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Sufficient statistics for linear control strategies in

decentralized systems with partial history sharing
Aditya Mahajan and Ashutosh Nayyar

Abstract—In decentralized control systems with linear dy-
namics, quadratic cost, and Gaussian disturbance (also called
decentralized LQG systems) linear control strategies are not
always optimal. Nonetheless, linear control strategies are ap-
pealing due to their analytic and implementation simplicity.
In this paper, we investigate decentralized LQG systems with
partial history sharing information structure and identify finite-
dimensional sufficient statistics for such systems. Unlike prior
work on decentralized LQG systems, we do not assume partially
nestedness or quadratic invariance. Our approach is based
on the common information approach of Nayyar et al, 2013
and exploits the linearity of the system dynamics and control
strategies. To illustrate our methodology, we identify sufficient
statistics for linear strategies in decentralized systems where
controllers communicate over a strongly connected graph with
finite delays, and for decentralized systems consisting of coupled
subsystems with control sharing or one-sided one step delay
sharing information structures.

I. INTRODUCTION

With the increasing applications of networked control sys-

tems, the problem of finding the best linear control strategy

for decentralized systems with linear dynamics, quadratic cost,

and Gaussian disturbances (henceforth referred to as decen-

tralized LQG systems) has received considerable attention in

recent years [1] (and references therein).

In centralized LQG systems, linear control strategies are

globally optimal, the best linear control strategies can be com-

puted by backward Riccati recursions, the best linear control is

a function of the controller’s estimate of the state of the plant

and this estimate is updated using Kalman filtering equations.

In contrast, the problem of finding the best linear control

strategies for decentralized LQG systems has the following

salient features:

1) In general, linear control strategies are not globally

optimal, i.e., there may exist non-linear control strategies

that outperform linear strategies as is illustrated by

the Witsenhausen counterexample [2] and memoryless

control in Gaussian noise [3]. Linear strategies are

globally optimal only when the control problem has

specific information structures such as static [4], par-

tially nested [5], or stochastically nested [6] information

structures and their variations.

2) In general, the problem of finding the best linear control

strategies is not convex. It may be converted to a convex

model matching problem only when the sparsity pattern

of the plant and the controller have specific structure

such as funnel causality [7] or quadratic invariance [8]

and their variations.

3) In general, the best linear control strategy may not have

a finite-dimensional sufficient statistic, i.e., it may not

be possible to represent the best linear controller by a

finite set of estimates that are generated by recursions of

finite order as is illustrated by the two controller com-

pletely decentralized system considered in [9]. The best

linear strategies are known to have a finite-dimensional

sufficient statistic only for specific examples [10]–[18].

Note that all of these examples have partially nested

information structure and some of these examples have

quadratic invariant sparsity structure. It is generally

believed that the best linear control strategies in partially

nested and quadratic invariant systems will have finite-

dimensional sufficient statistic.

In this paper, we investigate the third aspect of decen-

tralized LQG systems described above, viz., whether finite-

dimensional sufficient statistics for linear control strategies can

be identified for some subclass of decentralized LQG systems.

In particular, we investigate decentralized LQG systems with

partial history sharing information structure [19], which is a

generalization of several well-known information structures of

decentralized control. The partial history sharing model, in

general, is not partially nested or quadratic invariant. Our main

results for this model are presented in Section III and can be

summarized as follows:

1) we identify finite-dimensional sufficient statistics for the

best linear control strategy; and

2) we show that the update equation of these sufficient

statistics is similar to Kalman filter updates.

In Section IV, we apply these results to decentralized

control systems in which the controllers communicate along

a strongly connected graph with finite delay between any pair

of controllers. In Section V, we show that these results can

also be applied to problems that do not directly conform to

the partial history sharing model but can be converted to

problems with partial history sharing by using a person-by-

person approach.

To the best of our knowledge, these are the first results on

sufficient statistics for best linear strategies in decentralized

LQG systems that are neither partially nested nor quadratic

invariant. Our results suggest that the form of the sufficient

statistics is a consequence of linearity of system dynamics and

control strategies rather than partial nestedness or quadratic

invariance of the information structure.

Our solution methodology is based on the common informa-

tion approach developed in [20] and used in [19] for decentral-

ized control systems with partial history sharing. However, our
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results cannot be derived directly using the results of [19]. For

a general decentralized system with partial history sharing, the

results of [19] provide the structure of globally optimal control

strategies and a dynamic programming decomposition. In this

paper, we exploit linearity (of control strategies and of the

underlying decentralized system) to address only the problem

of finding the structure of best linear strategy. We do not

address the problem of computing the best linear strategy. This

narrower focus allows us to get simpler results than in [19].

Even with finite-dimensional sufficient statistics, the prob-

lem of computing the best linear strategies is, in general,

a non-convex optimization problem. Nonetheless, when the

system is either partially nested or quadratic invariant, it

may be possible to use finite-dimensional sufficient statistics

to compute best linear or globally optimal strategies. For

example, an approach similar to ours was used in [18] to

identify sufficient statistics for best linear control strategies

(that were also globally optimal) for a two player decentralized

LQG team that is partially nested and quadratic invariant. The

authors of [18] then exploited the partially nested nature of

the system to identify explicit expressions for the best linear

control strategies.

Notation

Uppercase letters denote random variables/vectors and low-

ercase letters denote their realization. Bold uppercase letters

denote matrices. P(·) denotes the probability of an event and

E[·] denotes the expectation of a random variable. R denotes

the set of real numbers.

For a sequence of (column) vectors X , Y , Z, . . . , the nota-

tion vec(X,Y, Z, . . . ) denotes the vector [X⊺, Y ⊺, Z⊺, . . . ]⊺.

The vector vec(X1, . . . , Xt) is also denoted by X1:t.

The notation A = diag(B,C,D) denotes a block diagonal

matrices with blocks B, C, and D on the diagonal. A⊺ denotes

the transpose of a matrix and Tr[A] denotes the trace of a

matrix.

The notation 0n×m denotes a n × m all zeros matrix; 0n

is a short-hand for 0n×n; In denotes a n× n identity matrix.

We omit the subscripts when dimensions can be inferred from

context.

For any two random vectors X and Y , we say that X is

a sub-vector of Y , and denote it by X ⊂ Y , if the set of

all components of X is a subset of the set of all components

of Y . More formally, X ⊂ Y if there exists a row-stochastic

binary matrix P (i.e., all its elements are 0 or 1 and each row

has a single 1) such that X = PY .

II. PROBLEM FORMULATION

A. Model

Consider a linear dynamic system with n controllers and a

partial history sharing information structure [19]. We follow

the same notation as [19] and, for completeness, restate the

model below.

The system operates in discrete time for a horizon T . Let

Xt ∈ R
dx denote the state of the system at time t, U i

t ∈ R
di
u

denote the control action of controller i, i = 1, . . . , n at time

t, and Ut denote the vector vec(U1
t , . . . , U

n
t ).

The initial state X1 has a Gaussian probability distribution

N (0,Σx) and evolves according to

Xt+1 = AtXt +BtUt +W 0
t (1)

where At and Bt are matrices of appropriate dimensions and

{W 0
t }

T
t=1 is a sequence of i.i.d. zero-mean Gaussian random

variables with probability distribution N (0,Σw0).
As in [19], at any time t, each controller has access to

three types of data: the current observation Y i
t , the local

memory M i
t , and the shared memory Z1:t−1. The details of

the information structure will be described later. We use Yt to

denote vec(Y 1
t , . . . , Y

n
t ) and Mt to denote vec(M1

t , . . . ,M
n
t ).

We restrict attention to linear control strategies and assume

that controller i’s strategy is of the form:

U i
t = Ki

tZ1:t−1 +Gi
tY

i
t +Hi

tM
i
t (2)

where Ki
t, G

i
t, and Hi

t are matrices of appropriate dimensions.

The collection of {(Ki
t,G

i
t,H

i
t)}

T
t=1 is referred to as the

control strategy of controller i.

Combining (2) for all controllers, we get

Ut = KtZ1:t−1 +GtYt +HtMt, (3)

where Kt = [K1 ⊺
t | · · · | Kn ⊺

t ]⊺, Gt = diag(G1
t , . . . ,G

n
t )

and Ht = diag(H1
t , . . . ,H

n
t ).

At time t, the system incurs a quadratic cost ℓt(Xt, Ut)
given by

ℓt(Xt, Ut) = X
⊺
t QtXt + U

⊺
t RtUt (4)

where Qt is a positive semi-definite matrix and Rt is a positive

definite matrix of appropriate dimensions.

We are interested in choosing control strategies of all

controllers to minimize

E

[

T
∑

t=1

ℓt(Xt, Ut)
]

, (5)

where the expectation is with respect to the joint probability

measure on (X1:T , U1:T ) induced by the choice of the control

strategies.

B. Partial history sharing information structure

As described earlier, controller i has access to three types

of data at time t: the current observation Y i
t , the local

memory M i
t , and the shared memory Z1:t−1. These variables

are given as follows:

1) The current local observation Y i
t ∈ R

di
y of controller i

is given by

Y i
t = Ci

tXt +W i
t (6)

where Ci
t is a matrix of appropriate dimensions and

{W i
t }

T
t=1 is a sequence of i.i.d. zero-mean Gaussian ran-

dom variables with probability distribution N (0,Σwi).
The random variables in the collection {X1,W

j
t , t =

1, . . . , T, j = 0, 1, . . . , n}, called primitive random vari-

ables, are mutually independent. Combining (6) for all

controllers, we get

Yt = CtXt +W 1:n
t ,
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where W 1:n
t = vec(W 1

t , . . . ,W
n
t ) and Ct = [C1 ⊺

t |
· · · | Cn ⊺

t ]⊺.

2) The local memory M i
t ∈ R

di
m of controller i is a subset

of the history of its local observations and actions:

M i
t ⊂ {Y i

1:t−1, U
i
1:t−1}. (7)

At t = 1, the local memory is empty, which we will

represent by the convention M i
1 := 0.

Let dy = d1y + · · · + dny and dm = d1m + · · · + dnm, so

that Yt ∈ R
dy and Mt ∈ R

dm .

3) In addition, all controllers have access to a shared

memory Z1:t−1, where Zt = vec(Z1
t , . . . , Z

n
t ). The

shared memory Z1:t−1 is a subset of the history of

observations and actions of all controllers:

Z1:t−1 ⊂ {Y1:t−1, U1:t−1}. (8)

At t = 1, the shared memory is empty, Z0 := 0; at each

time Zt ∈ R
dz . We will refer to the shared memory as

the common information among the controllers.

The local and shared memories are updated as follows:

after taking the control action at time t, controller i sends

a subvector Zi
t of its local information {M i

t , Y
i
t , U

i
t} to the

shared memory. We assume that the protocol of choosing the

subset Zi
t is pre-specified. After sending data Zi

t to the shared

memory, controller i updates its local memory according to a

pre-specified protocol such that M i
t+1 ⊂ {M i

t , Y
i
t , U

i
t} \ Zi

t ,

which ensures that the contents of the local and shared

memories do not overlap.

The process of generating the new local memory M i
t+1 and

Zi
t described above can be written in terms of the following

equations:

M i
t+1 = Pi

mm,tM
i
t +Pi

my,tY
i
t +Pi

mu,tU
i
t (9)

and

Zi
t = Pi

zm,tM
i
t +Pi

zy,tY
i
t +Pi

zu,tU
i
t , (10)

where Pi
∗∗,t are matrices that satisfy the following properties:

A1. Each entry of Pi
∗∗,t is either 0 or 1.

A2. The matrix
[

Pi
mm,t Pi

my,t Pi
mu,t

Pi
zm,t Pi

zy,t Pi
zu,t

]

is doubly stochastic (that is, each row and column sum

is 1).

Note that the Pi
∗∗,t matrices are specified a priori based on

the memory update protocols of the system. Also note that

properties A1 and A2 are a consequence of these memory

update protocols. We refer the reader to [19] for several

examples of partial history sharing information structures.

Combining (9) for all controllers, we get

Mt+1 = Pmm,tMt +Pmy,tYt +Pmu,tUt (11)

where Pmm,t = diag(P1
mm,t, . . . ,P

n
mm,t), Pmy,t =

diag(P1
my,t, . . . ,P

n
my,t), Pmu,t = diag(P1

mu,t, . . . ,P
n
mu,t).

Similarly, combining (10) for all controller gives

Zt = Pzm,tMt +Pzy,tYt +Pzu,tUt (12)

where Pzm,t = diag(P1
zm,t, . . . ,P

n
zm,t), Pzy,t =

diag(P1
zy,t, . . . ,P

n
zy,t), Pzu,t = diag(P1

zu,t, . . . ,P
n
zu,t).

An example of the above model is the delayed sharing

information structure [21], in which the shared memory con-

sists of k steps old observations and control actions of all

controllers, i.e., Z1:t−1 = vec(Y1:t−k, U1:t−k) and the local

memory consists of the observations and actions taken at

t−k+1, . . . , t−1, i.e., M i
t = vec(Y i

t−k+1:t−1, U
i
t−k+1:t−1). In

particular, when the delay k = 2, then M i
t = vec(Y i

t−1, U
i
t−1),

Zi
t = vec(Y i

t−1, U
i
t−1), and the equations for generating M i

t+1

and Zi
t can be written as

M i
t+1 = 0M i

t +

[

I

0

]

Y i
t +

[

0

I

]

U i
t

and

Zi
t = IM i

t + 0Y i
t + 0U i

t .

C. Generalized partial history sharing information structure

We now describe the generalized version of the partial

history sharing information structure. As in the original partial

history sharing model, controller i has access to three types

of data at time t: the current observation Y i
t , a shared

memory Z1:t−1 that is available to all controllers, and a local

memory M i
t with M i

1 := 0 and Z0 := 0. The difference

between the original model and the generalized one lies in

the memory update rules. In the partial history sharing model,

the local and shared memories are updated according to (11)

and (12), where P∗∗,t are block diagonal matrices and Pi
∗∗,t

satisfy properties A1 and A2. In generalized partial history

sharing information structure, the local and shared memory

update rules still satisfy (11) and (12), but we allow P∗∗,t

to be arbitrary matrices. We will describe examples of this

information structure in Section IV.

Remark 1 In some cases, the local memory M i
t is always

empty. In such systems, the update equations (9)-(12) can be

replaced by

Zi
t = Pi

zy,tY
i
t +Pi

zu,tU
i
t , (13)

Zt = Pzy,tYt +Pzu,tUt. (14)

✷

D. Problem formulation and main result

We are interested in the problem of finding the best linear

control strategies. Specifically:

Problem (P1) For the model described above, given hori-

zon T , the matrices At, Bt, Ci
t, Qt, Rt, the covariance

matrices Σx, Σwi , and the protocols for updating the local

and shared memory, find a control strategy of the form (2)

that minimizes the expected total cost given by (5).

One of the difficulties for Problem (P1) is that the shared

memory Z1:t−1 available to all controllers is increasing with

time; consequently, the size of the gain matrices Kt in (3) is

increasing as well. Our main result is to identify an appropriate

sufficient statistic S̆t of Z1:t−1 that has the same dimension

as vec(Xt,Mt).
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Main Result In Problem (P1), the best linear control strate-

gies are of the form

Ut = K̃tL̃tS̆t +GtYt +HtMt, (15)

where S̆t = (X̂t, M̂t) is a common information based estimate

given by

S̆t = E[vec(Xt,Mt) | Z1:t−1].

S̆t evolves according to a Kalman filtering recursion given

in Lemma 2. The matrices {L̃t}
T
t=1 are given by L̃t =

[

Idx 0dx×dm

Ct 0dy×dm

0dm×dx Idm

]

, and the matrices {K̃t}
T
t=1 are determined

off-line by a backward Riccati recursion given in Theorem 1.

E. Salient features of the result

The above structural result shows that in the best linear

strategy, the control action at each time depends on the current

local observation, the current local memory, and a common

information based estimate of the system state and the local

memories of all controllers. Thus, the sufficient statistic is

finite dimensional.

Unlike prior work on structural results for decentralized

control problems, our result relies on the linearity of the

decentralized system and of the control strategies; and not on

partial nestedness or quadratic invariance.

The result basically follows from two simple observations:

(i) under linear strategies, control actions can be viewed as

superposition of two components—a local information based

component and a common information based component; and

(ii) once the matrices for calculating the local information

based component have been fixed, the problem of choosing

the common information based component reduces to a cen-

tralized LQG problem. The details are presented in the next

section.

III. PROOF OF THE MAIN RESULT

The main idea of the proof is as follows. Arbitrarily fix

the matrices (G1:T ,H1:T ) and consider the sub-problem of

finding the best choice of matrices K1:T to minimize the total

expected cost given by (5). We argue that the resulting sub-

problem is a centralized stochastic control problem for which

S̆t is a sufficient statistic, thereby establishing the main result.

A. A sub-problem and the induced centralized system

Following [19], we introduce a new decision maker—the co-

ordinator—that sequentially observes the common information

process {Zt}
T
t=1 and chooses actions Ũt = vec(Ũ1

t , . . . , Ũ
n
t )

where

Ũ i
t = Ki

tZ1:t−1. (16)

The controllers of the original system are passive agents that

generate U i
t according to

U i
t = Ũ i

t +Gi
tY

i
t +Hi

tM
i
t . (17)

Combining (16) and (17) for all i, we get

Ũt = KtZ1:t−1, (18)

Ut = Ũt +GtYt +HtMt; (19)

where Gt and Ht are block diagonal matrices and Kt is a

stacked matrix as defined earlier in (3).

As in [19], the optimization problem at the coordinator is

equivalent to a partially observed centralized stochastic control

problem, which we call the coordinated system. Define the

state X̃t and the observation Ỹt of this coordinated system as:

X̃t = vec(Xt, Yt,Mt), (20)

Ỹt = Zt−1. (21)

Then the control action Ũt of this system is chosen according

to (18) which is a linear function of the observation history.

The coordinated system is a centralized system LQG system

with linear dynamics, linear observations, quadratic cost, and

Gaussian disturbance. In particular:

1) The coordinated system has linear dynamics which may

be written as

X̃t+1 = ÃtX̃t + B̃tŨt + F̃tWt (22)

where Wt = vec(W 0
t ,W

1
t+1, . . . ,W

n
t+1), and Ãt, B̃t,

and F̃t are matrices of appropriate dimensions that are

obtained by combining (1), (6), (11), (18), and (19) and

are given by

Ãt =





At BtGt BtHt

Ct+1At Ct+1BtGt Ct+1BtHt

0 Pmy,t +Pmu,tGt Pmm,t +Pmu,tHt



 ,

(23)

B̃t =





Bt

Ct+1Bt

Pmu,t



 , and F̃t =





I 0

0 I

0 0



 ; (24)

where the blocks in the first column of F̃t have

dimensions compatible with W 0
t and the blocks in

the second column have dimensions compatible with

vec(W 1
t , . . . ,W

n
t ).

2) The observations are linear in the state and the control

and may be written as

Ỹ1 = 0, (25)

Ỹt = C̃tX̃t−1 + D̃tŨt−1, t > 1; (26)

where C̃t and D̃t are matrices of appropriate dimensions

given by

C̃t =
[

0 Pzy,t−1 +Pzu,t−1Gt−1 Pzm,t−1 +Pzu,t−1Ht−1

]

,

(27)

D̃t = Pzu,t−1. (28)

3) The per-step cost is quadratic in the state and control

action and may be written as

ℓt(Xt, Ut) = ℓ̃t(X̃t, Ũt) =
[

X̃
⊺
t Ũ

⊺
t

]

[

Q̃t Ñt

Ñ
⊺
t R̃t

] [

X̃t

Ũt

]

(29)
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where Q̃t, Ñt, R̃t are obtained by combining (4)

and (19) and are given by

Q̃t =





Qt 0 0

0 G
⊺
t
RtGt G

⊺
t
RtHt

0 H
⊺
t
RtGt H

⊺
t
RtHt



 , (30)

Ñt =





0

G
⊺
t
Rt

H
⊺
t
Rt



 , and R̃t = Rt. (31)

Recall that we assumed that (G1:T ,H1:T ) are fixed. The

auxiliary matrices Ãt, C̃t, Q̃t and Ñt defined above depend

on Gt and Ht.

B. Structure of the optimal controller

The coordinated system defined above is a centralized par-

tially observed LQG system. Therefore, from standard results

in linear stochastic control [22], the state estimate can be

computed recursively as follows.

Lemma 1 Define X̆t as the coordinator’s estimate of the state

X̃t given by

X̆t = E[X̃t | Ỹ1:t, Ũ1:t−1]

The initial value of the state estimate is given by X̆1 = 0. For

t > 1, the state estimate may be updated as follows

X̆t+1 = ÃtX̆t + B̃tŨt + ÃtP̃tC̃
⊺
t+1[C̃t+1P̃tC̃

⊺
t+1]

−1(Ỹt+1

− C̃t+1X̆t − D̃t+1Ũt) (32)

where

P̃t = E[(X̃t − X̆t)(X̃t − X̆t)
⊺ | Ỹ1:t, Ũ1:t−1],

which may be computed a priori by solving the following

forward Riccati recursion:

P̃1 = diag(Σx,0dy×dy
,0dm×dm

), (33)

P̃t+1 = ÃtP̃tÃ
⊺
t + Σ̃W

− ÃtP̃tC̃
⊺
t+1[C̃t+1P̃tC̃

⊺
t+1]

−1C̃t+1P̃tÃ
⊺
t ; (34)

where dy =
∑n

i=1 d
i
y , dm =

∑n

i=1 d
i
m, and Σ̃W is the

covariance of F̃tWt which is given by

diag(Σw0 ,Σw1 , . . . ,Σwn ,0)

where 0 is a square matrix of dimension same as Mt. ✷

It is possible to replace X̆t by a lower-dimensional estimate.

Let

Psx =

[

Idx
0dx×dy

0dx×dm

0dm×dx
0dm×dy

Idm

]

and

L̃t =





Idx
0dx×dm

Ct 0dy×dm

0dm×dx
Idm



 .

Then, we have the following.

Lemma 2 Define

S̆t = E[vec(Xt,Mt) | Z1:t−1, Ũ1:t−1].

Then

S̆t = PsxX̆t and X̆t = L̃tS̆t. (35)

Furthermore, the initial value S̆1 = 0. For t > 1, the estimate

may be updated as follows:

S̆t+1 = Psx

[

ÃtL̃tS̆t + B̃tŨt+

ÃtP̃tC̃
⊺
t+1[C̃t+1P̃tC̃t+1]

−1(Ỹt+1−C̃t+1L̃tS̆t−D̃t+1Ũt)
]

.

(36)

✷

PROOF Eq. (35) is an immediate consequence of the definition

of X̆t and S̆t. Combining (35) with (32) gives (36). �

Theorem 1 In the coordinated system described in Sec-

tion III-A, the optimal action of the coordinator is given by

Ũt = K̃tL̃tS̆t (37)

where the gain matrices {K̃t}
T
t=1 are given by

K̃t = −[R̃t + B̃
⊺
t St+1B̃t]

−1Λt

where

Λt = Ñ
⊺
t + B̃

⊺
t St+1Ãt

and the matrices {St}
T
t=1 are given by backward Riccati

recursion:

ST = Q̃T ,

St = Ã
⊺
t St+1Ãt + Q̃t −Λ

⊺
t [R̃t + B̃

⊺
t St+1B̃t]

−1Λt.

The total cost of the above strategy is given by

J =

T−1
∑

t=1

Tr[P̃tQ̃t+(Σ̃W+ÃtP̃tÃ
⊺
t−P̃t+1)St+1]+Tr[P̃T Q̃T ]

+ Tr[diag(Σx,C1ΣxC
⊺
1 + diag(Σw1 , . . . ,Σwn),0)S1].

(38)

✷

(Note that the matrices (K̃1:T ,S1:T , P̃1:T ) obtained in this

section depend on the choice of the matrices (G1:T ,H1:T ). )

PROOF Since the coordinated system is a centralized partially

observed LQG system, the coordinator’s state estimate X̆t

is a sufficient statistic. Hence, the optimal strategy for the

coordinator is of the form Ũt = K̃tX̆t, where K̃t is computed

according to standard results in linear stochastic control [22].

(37) then follows from (35). �

Since any linear strategy in the coordinated system can be

implemented in the original system and vice versa, the above

result gives the following structure of best linear strategies in

the original system.

Theorem 2 In Problem (P1), the best linear control strategies

are of the form

Ut = Ũt +GtYt +HtMt

= K̃tL̃tS̆t +GtYt +HtMt. (39)

where Gt = diag(G1
t , . . . ,G

n
t ), Ht = diag(H1

t , . . . ,H
n
t ),

S̆t = vec(X̂t, M̂t) = E[vec(Xt,Mt) | Z1:t−1, Ũ1:t−1],
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and the evolution of S̆t, the gain matrices K̃t and the system

performance are the same as in Lemma 2 and Theorem 1. ✷

Remark 2 Let K̃t = [K̃1 ⊺
t | · · · | K̃n ⊺

t ]⊺. Then, the control

action of each controller may be written as

U i
t = K̃i

tL̃tS̆t +Gi
tY

i
t +Hi

tM
i
t .

Note that each controller is using its local information

(Y i
t ,M

i
t ) and an estimate S̆t based on the common infor-

mation Z1:t−1. Since this structure holds for any choice of

G1:T ,H1:T , we say that S̆t serves as a sufficient statistic in

place of the entire common information Z1:t−1. ✷

Remark 3 Note that for a given choice of (G1:T ,H1:T ),
Theorem 1 identifies the optimal K̃t matrices and the as-

sociated cost. To emphasize the dependence of matrices

K̃1:T on the choice of (G1:T ,H1:T ), we use the notation

K̃1:T (G1:T ,H1:T ) for the optimal K̃t identified in Theorem 1.

We can also write the total cost achieved by the gain matrices

identified in Theorem 1 as a function of (G1:T ,H1:T ) and

K̃1:T (G1:T ,H1:T ):

Optimal cost for a given (G1:T ,H1:T )

= J(G1:T ,H1:T , K̃1:T (G1:T ,H1:T )).

In order to find the best linear strategy, we need to optimize the

the above function with respect to (G1:T ,H1:T ) — which may

be a non-convex optimization problem due to the complicated

dependence of the matrices K̃1:T on (G1:T ,H1:T ). ✷

C. Generalization to models with common observations

In some cases, in addition to the shared memory, controllers

may also have a common observation Y com

t about the state of

the system given as

Y com

t = Ccom

t Xt +W com

t ,

where W com

t , t = 1, 2, . . . , T is a sequence of i.i.d. Gaussian

variables that are independent of the all the other primitive ran-

dom variables. Each controller can select its action according

to a linear control law of the form

U i
t = git(Y

i
t ,M

i
t , Z1:t−1, Y

com

1:t ).

The methodology of Theorem 1 can easily be adapted for

this model by allowing the coordinator to choose action Ũt =
vec(Ũ1

t , . . . , Ũ
n
t ) based on the shared memory and the history

of common observations. That is,

Ũ i
t = Ki

t vec(Z1:t−1, Y
com

1:t ). (40)

Following the same arguments as before, the coordinator’s

problem once again becomes a classical LQG problem, thus

establishing the result of Theorem 1 for this case with S̆t now

defined as

S̆t = E[(Xt,Mt) | Z1:t−1, Y
com

1:t , Ũ1:t−1]

D. Comparison with [19]

For decentralized control system with partial history sharing

information structure, it is shown in [19] that the sufficient

statistic of the shared memory Z1:t−1 is given by the posterior

probability distribution on (Xt,Mt). In contrast, the result of

Theorem 1 shows that when attention is restricted to linear

strategies, the sufficient statistic is given by the conditional

mean S̆t of (Xt,Mt). Our result is consistent with that of [19]

because under linear strategies, the posterior probability dis-

tribution is Gaussian and is completely characterized by the

conditional mean and covariance. The conditional covariance

is data independent and is computed off-line using (33)

and (34).

Although the methodology used in proving Theorem 1

and the solution methodology of [19] are similar, it is not

possible to derive the result of Theorem 1 by directly using

the results of [19]. In [19], the coordinator solves a global

optimization problem to determine how controllers should use

their local information. On the other hand, to prove the result

of Theorem 1, we arbitrarily fix the components of the control

laws that use the local information and then find the structure

of the best response strategies at the coordinator.

In contrast to the approach of [19] which gives the structure

of globally optimal control laws and a dynamic programming

decomposition, our approach only gives the structure of best

linear control laws. It is not possible, in general, to use our

approach to compute the best linear control laws. The question

whether the approach proposed in this paper simplifies for

partially nested information structures warrants further inves-

tigation.

IV. DELAYED SHARING INFORMATION STRUCTURE

In this section, we illustrate our results using the specific

example of delayed sharing information structures. We con-

sider two cases: (i) one with symmetric delays where the

observations and actions of any controller are available to all

other controllers after a delay of k time steps and (ii) the

asymmetric delay case where the communication delay from

controller j to controller i is kij < ∞.

A. Symmetric delays

In delayed sharing information structure, each controller’s

observations and control actions are shared with all other

controllers after a delay of k ≥ 1 time steps [21]. The system

dynamics, local observations, and cost function are the same

as in Section II-A.

In the language of partial history sharing model, the shared

memory in this case consists of all observations and control

actions that are at least k time-steps old, that is, Z1:t−1 =
vec(Y 1

1:t−k, U
1
1:t−k, . . . , Y

n
1:t−k, U

n
1:t−k); and the local memory

consists of the observations and actions taken from time t−k+
1 to t−1, that is, M i

t = vec(Y i
t−1, U

i
t−1, . . . , Y

i
t−k+1, U

i
t−k+1).

Note that for k = 1, M i
t is empty.

Therefore, the result of Theorem 1 applies to this model

with
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• the Pi
∗∗ matrices in the memory update equations (9) and

(10) are given by

Pi
mm,t =





0di
y×di

m

0di
u×di

m

I(k−2)(di
y+di

u)
0(k−2)(di

y+di
u)×(di

y+di
u)



 ,

Pi
my,t =





Idi
y

0di
u×di

y

0(k−2)(di
y+di

u)×di
y



 ,

Pi
mu,t =





0di
y×di

u

Idi
u

0(k−2)(di
y+di

u)×di
u



 ,

Pi
zm,t =

[

0(di
y+di

u)×(k−2)(di
y+di

u)
I(di

y+di
u)

]

,

and Pi
zy,t = 0 and Pi

zu,t = 01.

• and the estimate of Theorem 1 as

S̆t = E[vec(Xt,Mt) | Y1:t−k, U1:t−k, Ũ1:t−1].

Recall that the evolution of the sufficient statistic S̆t depends

on the choice of matrices (G1:T ,H1:T ) in the control strategy.

Such a dependence is also present in the sufficient statistic

for optimal control laws for the general delayed sharing

model [21]. Hence, restricting attention to linear control strate-

gies does not lead to a two-way separation of estimation and

control in delayed sharing information structures.

An alternative sufficient statistic for delayed-sharing model

is given as follows:

Corollary 1 For the symmetric delay sharing model, Ũt in

Theorems 1 and 2 can be written as a linear function of

St = vec(X̂t−k+1|t−k, Ũt−k+1:t−1, Yt−2k+2:t−k, Ut−2k+2:t−k),

(41)

where

X̂t−k+1|t−k = E[Xt−k+1 | Y1:t−k, U1:t−k].

Furthermore, X̂t+1|t is updated according to:

X̂1|0 = 0, (42)

X̂t+1|t = AtX̂t|t−1 +BtUt

+AtPtC
⊺
t [CtPtC

⊺
t +Σw]

−1(Yt −CtX̂t|t−1); (43)

where Σw = diag(Σw1 , . . . ,Σwn) and Pt = E[(Xt −
X̂t|t−1)(Xt − X̂t|t−1)

⊺ | Y1:t−1, U1:t−1], which can be pre-

computed as follows:

P1 = Σx;

Pt+1 = AtPtA
⊺
t +Σw0

−AtPtC
⊺
t [CtPtC

⊺
t +Σw]

−1CtPtA
⊺
t . ✷

See Appendix A for a proof. Corollary 1 shows that St is a

sufficient statistic for (Y1:t−k, U1:t−k). This sufficient statistic

consists of three parts:

1) A strategy-independent k−1 step window (Yt−2k+2:t−k,

Ut−2k+2:t−k) of the history of observations and actions

that are available to all controllers.

1For k = 1, Pi
∗m,t is undefined and P

i
zy,t = I and P

i
zu,t = I.

2) A strategy-independent estimate of the k-step delayed

state Xt−k+1 based on the history of common infor-

mation. Note that the update of X̂t−k+1|t−k does not

depend on the matrices (G1:T ,H1:T ).
3) A strategy-dependent k − 1 step window of the history

of coordinated control actions Ũt−k+1:t−1.

This structure is similar to the optimal controller derived

in [21, second structural result].

For the special case of one-step delay sharing (delay k = 1),

the result of Corollary 1 simplifies as follows.

Corollary 2 For the one-step delay sharing model (sharing

delay k = 1), the sufficient statistic St of Corollary 1 is given

by St = X̂t|t−1, where X̂t|t−1 and its evolution is defined

in Corollary 1. Thus, Ũt in Theorem 1 and 2 can be written

as a linear function of X̂t|t−1; hence, the control action U i
t

of controller i can be written as a linear function of X̂t|t−1

and Y i
t . ✷

Corollary 2 is equivalent to the result obtained in [10], [11].

Note that a key conceptual simplification for the one-step

delay sharing is that the sufficient statistic St is strategy inde-

pendent. A similar simplification was shown for the general

delayed sharing model in [21].

B. Asymmetric delays

In this model, controller i observes the observations and

control actions of controller j with a delay of kij < ∞. The

information available to controller i at time t consists of

Iit = {Y i
1:t, U

i
1:t−1} ∪

⋃

j 6=i

{Y j
1:t−kij

, U
j
1:t−kij

}.

All delays are finite. For convenience, define kii := 1. Then,

the information available to controller i at time t can be written

as

Iit = {Y i
t } ∪

n
⋃

j=1

{Y j
1:t−kij

, U
j
1:t−kij

}.

This information structure arises when controllers com-

municate along a strongly connected graph with finite delay

between any pair of controllers. The system dynamics, local

observations, and cost function are the same as in Section II-A.

Similar models have been considered in [23]–[28]. Note that

unlike these models, we do not assume any sparsity structure

on the matrices At,Bt and Ct in the system model.

2

1 3

1 1

2

Fig. 1. An example of a system with asymmetric delayed sharing. The number
on the arrows denote the delay in flow of information.

Such a model has the generalized partial history shar-

ing information structure. As an illustration, consider the 3
controller system shown in Figure 1. Controllers 1 and 2
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share information with 1-step delay, controllers 2 and 3 share

information with 1-step delay but controllers 1 and 3 share

information with 2-step delay, that is,

k12 = k21 = 1, k23 = k32 = 1, k13 = k31 = 2.

The shared memory at time t is given by

Z1:t−1 = vec(Y 1
1:t−2, U

1
1:t−2, Y

2
1:t−1, U

2
1:t−1, Y

3
1:t−2, U

3
1:t−2);

the local memories are

M1
t = vec(Y 1

t−1, U
1
t−1),

M2
t = vec(Y 1

t−1, U
1
t−1, Y

3
t−1, U

3
t−1),

M3
t = vec(Y 3

t−1, U
3
t−1);

and the increment in shared memory at time t is

Zt = vec(Y 1
t−1, U

1
t−1, Y

2
t , U

2
t , Y

3
t−1, U

3
t−1).

The update of the local and shared memories may be written

as (11) and (12) with

Pmm,t = 0

Pmy,t =

























I 0 0

0 0 0

I 0 0

0 0 0

0 0 I

0 0 0

0 0 I

0 0 0

























, Pmu,t =

























0 0 0

I 0 0

0 0 0

I 0 0

0 0 0

0 0 I

0 0 0

0 0 I

























Pzm,t =





I 0 0

0 0 0

0 0 I





Pzy,t =









0 0 0

0 I 0

0 0 0

0 0 0









, Pzu,t =









0 0 0

0 0 0

0 I 0

0 0 0









Similar to the above example, the general model with

asymmetric delays may be considered as a special case of

the generalized partial history sharing model. For that matter,

define k∗j := maxi kij . Thus, k∗j is the delay after which

controller j’s current information is available to all other

controllers. In the above example, k∗1 = k∗3 = 2 and k∗2 = 1.

Then, the common information available to all controllers

at time t is

Z1:t−1 = vec(Y 1
1:t−k∗

1

, U1
1:t−k∗

1

. . . , Y n
1:t−k∗

n
, Un

1:t−k∗

n
),

and the local memory of controller i is

M i
t =Iit \ {Y

i
t , Z1:t−1}

=vec(Y 1
t−ki1

, U1
t−ki1

, . . . , Y 1
t−k∗

2
+1, U

1
t−k∗

1
+1,

Y 2
t−ki2

, U2
t−ki2

, . . . , Y 2
t−k∗

2
+1, U

2
t−k∗

2
+1,

. . . . . .

Y n
t−kin

, Un
t−kin

, . . . , Y n
t−k∗

n+1, U
n
t−k∗

n+1). (44)

Note that in the definition of M i
t in (44) above,

if t − kij < t − k∗j + 1, then the sequence

Y
j
t−kij

, U
j
t−kij

, . . . , Y
j
t−k∗

j
+1, U

j
t−k∗

j
+1 is empty.

To facilitate writing the memory update equations of the

form in (9) and (10) for the general asymmetric delay model,

it is helpful to define the following vectors:

Li
t = vec(Y i

t−1, U
i
t−1, . . . , Y

i
t−k∗

i
+1, U

i
t−k∗

i
+1), (45)

with Li
t being empty if k∗i = 1. Li

t denotes the past obser-

vations and control actions of controller i that have not yet

been shared with all controllers. Li
t is always a sub-vector of

M i
t . Note that Li

t may be distinct from M i
t in general (see the

example above). More explicitly, the relation between Li
t and

M i
t can be written as

Li
t =







0∑
j<i

(k∗

j
−kij)(d

j
y+d

j
u)×(k∗

i
−1)(di

y+di
u)

I(k∗

i
−1)(di

y+di
u)

0∑
j>i

(k∗

j
−kij)(d

j
y+d

j
u)×(k∗

i
−1)(di

y+di
u)







⊺

M i
t (46)

Define Lt = vec(L1
t , . . . , L

n
t ). Note that M i

t is a sub-vector

of Lt. The explicit relation between M i
t and Lt can be written

as

M i
t = diag(Ji1, . . . , Jin)Lt,

where

Jij = [0(k∗

j
−kij)(d

j
y+d

j
u)×(kij−1)(dj

y+d
j
u)

I(k∗

j
−kij)(d

j
y+d

j
u)
].

(47)

Furthermore, Li
t has an update equation similar to (10) (see

also Pi
m∗,t matrices of section IV-A):

Li
t+1 = P̃i

ℓℓL
i
t + P̃i

ℓyY
i
t + P̃i

ℓuU
i
t (48)

where

P̃i
ℓm =







0di
y×di

l

0di
u×di

l

I(k∗

i
−2)(di

y+di
u)

0(k∗

i
−2)(di

y+di
u)×(di

y+di
u)






,

P̃i
ℓy =





Idi
y

0di
u×di

y

0(k∗

i
−2)(di

y+di
u)×di

y



 , P̃i
ℓu =





0di
y×di

u

Idi
u

0(k∗

i
−2)(di

y+di
u)×di

u



 .

The increment in shared memory can be written in terms of

Li
t as

Zi
t =

[

0(di
y+di

u)×(k∗

i
−2)(di

y+di
u)

I(di
y+di

u)

]

Li
t. (49)

Therefore, the result of Theorem 1 applies to this model

with

• The analogue of (11) obtained by combining (46), (48)

and (47).

• The analogue of (12) obtained by combining (46) and

(49).

• and the estimate of Theorem 1 as

S̆t = E[vec(Xt,Mt) | vec(Y
1
1:t−k∗

1

, U1
1:t−k∗

1

. . . ,

. . . Y n
1:t−k∗

n
, Un

1:t−k∗

n
), Ũ1:t−1].

Analogous to Corollary 1, we also have the following result

in this model.
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Corollary 3 Define k∗ = maxi,j kij . For the asymmetric

delay sharing model, Ũt of Theorems 1 and 2 may be written

as a linear function of

St = vec(X̂t−k∗+1|t−k∗ , Ũt−k∗+1:t−1, Yt−2k∗+2:t−k∗ ,

Ut−2k∗+2:t−k∗)

where

X̂t−k∗+1|t−k∗ = E[Xt−k∗+1 | Y1:t−k∗ , U1:t−k∗ ].
✷

The proof is similar to the proof of Corollary 1 in Appendix A.

A 3 controller system with asymmetric delays (in particular,

k21 = k32 = k13 = 1 and k12 = k23 = k31 = 2) and

a partially nested information structure is considerd in [26].

The authors of [26] identify optimal control strategies whose

structural form is similar to our result above. Note that our

results hold for any strongly connected communication graph

with finite delays.

V. MODELS THAT REDUCE TO PARTIAL HISTORY SHARING

The approach presented in this paper is also applicable to

models that are not partial history sharing as such but can be

reduced to one by using a person-by-person approach [1]. We

illustrate this by means of two examples presented below.

A. Coupled subsystems with control sharing

In the control sharing model considered in [29]2 the system

consists on n-subsystems; each subsystem has a co-located

control station. Let Xi
t denote the state of subsystem i and U i

t

the control action of controller i. Let Xt = vec(X1
t , . . . , X

n
t )

and Ut = vec(U1
t , . . . , U

n
t ). The system dynamics are given

by

Xi
t+1 = Ai

tX
i
t +Bi

tUt +W i
t

where Ai
t and Bi

t are matrices of appropriate dimensions.

Note that the next state of subsystem i depends on the current

state of subsystem i and the control actions of all controllers.

The noise processes {W i
t }

T
t=1 are mutually independent and

independent across time. The cost is quadratic and given

by (4).

Control station i observes the state of control station i and

the one-step delayed control actions of all controllers. Each

controller has perfect recall. Therefore, action U i
t must be

chosen based on the data (Xi
1:t, U1:t−1). It is shown in [29,

Proposition 3] using a person-by-person approach that there

is no loss of optimality in shedding Xi
1:t−1 and choosing

U i
t based on the data (Xi

t , U1:t−1). We restrict attention to

controllers that are linear functions of this data, i.e., controllers

for the form

U i
t = Ki

tU1:t−1 +Gi
tX

i
t

This model fits the general partial history sharing model

described in Section II-A with

• the local memory M i
t is empty;

• the local observation Y i
t is Xi

t ;

2The model presented here is simpler than the model described in [29].
The results also extend to the generalized models considered in [29], but we
restrict attention to the more simpler model for ease of exposition.

• the shared memory Z1:t−1 is U1:t−1

• the update of the shared memory given by (13) where

Pi
zy = 0, Pi

zu = I and P∗∗ = diag(P1
∗∗, . . . ,P

n
∗∗).

The results of Theorem 1 apply to this model with

S̆t = E[Xt | U1:t−1].

For this model, it is known that linear strategies are not

globally optimal. The optimal non-linear control strategy is

given by the embedding of the observations in the control

actions [30].

B. One-sided one-step delayed sharing

Consider two coupled subsystems with one-sided one-

step delayed sharing. Let Xi
t denote the state of subsys-

tem i and U i
t denote the control action of subsystem i.

Let Xt = vec(X1
t , X

2
t ) and Ut = vec(U1

t , U
2
t ). The dy-

namics are arbitrary and given by (1). At each time, con-

troller 1 observes vec(X1
t , X

2
t−1): the current state of sub-

system 1 and the one-step delayed state of subsystem 2;

controller 2 observes X2
t : the current state of subsystem 2.

Thus, controller 1 chooses its control actions based on the

data (X1
1:t, U

1
1:t−1, X

2
1:t−1, U

2
1:t−1) and controller 2 based on

(X2
1:t, U

2
1:t−1). The cost is quadratic and given by (4).

When A and B are upper block triangular, the model is

partially nested [5]. Such a model was considered in [16],

[17]. A minor variation of this model (which was also par-

tially nested) was also considered in [12], [15]. The sparsity

assumptions on A and B are needed to prove global optimality

of linear strategies; but, as we show below, not to identify the

sufficient statistics for linear strategies.

The structure of controller 1 can be simplified by using a

person-by-person approach. For any arbitrary choice of control

strategy for controller 2, the subproblem of finding the best

response strategy at controller 1 is a centralized stochastic

control problem. It can be shown that (X1
t , X

2
1:t−1, U

2
1:t−1)

is an information state of this subproblem. Therefore, there

is no loss of optimality in choosing U1
t based on the data

(X1
t , X

2
1:t−1, U

2
1:t−1). We restrict attention to controllers that

are linear functions of the available data, i.e., controllers of

the form

U i
t = Ki

t vec(X
2
1:t−1, U

2
1:t−1) +Gi

tX
i
t ;

This model fits the general partial history sharing model

described in Section II-A with

• the local memory M i
t is empty;

• the local observation Y i
t is Xi

t ;

• the shared memory Z1:t−1 is vec(X2
1:t−1, U

2
1:t−1);

• the update of the shared memory given by (13) where

P1
zy = 0, P1

zu = 0, P2
zy = I, P2

zu = I, and P∗∗ =
diag(P1

∗∗,P
2
∗∗).

The results of Theorem 1 apply to this model with

S̆t = E[Xt | X
2
1:t−1, U

2
1:t−1, Ũ1:t−1].

The above structural result is similar to the result obtained

in [16], [17]. However, unlike [16], [17], our model does not

have a partially nested information structure since matrices A
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and B can be arbitrary. This suggests that the structure of the

best linear control law is a consequence of the linearity of

control strategies rather than the partially nested information

structure.

VI. CONCLUSION

Linear control strategies for LQG systems are appealing due

to their analytical and implementation simplicity. However, to

fully leverage the advantages of linear strategies, we need to

identify finite-dimensional sufficient statistics for best linear

strategies that can be easily updated. We identified such a

result in Theorem 1 for decentralized systems with partial

history sharing information structures. The result relied on

the linearity of the decentralized system and is applicable

to models that are neither partially nested nor quadratically

invariant.

We focused on the partial history sharing model in this

paper because it provides a common model for decentralized

systems where controllers’ local information remains finite

dimensional but the common information increases with time.

We showed that our results provide sufficient statistics for

different variations of delayed sharing information structures,

including those with asymmetric delays that arise when con-

trollers communicate along a strongly connected graph.

We also showed that our approach is applicable to some de-

centralized systems where local information is also increasing

with time, provided one can first employ a person by person

optimality approach to find a preliminary sufficient statistic

which ensures that local information is finite dimensional.

We have focused only on finding the structure of best linear

control strategies in this paper. It is not possible, in general, to

use our approach to compute the best linear control strategies.

Even in the absence of a complete methodology to find the

best linear strategies, the structural results of Theorem 1

are useful because they restrict the solution space to search

for best linear strategies. Furthermore, as is the case with

the sufficient statistics in centralized stochastic control, the

sufficient statistics of Theorem 1 allow us to formulate the

problem of finding and implementing the best linear control

strategies over an infinite horizon.
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APPENDIX A

PROOF OF COROLLARY 1

To prove the result, we will argue that

S̆t = E[vec(Xt,Mt) | Z1:t−1, Ũ1:t−1]

=: vec(X̂t, M̂t), (50)

is a linear function of St defined in Corollary 1 for the

symmetric delay sharing model. Therefore, the control law of

Theorem 1 can be written in the form specified in Corollary 1.

Observe that according to the coordinated system

dynamics in (22), (Xt,Mt) is a linear function of

X̃t−k+1 = vec(Xt−k+1, Yt−k+1,Mt−k+1), Ũt−k+1:t−1 and

W 0
t−k+1:t−1,W

1:n
t−k+1:t−1. Therefore, by linearity of condi-

tional expectation, (X̂t, M̂t) is a linear function of the fol-

lowing three terms

1) E[vec(Xt−k+1, Yt−k+1,Mt−k+1) | Y1:t−k, U1:t−k, Ũ1:t−k].
2) E[Ũt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k].
3) E[Wt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k].

Consider each of these terms separately. Recall that

in delayed sharing information structure Mt−k+1 =
vec(Yt−2k+2:t−k, Ut−2k+2:t−k) which are included in the right

hand side of conditioning in the first term. Therefore,

E[Mt−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1]

= vec(Yt−2k+2:t−k, Ut−2k+2:t−k). (51)

Furthermore, using (6)

E[Y i
t−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1]

= Ci
t−k+1E[Xt−k+1 | Y1:t−k, U1:t−k, Ũ1:t−1]

= Ci
t−k+1E[Xt−k+1 | Y1:t−k, U1:t−k] (52)

where we removed Ũ i
1:t−1 from the right hand

side of conditioning because it is a function of

(Y i
1:t−k, U

i
1:t−k) which are included in the right hand

side of conditioning. Combining (51) and (52), we get that

E[vec(Xt−k+1, Yt−k+1,Mt−k+1) | Y1:t−k, U1:t−k, Ũ1:t−k] is

a linear function of (X̂t−k+1|t−k, Yt−2k+2:t−k, Ut−2k+2:t−k),
which is a sub-vector of St.

The second term E[Ũt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k] is

simply Ũt−k+1:t−1 which is also a sub-vector of St.

Since the primitive random variables are independent, the

third term E[Wt−k+1:t−1 | Y1:t−k, U1:t−k, Ũ1:t−k] is 0.

Therefore, S̆t = vec(X̂t, M̂t) is a linear function of St,

which implies the result of the corollary.
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