (White 1980; Hernández-

Lerma 1986; Cavazos-Cadena 1986; Flåm 1987; Sennott 1999).

The dynamic program for this alternative characterization is given below. Let p = 1 − p

and qs,m = 1 − qs,m . Then for s ∈ {0, 1} and m ∈ Z>0, we have that2

V (0, qs,m) = β
[

pV (0, qs,m+1) + pV (1, qs,m+1)
]

(13a)

V (1, qs,m) = max
{

βV (1, qs,m+1), qs,mr − c + βW (qs,m)
}

(13b)

where

W (qs,m) = p qs,m V (0, q0,1) + p qs,m V (1, q0,1) + qs,m V (1, q1,1).

The first alternative in the right hand side of (13b) corresponds to choosing u = 0 while the

second corresponds to choosing u = 1. The resulting optimal strategy for β = 0.9, α0 =

α1 = 0.75, r = 1, p = 0.3, and c = 0.4 is given by

g∗(1, qs,m) =

{

0, if s = 1 and m ≤ 2

1, otherwise.

As is illustrated by the above example, a general solution methodology for centralized

stochastic control is as follows:

1. Identify an information-state process for the given system.

2. Obtain a dynamic program corresponding to the information-state process.

3. Either obtain an exact analytic solution of the dynamic program (which is only possible

for simple stylized models), or obtain an approximate numerical solution of the dynamic

program (as was done in the example above), or prove qualitative properties of the

optimal solution (e.g., in the above example, for appropriate values of c, r , and P, the

set T (s, n) = {m ∈ Z>0 | g∗(n, qs,m) = 1} is convex).

In the rest of this paper, we explore whether a similar solution approach is possible for

decentralized stochastic control problems.

4 Conceptual difficulties in dynamic programming for decentralized stochastic control

Recall the two conceptual difficulties that arise in decentralized stochastic control and were

described in Sect. 2.6. Similar difficulties arise in centralized stochastic control, where they

are resolved by identifying an appropriate information-state process. It is natural to ask if a

similar simplification is possible in decentralized stochastic control. In particular:

2 Note that {qs,m | s ∈ {0, 1} and m ∈ Z>0} is equivalent to the reachable set Q of ξt .
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1. Is it possible to identify an information state Z i
t , Z i

t ∈ Z i
t , such that there is no loss of

optimality in restricting attention to controllers of the form gi
t : Z i

t �→ U i
t ?

2. If the probability distributions in the right hand side of (1) and (2) are time-homogeneous,

is it possible to identify a time-homogeneous information-state process and a correspond-

ing dynamic program that determines a time-invariant optimal control strategies for all

controllers?

The second question is significantly more important, and considerably harder, than the first.

There are two approaches to find a dynamic programming decomposition. The first approach

is to find a set of coupled dynamic programs, where each dynamic program is associated

with a controller and determines the “optimal” control strategy at that controller. The second

approach is to find a dynamic program that simultaneously determines the optimal control

strategy at all controllers.

It is not obvious how to identify such dynamic programs. Let’s conduct a thought experi-

ment in which we assume that such dynamic programs have been identified and let’s try to

identify the implications. The description below is qualitative; the mathematical justification

is presented later in the paper.

Consider the first approach. Suppose we are able to find a set of coupled dynamic programs,

where the dynamic program for controller i , which we refer to as Di , determines the “optimal”

strategy gi for controller i . We use the term optimal in quotes because we cannot isolate an

optimization problem for controller i until we specify the control strategy g−i for all other

controllers. Therefore, dynamic program Di determines the best response strategy gi for a

particular choice of control strategies g−i for other controllers. With a slight abuse of notation,

we can write this as

gi = D
i (g−i ).

Any fixed-point g∗ = (g∗,1, . . . , g∗,n) of these coupled dynamic programs has the property

that every controller i, i ∈ {1, . . . , n}, is playing its best response strategy to the strategies

of other controllers. Such a strategy is called a person-by-person optimal strategy (which is

related to the notion of local optimum in optimization theory and the notion of Nash equilib-

rium in game theory). In general, a person-by-person optimal strategy need not be globally

optimal; in fact, a person-by-person strategy may perform arbitrarily bad as compared to the

globally optimal strategy. So, unless we impose further restrictions on the model, a set of

coupled dynamic programs cannot determine a globally optimal strategy.

Now, consider the second approach. Suppose we are able to find a dynamic program

similar to (11a)–(11c) that determines the optimal control strategies for all controllers. All

controllers must be able to use this dynamic program to find their control strategy. Therefore,

the information-state process {Z t }
∞
t=0 of such a dynamic program must have the following

property: Z t is a function of the information I i
t available to every controller i, i ∈ {1, . . . , n}.

In other words, the information state must be measurable with respect to the common knowl-

edge (in the sense of Aumann 1976) between the controllers.

If we follow the methodology of centralized stochastic control and restrict attention to

control laws of the form gi
t : Z t �→ U i

t , then each controller would be ignoring its local

information (i.e., the information not commonly known to all controllers). Hence, if the

dynamic program similar to (11a)–(11c) determines a globally optimal strategy, then the step

corresponding to (11c) cannot be a parametric optimization problem that finds an optimal

U i
t for each Z t .

Now let’s try to characterize the nature of the optimization problem corresponding to (11c).

Let L i
t denote the local information at each controller so that Z t and L i

t are sufficient to deter-
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mine I i
t . Then, for a particular realization z of the information-state, the step corresponding

to (11c) of the dynamic program must determine functions (γ 1, . . . , γ n) such that: (1) com-

puting (γ 1, . . . , γ n) for each realization of the information state is equivalent to choosing

(g1, . . . , gn). (2) γ i gives instructions to controller i on how to use its local information L i
t to

determine the control action U i
t , i.e., γ i maps L i

t to U i
t . Thus, the step corresponding to (11c)

is a functional optimization problems.

The above discussion shows that dynamic programming for decentralized stochastic con-

trol will be different from that for centralized stochastic control. Either we must be content

with a person-by-person optimal strategy; or, if we pursue global optimality, then we must

be willing to solve functional optimization problems in the step corresponding to (11c) in an

appropriate dynamic program.

In the literature, the first approach is called the person-by-person approach and the second

approach is called the common-information approach. We describe both these approaches in

the next section.

5 The person-by-person approach

The person-by-person approach is motivated by the computational approaches for finding

Nash equilibrium in game theory. It was proposed by Radner (1962), Marschak and Radner

(1972) in the context of static systems with multiple controllers and has been subsequently

used in dynamic systems as well.

This approach is used to identify structural results as well as identify coupled dynamic

programs to find person-by-person optimal (or equilibrium) strategies.

5.1 Structure of optimal control strategies

To find the structural results, proceed as follows. Pick a controller that has perfect recall, say i ;

arbitrarily fix the control strategies g−i of all controllers except controller i and consider the

sub-problem of finding the best response strategy gi at controller i . Since controller i has

perfect recall, this sub-problem is centralized. Suppose that we identify an information-state

process { Ĩ i
t }

∞
t=0 for this sub-problem. Then, there is no loss of (best-response) optimality in

restricting attention to control laws of the form g̃i
t : Ĩ i

t → U i
t at controller i .

The choice of control strategies g−i was completely arbitrary. Hence, if the structure of

g̃i
t does not depend on the choice of (the arbitrarily chosen) control strategies g−i of other

controllers, then there is no loss of (global) optimality in restricting attention to control laws

of the form g̃i
t at controller i .

Repeat this procedure at all controllers that have perfect recall. Let { Ĩ i
t }

∞
t=0 be the

information-state processes identified at controller i, i ∈ {1, . . . , n}. Then there is no loss of

global optimality in restricting attention to the information structure ( Ĩ i
t , i ∈ {1, . . . , n}, t =

0, 1, . . .).

5.2 An example

To illustrate this approach, consider the example of the decentralized control system of

Sect. 2.5. Arbitrarily fix the control strategy g j of controller j, j ∈ {1, 2}. The next step is

to identify an information-state process for the centralized sub-problem of finding the best

response strategy gi of controller i, i = 3 − j .
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Assumption (A) (which states that the packet-arrival processes at the two devices are

independent) implies that

P
(

N 1
1:t , N 2

1:t | H1:t , U 1
1:t−1, U 2

1:t−1

)

= P
(

N 1
1:t | H1:t , U 1

1:t−1, U 2
1:t−1

)

P
(

N 2
1:t | H1:t , U 1

1:t−1, U 2
1:t−1

)

(14)

Using the above conditional independence, we can show that for any choice of control strategy

g j , Ĩ i
t = {N i

t , H1:t , U 1
1:t−1, U 2

1:t−1} is an information state for controller i . By Theorem 1,

we get that there is no loss of optimality (for best response strategy) in restricting attention

to control laws of the form g̃i
t : Ĩ i

t �→ U i
t . Since the structure of the optimal best response

strategy does not depend on the choice of g j , there is no loss of global optimality in restricting

attention to control laws of the form g̃i
t . Equivalently, there is no loss of optimality in assuming

that the system has a simplified information structure ( Ĩ i
t , i ∈ {1, 2}, t = 0, 1, . . .).

5.3 Coupled dynamic program for person-by-person optimal solution

As discussed in Sect. 4, we can in principle identify coupled dynamic programs that determine

a person-by-person optimal solution. Such coupled dynamic programs have been used to

find person-by-person optimal strategies in sequential detection problems (Teneketzis and

Ho 1987; Teneketzis and Varaiya 1984). In this section, we highlight two salient features of

this approach.

Suppose as a first step, we use the person-by-person approach to find the structure of

optimal controllers g̃i
t : Ĩ i

t �→ U i
t . Pick a controller, say i . Arbitrarily fix the control strategies

g̃−i of all controllers other than i and consider the sub-problem of finding the best response

strategy g̃i . In general, the information-state process { Ĩ i
t }

∞
t=0 may not be time-homogeneous

(as is the case in the above example where Ĩ i
t = {N i

t , H1:t , U 1
1:t−1, U 2

1:t−1}). A fortiori, we

cannot show that restricting attention to time-invariant strategies is without loss of optimality.

Suppose that the information-state process { Ĩ i
t }

∞
t=0 of every controller i, i ∈ {1, . . . , n},

is time homogeneous. Even then, when we arbitrarily fix the control strategies g̃−i of all

other controllers, the dynamical model seen by controller i is not time homogeneous. For the

dynamic model from the point of view of controller i to be time-homogeneous, we must a

priori restrict attention to time-invariant strategies at each controller.

Thus, a time-invariant person-by-person optimal strategy obtained by the coupled dynamic

programs described in Sect. 4 need not be globally optimal for two reasons. First, there might

be other time-invariant person-by-person strategies that achieve a higher expected discounted

reward. Second, there might be other time-varying strategies that achieve higher expected

discounted reward.

6 The common-information approach

The common-information approach was proposed by Nayyar (2011), Mahajan et al.

(2008), Nayyar et al. (2013a,b) and provides a dynamic programming decomposition (that

determines optimal control strategies for all controllers) for a subclass of decentralized con-

trol systems. Variation of this approach had been used for specific information structures

including delayed state sharing (Aicardi et al. 1987), partially nested systems with common

past (Casalino et al. 1984), teams with sequential partitions (Yoshikawa 1978), periodic shar-

ing information structure (Ooi et al. 1997), and belief sharing information structure (Yüksel

2009).
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This approach formalizes the intuition presented in Sect. 4: to obtain a dynamic program

that determines optimal control strategies for all controllers, the information-state process

must be measurable at all controllers and, at each step of the dynamic program, we must solve

a functional optimization problem that determines instructions to map local information to

control action for each realization of the information state.

To formally describe this intuition, split the information available at each controller into

two parts: the common information

Ct =
⋂

τ≥t

n
⋂

i=1

I i
τ

and the local information

L i
t = I i

t \ Ct , ∀i ∈ {1, . . . , n} .

By construction, the common and local information determine the total information, i.e.,

I i
t = Ct ∪ L i

t and the common information is nested, i.e., Ct ⊆ Ct+1.

The common information approach applies to decentralized control systems that have a

partial history sharing information structure (Nayyar et al. 2013a,b).

Definition 2 An information structure is called partial history sharing when the following

conditions are satisfied:

1. For any set of realizations A of L i
t+1 and any realization ct of Ct , ℓi

t of L i
t , ui

t of U i
t and

yi
t+1 of Y i

t+1, we have

P
(

L i
t+1 ∈ A | Ct = ct , L i

t = ℓi
t , U i

t = ui
t , Y i

t+1 = yi
t+1

)

= P(L i
t+1 ∈ A | L i

t = ℓi
t , U i

t = ui
t , Y i

t+1 = yi
t+1)

2. The size of the local information is uniformly bounded,3 i.e., there exists a k such that

for all t and all i ∈ {1, . . . , n}, |Li
t | ≤ k, where Li

t denotes the space of realizations of

L i
t .

An example of partial history sharing is the celebrated k-step delayed sharing (Witsen-

hausen 1971b) information structure. Let J i
t = {Y i

1:t , U i
1:t−1} denote the self information of

controller i . In k-step delay sharing, each controller has access to the k-step delayed self

information of all other controllers, i.e.,

I i
t = J i

t ∪

( n
⋃

j=1
j =i

J
j

t−k

)

, ∀i ∈ {1, . . . , n} .

Another example is k-step periodic sharing, where all controllers periodically share their self

information after every k steps, i.e.,

I i
t = J i

t ∪

( n
⋃

j=1
j =i

J
j

⌊t/k⌋k

)

, ∀i ∈ {1, . . . , n} .

The example described in Sect. 2.5 does not have partial history sharing information structure.

However, if we follow the person-by-person approach of Sect. 5.2 and restrict attention to the

3 This condition is needed to ensure that the information-state is time-homogeneous and, as such, may be
ignored for finite horizon models (Nayyar et al. 2013b).
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information structure ( Ĩ i
t , i ∈ {1, 2}, t = 0, 1, . . .) where Ĩ i

t = {N i
t , H1:t , U 1

1:t−1, U 2
1:t−1},

then the model has partial history sharing information structure.

To identify a dynamic program that determines optimal control strategies for all controllers,

the common-information approach exploits the fact that planning is centralized, i.e., the

control strategies for all controllers are chosen before the system starts running and, therefore,

optimal strategies can be searched in a centralized manner.

The construction of an appropriate dynamic program relies on partial evaluation of a

function defined below.

Definition 3 For any function f : (x, y) �→ z and a value x0 of x , the partial evaluation of

f and x = x0 is a function g : y �→ z such that for all values of y,

g(y) = f (x0, y).

For example, if f (x, y) = x2 + xy + y2, then the partial evaluation of f at x = 2 is

g(y) = y2 + 2y + 4.

The common-information approach proceeds as follows (Nayyar et al. 2013a,b):

1. Construct an equivalent centralized coordinated system. The first step of the common-

information approach is to construct an equivalent centralized stochastic control system

which we call the coordinated system. The controller of this system, called the coordi-

nator, observes the common information Ct and chooses the partially evaluated control

laws gi
t , i ∈ {1, . . . , n}, at Ct . Denote these partial evaluations by Γ i

t and call them

prescriptions. These prescriptions tell the controllers how to map their local informa-

tion information into control actions; in particular U i
t = Γ i

t (L i
t ). The decision rule

ψt : Ct �→ (Γ 1
t , . . . , Γ n

t ) that chooses the prescriptions is called a coordination law and

the choice of ψ = (ψ1, ψ2, . . .) is called a coordination strategy. Note that the prescrip-

tion Γ i
t is a partial evaluation of the control law gi

t at the common information Ct . Hence,

for any coordination strategy ψ = (ψ1, ψ2, . . .), we can construct an equivalent control

strategy gi,∗ = (g
i,∗
1 , g

i,∗
2 , . . .), i ∈ {1, . . . , n} by choosing

g
i,∗
t (ct , ℓ

i ) = ψ
i,∗
t (ct )(ℓ

i ),

where ψ
i,∗
t denotes the i-th component of ψ∗

t . The coordination strategy ψ is equivalent

to the control strategy g∗ in the following sense. For any realization of the primitive

random variables of the system, the reward process in the original system under g∗ has

the same realization as the reward process in coordinated system under ψ . Therefore, the

problem of finding the optimal decentralized control strategy in the original system is

equivalent to that of finding the optimal coordination strategy in the coordinated system.

The coordinated system has only one controller, the coordinator, which has perfect recall;

the controllers of the original system are passive agents that simply use the prescriptions

given by the coordinator. Hence, the coordinated system is a centralized stochastic control

system with the state process {(X t , L1
t , . . . , Ln

t )}∞t=0, the observation process {Ct }
∞
t=0, the

reward process {Rt }
∞
t=0, and the control process {(Γ 1

t , . . . , Γ n
t )}∞t=0.

2. Identify an information state of the coordinated system The coordinated system is

a centralized system in which the control process is a sequence of functions. Let

{Z t }
∞
t=0, Z t ∈ Zt , be any information-state process for the coordinated system.4 Then,

4 For example, the process {πt }
∞
t=0, where πt is the conditional probability measure on (X t , L1

t , . . . , Ln
t )

conditioned on Ct , is always an information-state process.
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by Theorem 1, there is no loss of optimality in restricting attention to coordination laws

of the form

ψt : Z t �→
(

Γ 1
t , . . . , Γ n

t

)

.

Suppose the probability distributions on the right hand side of (1) and (2) are time-

homogeneous, the evolution of Z t is time-homogeneous, and the state space Zt of the real-

izations of Z t is time-invariant, i.e., Zt = Z. Then, by Theorem 2, there exists a time-invariant

coordination strategy ψ∗ = (ψ∗, ψ∗, . . .) where ψ∗ is given by

ψ∗(z) = arg sup
(γ 1,...,γ n)

Q
(

z,
(

γ 1, . . . , γ n
))

, ∀z ∈ Z (15a)

where Q is the unique fixed point of the following set of equations: ∀z ∈ Z and ∀γ =

(γ 1, . . . , γ n)

Q(z, γ ) = E
[

Rt + βV (Z t+1) | Z t = z, Γ 1
t = γ 1, . . . , Γ n

t = γ n
]

, (15b)

V (z) = sup
γ

Q(z, γ ). (15c)

As explained in the previous step, the optimal time-invariant control strategies gi,∗ =

(gi,∗, gi,∗, . . .), i ∈ {1, . . . , n}, for the original decentralized system are given by

gi,∗(z, ℓi ) = ψ i,∗(z)(ℓi )

where ψ i,∗ denotes the i-th component of ψ∗.

Note that step (15c) of the above dynamic program is a functional optimization problem. In

contrast, step (11c) of the dynamic program for centralized stochastic control was a parametric

optimization problem.

Remark 1 The coordinated system and the coordinator described above are fictitious and

used only as a tool to explain the approach. The computations carried out at the coordinator

are based on the information known to all controllers. Hence, each controller can carry out

the computations attributed to the coordinator. As a consequence, it is possible to describe

the above approach without considering a coordinator, but in our opinion thinking in terms

of a fictitious coordinator makes it easier to understand the approach.

6.1 An example

To illustrate this approach, consider the decentralized control example of Sect. 2.5. Start

with the simplified information structure Ĩ i
t = {N i

t , H1:t , U 1
1:t−1, U 2

1:t−1} obtained using the

person-by-person approach. The common information is given by

Ct =
⋂

τ≥t

(

Ĩ 1
τ ∩ Ĩ 2

τ

)

=
{

H1:t , U 1
1:t−1, U 2

1:t−1

}

and the local information is given by

L i
t = Ĩ i

t \ Ct = {N i
t }, ∀i ∈ {1, 2}.

Thus, in the coordinated system, the coordinator observes Ct and uses the coordination law

ψt : Ct �→ (γ 1
t , γ 2

t ), whereγ i
t maps the local information N i

t to U i
t . Note thatγ i

t is completely

specified by Di
t = γ i

t (1) because the constraint U i
t ≤ N i

t implies that γ i
t (0) = 0. Therefore,

we may assume that the coordinator uses a coordination law ψt : Ct �→ (D1
t , D2

t ), Di
t ∈
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{0, 1}, i ∈ {1, 2} and each device then chooses a control action according to U i
t = N i

t Di
t .

The system dynamics and the reward process are same as in the original decentralized system.

Since the coordinator has perfect recall, the problem of finding the best coordination

strategy is a centralized stochastic control problem. To simplify this centralized stochastic

control problem, we need to identify an information state as described in Definition 1.

Let ζ i
t ∈ [0, 1] denote the posterior probability that device i, i ∈ {1, 2} has a packet in its

buffer given the channel feedback, i.e.,

ζ i
t = P

(

N i
t = 1 | H1:t , U 1

1:t−1, U 2
1:t−1

)

, ∀i ∈ {1, 2}.

Moreover, as in the centralized case, let ξt ∈ [0, 1] denote the posterior probability that the

channel is busy given the channel feedback, i.e.,

ξt = P
(

St = 1 | H1:t , U 1
1:t−1, U 2

1:t−1

)

= P (St = 1 | H1:t ) .

One may verify that (ζ 1
t , ζ 2

t , ξt ) is an information state that satisfies (7) and (8). So, there

is no loss of optimality in using coordination laws of the form γ : (ζ 1
t , ζ 2

t , ξt ) �→ (D1
t , D2

t ).

This information state takes values in the uncountable space [0, 1]3. Since each component

ζ 1
t , ζ 2

t , and ξt of the information state is a posterior distribution, we can use the compu-

tational techniques of POMDPs (Zhang 2001; Shani et al. 2013) to numerically solve the

corresponding dynamic program.

However, a simpler dynamic programming decomposition is possible by characterizing

the reachable set of the information state. The reachable set of ζ i
t is given by

R
i :=

{

zi
k | k ∈ Z>0

}

∪ {1} (16a)

where

zi
k := P

(

N i
k = 1 | N i

0 = 0, Di
0:k−1 = (0, . . . , 0)

)

, ∀s ∈ {0, 1}, k ∈ Z>0 (16b)

and the reachable set of ξt is given by Q defined in (12). For ease of notation, define zi
∞ = 1.

Therefore, {(ζ 1
t , ζ 2

t , ξt )}
∞
t=0, (ζ 1

t , ζ 2
t , ξt ) ∈ R1 × R2 × Q, is an alternative information-

state process. In this alternative characterization, the information state is denumerable and

we may use finite-state approximations to solve the corresponding dynamic program (White

1980; Hernández-Lerma 1986; Cavazos-Cadena 1986; Flåm 1987; Sennott 1999).

The dynamic program for this alternative characterization is given below. Let qs,m =

1 − qs,m and zi
k = 1 − zi

k . Then for s ∈ {0, 1} and k, ℓ ∈ Z>0 ∪ {∞} and m ∈ Z>0, we have

that

V
(

z1
k , z2

ℓ, qs,m

)

= max
{

Q00

(

z1
k , z2

ℓ, qs,m

)

, Q10z
(

z1
k , z2

ℓ, qs,m

)

,

Q01

(

z1
k , z2

ℓ, qs,m

)

, Q11

(

z1
k , z2

ℓ, qs,m

) }

(17a)

where Qd1d2(z1
k , z2

ℓ, qs,m) corresponds to choosing the prescription (d1, d2) and is given by

Q00

(

z1
k , z2

ℓ, qs,m

)

= βV
(

z1
k+1, z2

ℓ+1, qs,m+1

)

; (17b)

Q10

(

z1
k , z2

ℓ, qs,m

)

= z1
k qs,m r − z1

k c + β
[

z1
k V (z1

1, z2
ℓ+1, qs,m+1)

+ z1
k qs,m V (z1

1, z2
ℓ+1, q0,1) + z1

k qs,m V (z1
∞, z2

ℓ+1, q1,1)
]

; (17c)

Q01(z
1
k , z2

ℓ, qs,m) = z2
ℓ qs,m r − z2

ℓ c + β
[

z2
ℓV (z1

k+1, z2
1, qs,m+1)

+ z2
ℓ qs,m V (z1

k+1, z2
1, q0,1) + z2

ℓ qs,m V (z1
k+1, z2

∞, q1,1)
]

; (17d)
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Q11(z
1
k , z2

ℓ, qs,m) =
[

z1
k z2

ℓ + z1
k z2

ℓ

]

qs,m r −
[

z1
k + z2

ℓ

]

c + β

[

z1
k z2

ℓV
(

z1
1, z2

1, qs,m+1

)

+
[

z1
k z2

ℓ + z1
k z2

ℓ

]

qs,m V
(

z1
1, z2

1, q0,1

)

+ z1
k z2

ℓqs,m V
(

z1
∞, z2

∞, q0,1

)

+ z1
k z̄2

ℓqs,m V (z1
∞, z2

1, q1,1) + z̄1
k z2

ℓqs,m V
(

z1
1, z2

∞, q1,1

)

+ z1
k z2

kqs,m V
(

z1
∞, z2

∞, q1,1

)

]

. (17e)

The optimal strategies obtained by solving (17) for β = 0.9, α0 = α1 = 0.75, r = 1,

p1 = p2 = 0.3, and c = 0.4 is given by

g∗(z1
k , z2

ℓ, qs,m) =

{

(0, 0), if s = 1 and m ≤ 2

d
(

z1
k , z2

ℓ

)

, otherwise,

where

d(z1
k , z2

ℓ) =

⎧

⎨

⎩

(1, 0), if k > ℓ

(0, 1), if k < ℓ

(1, 0) or (0, 1), if k = ℓ.

Remark 2 As we argued in Sect. 4, if a single dynamic program determines the optimal

control strategies at all controllers, then the step (15c) must be a functional optimization

problem. Consequently, the dynamic program for decentralized stochastic control is signifi-

cantly more difficult to solve than dynamic programs for centralized stochastic control. When

the observation and control processes are finite valued (as in the above example), the space

of functions from L i
t to U i

t are finite and step (15c) can be solved by exhaustively searching

over all alternatives.

Remark 3 As in centralized stochastic control, the information-state in decentralized control

is sensitive to the modeling assumptions. For example, in the above example, if we remove

assumption (A) (which states that the packet-arrival processes at the two devices are inde-

pendent), then the conditional independence in (14) is not valid; therefore, we cannot use the

person-by-person approach to show that {N i
t , U 1

1:t−1, U 2
1:t−1, H1:t }

∞
t=0 is an information state

for controller i . In the absence of this result, the information structure is not partial history

sharing. So, we cannot identify a dynamic program for the infinite horizon problem.

7 Conclusion

Decentralized stochastic control gives rise to new conceptual challenges as compared to

centralized stochastic control. There are two solution methodologies to overcome these chal-

lenges: (1) the person-by-person approach and (2) the common-information approach. The

person-by-person approach provides the structure of globally optimal control strategies and

coupled dynamic programs that determine person-by-person optimal control strategies. The

common-information approach provides the structure of globally optimal control strategies as

well as a dynamic program that determines globally optimal control strategies. A functional

optimization problem needs to be solved to solve the dynamic program.

In practice, both the person-by-person approach and the common information approach

need to be used in tandem to solve a decentralized stochastic control problem. For example,

in the example of Sect. 2.5 we first used the person-by-person approach to simplify the

information structure of the system and then used the common-information approach to find
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a dynamic programming decomposition. Neither approach could give a complete solution

on its own. A similar tandem approach has been used for simplifying specific information

structures (Mahajan 2013), real-time communication (Walrand and Varaiya 1983), networked

control systems (Mahajan and Teneketzis 2009).

Therefore, a general solution methodology for decentralized stochastic control is as fol-

lows.

1. Use the person-by-person approach to simplify the information structure of the system.

2. Use the common-information approach on the simplified information structure to identify

an information-state process for the system.

3. Obtain a dynamic program corresponding to the information-state process.

4. Either obtain an exact analytic solution of the dynamic program (as in the centralized

case, this is possible only for very simple models), or obtain an approximate numerical

solution of the dynamic program (as was done in the example above), or prove qualitative

properties of optimal solution.

This approach is similar to the general solution approach of centralized stochastic control,

although the last step is significantly more difficult.

The above methodology applies only to systems with partial-history sharing and to systems

that reduce to partial-history sharing by a person-by-person approach. Identifying solution

techniques for other subclasses of decentralized stochastic control remains an active area of

research.

Acknowledgments The authors are grateful to A. Nayyar, D. Teneketzis, and S. Yüksel for useful discus-
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