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Decentralized Linear Quadratic Systems
With Major and Minor Agents and

Non-Gaussian Noise
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Abstract—A decentralized linear quadratic system with
a major agent and a collection of minor agents is consid-
ered. The major agent affects the minor agents, but not
vice versa. The state of the major agent is observed by all
agents. In addition, the minor agents have a noisy observa-
tion of their local state. The noise process is not assumed
to be Gaussian. The structures of the optimal strategy and
the best linear strategy are characterized. It is shown that
the major agent’s optimal control action is a linear function
of the major agent’s minimum mean-squared error (MMSE)
estimate of the system state while the minor agent’s opti-
mal control action is a linear function of the major agent’s
MMSE estimate of the system state and a “correction term”
that depends on the difference of the minor agent’s MMSE
estimate of its local state and the major agent’s MMSE
estimate of the minor agent’s local state. Since the noise is
non-Gaussian, the minor agent’s MMSE estimate is a non-
linear function of its observation. It is shown that replac-
ing the minor agent’s MMSE estimate with its linear least
mean square estimate gives the best linear control strat-
egy. The results are proved using a direct method based
on conditional independence, common-information-based
splitting of state and control actions, and simplifying the
per-step cost based on conditional independence, orthog-
onality principle, and completion of squares.

Index Terms—Decentralized linear quadratic systems,
decentralized stochastic control, dynamic team theory, sep-
aration of estimation and control, non-Gaussian noise.

I. INTRODUCTION

IN MANY modern decentralized control systems, such as
self-driving cars, robotics, unmanned aerial vehicles (UAVs),

and others, the environment is sensed using vision and Lidar
sensors; the raw sensor observations are filtered through a deep-
neural-network-based object classifier and the classifier outputs
are used as the inputs to the controllers. In such systems, the
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assumption that the observation noise is Gaussian breaks down.
Therefore, the optimal design of such decentralized systems
requires understanding the structure of optimal controllers when
the observation noise is non-Gaussian.

For centralized control of linear systems with quadratic per-
step cost, the classical two-way separation between estimation
and control continues to hold even when the observations (and
the process noises) are non-Gaussian. In particular, the optimal
control action is a linear function of the minimum mean-squared
error (MMSE) estimator of the state given the observations and
the past actions at the controller. Moreover, the MMSE estimator
does not depend on the choice of the control strategy. See [1],
[2], and [3] for details.

Although the optimal control action is a linear function of the
MMSE estimate, the MMSE estimate is, in general, a nonlinear
function of the past observations and actions. Thus, the optimal
control action is a nonlinear function of the past observations
and the actions. In certain applications, it is desirable to restrict
attention to linear control strategies. The best linear strategy is
similar to the optimal strategy where the MMSE estimate is
replaced by the linear least mean squares (LLMS) estimate.1

Moreover, the LLMS estimate does not depend on the choice of
the control strategy. See [4, Sec. 15.5.3] for details.

In summary, in centralized control of linear quadratic systems
with non-Gaussian noise, there is a two-way separation of esti-
mation and control; the optimal control action is a linear function
of the MMSE estimate of the state given the data at the controller.
The best linear controller has the same structure except the
MMSE estimate of the state is replaced by the LLMS estimate.
Both the MMSE and LLMS estimators can be computed as
functions of sufficient statistics that can be recursively updated.2

In contrast, the current state of the art in decentralized systems
is significantly limited.

In the literature on optimal decentralized control of linear
quadratic systems, most papers assume that the noise processes
are Gaussian. Even with Gaussian noise, nonlinear policies
may outperform the best linear policies [5]; linear strategies
are globally optimal only for specific information structures
(e.g., partially nested [6] and its variants). Even for systems

1For linear models driven by uncorrelated noise, the LLMS estimate is the
best linear unbiased estimator of the state.

2MMSE estimator is the mean of the conditional density, which can be
recursively updated via Bayesian filtering; LLMS estimator can be recursively
updated via recursive least squares filtering.
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with Gaussian noise and partially nested information structures,
there is no general method to identify sufficient statistics for the
optimal controller; the optimal strategy is known to have a finite-
dimensional sufficient statistic only for specific models (e.g.,
the one-step delayed sharing information structure [7], [8], [9];
asymmetric one-step delayed sharing [10]; chain structures [11];
two-agent problem [12] and its variant [13]). As far as we are
aware, there are no existing results on sufficient statistics for
optimal decentralized control of linear quadratic systems with
output feedback and non-Gaussian noise.

If attention is restricted to linear strategies, the problem of
finding the best linear control strategy for a decentralized linear
quadratic system is not convex in general but can be converted
to a convex problem when the controller and the plant have
specific sparsity pattern (funnel causality [14], quadratic in-
variance [15], and their variants). Even for such models, the
best linear control strategy may not have a finite-dimensional
sufficient statistic [16]; the best linear strategy is known to have
a finite-dimensional sufficient statistic only for specific models
(e.g., poset causality [17], two-agent problem [18], [19], [20],
[21], [22], [23], [24], [25] and its variants [26], [27], [28]). A
general method for identifying sufficient statistics for the best
linear strategy in linear quadratic systems with partial history
sharing was proposed in [29], but this method did not provide
an efficient algorithm to compute all the gains at the controllers.

In this article, we investigate a decentralized control system
with a major agent and a collection of minor agents. The agents
are coupled in their dynamics as well as cost. In particular, the
dynamics are linear; the state and the control actions of the major
agent affect the state evolution of all the minor agents but the
state and control actions of the minor agents do not affect the
state evolution of the major or other minor agents. The cost is
an arbitrarily coupled quadratic cost. The information structure
is partially nested with partial output feedback. In particular,
the major agent perfectly observes its own state while each
minor agent perfectly observes the state of the major agent and
partially observes its own state. We assume that the process and
the observation noises have zero mean and finite variance but
do not impose any restrictions on the distribution of the noise
processes. We are interested in identifying both the optimal and
the best linear control strategy for this model.

There are two motivations for considering this specific model.
First, such systems arise in certain applications in decentralized
control of UAVs and, for that reason, there has been considerable
interest in understanding special cases of such models [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28]. Variations of this
model with weak coupling between the agents have also been
considered in the literature on mean-field games [30], [31], [32],
[33]. Second, the information structure may be viewed as a “star
network,” where the major agent is the central hub and the minor
agents are on the periphery. Understanding the optimal design of
such systems is an important intermediate step in understanding
the optimal design of decentralized systems where agents are
connected over a general graph.

Even though the information structure of our model is partially
nested, we cannot use the results of [6] because the noise pro-
cesses are not Gaussian. There is information that is commonly
known to all agents in our model, however the information

structure is not partial history sharing [34]. Hence, we cannot
directly use the dynamic programming decomposition of [34]
which was derived for models with finite-state and finite action
spaces. In addition, the local information at the minor agents is
increasing with time. So, we cannot use the method of [29] to
identify sufficient statistics.

When there is only one minor agent, our model is similar
to the two agent problem considered in [12], [18], [19], [20],
[21], [22], [23], and [25]. However, none of these results are
directly applicable: in [18], [19], [20], attention is restricted to
state feedback; in [22], [23], [25], continuous time systems with
output or partial output feedback are considered but attention
is restricted to linear strategies; in [12], output feedback is
considered but it is assumed that the noise is Gaussian. A model
similar to ours has been considered in [28] and [21]. In [28],
a continuous time system with major and minor agents with
output feedback is considered but it is assumed that there is no
cost coupling between the minor agents, the system dynamics
is stable, and attention is restricted to linear strategies. In [21],
a discrete-time system with a major and a single minor agent is
considered but it is assumed that the system dynamics is stable
and attention is restricted to linear strategies.

Our first main result is to show that the qualitative features of
centralized control of linear quadratic control continue to hold
for decentralized control of linear systems with major and minor
agents. In particular, we show the following.

1) The optimal control action of the major agent is a linear
function of the major agent’s MMSE estimate of the
state of the entire system. The corresponding gains are
determined by the solution of a single “global” Riccati
equation that depends on the dynamics and the cost of the
entire system.

2) The optimal control action of the minor agent is a linear
function of the minor agent’s MMSE estimate of its local
state and the major agent’s MMSE estimate of the local
state of the minor agent. The corresponding gains are
determined by the solution of two Riccati equations: A
“global” Riccati equation that depends on the dynamics
and the cost of the entire system and a “local” Riccati
equation that depends on the dynamics and the cost of the
minor agent.

Moreover, there is a separation between estimation and con-
trol. The MMSE estimation strategies of both the major and
the minor agents do not depend on the choice of the control
strategies. In addition, the choice of the controller gains does
not depend on the estimation strategies used by the agents. See
Theorem 2 for a precise statement of these results. Note that the
MMSE estimator of the major agent is a linear function of the
data while the MMSE estimator of the minor agent is a nonlinear
function of the data.

Our second main result is to show that the best linear strategy
has the same structure as the optimal strategy where the MMSE
estimate is replaced by the LLMS estimate. Moreover, the LLMS
estimate does not depend on the choice of the control strategy.

We show that both the MMSE and the LLMS estimates can be
computed as a function of sufficient statistics that can be updated
recursively. In particular, we show that the MMSE estimate at
the minor agent is the mean of the conditional density of the state
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of the minor agent given the past observations. The conditional
density can be recursively updated using (nonlinear) Bayesian
filtering. The LLMS estimates at the minor agent can be updated
using recursive least squares filtering. Note that unlike the results
of [12] and [25], the recursive update of both the MMSE and the
LLMS estimates do not depend on the Riccati gains.

Finally, we believe that our proof technique might be consid-
ered a contribution in its own right. The two most commonly
used techniques in decentralized control of linear systems are
1) time-domain dynamic programming decomposition, which
is used to identify optimal strategies; and 2) frequency domain
decomposition using Youla parameterization, which is used to
identify the best linear control strategy. In this article, we present
a unified approach to identify both the optimal and the best linear
control strategies. Our approach is based on the following:

1) conditional independence of the states of the minor agents
given the common information;

2) splitting the state and the control actions based on the
common information;

3) simplifying the per-step cost based on conditional in-
dependence, orthogonality principle, and completion of
squares.

Our approach sidesteps the technical difficulties related to
measurability and existence of value functions in dynamic pro-
gramming. At the same time, unlike the spectral factorization
methods, it can be used to identify both the optimal and the best
linear control strategy. Given the paucity of positive results in
decentralized control, we believe that a new solution approach
is of interest.

A. Notation

Given a matrix A, Aij denotes its (i, j)th block element,
Aᵀ denotes its transpose, vec(A) denotes the column vector
of A formed by vertically stacking the columns of A. Given
a square matrix A, Tr(A) denotes the sum of its diagonal
elements. In denotes an n× n identity matrix. We simply use
I when the dimension is clear for context. Given any vector-
valued process {y(t)}t≥1 and any time instances t1, t2 such that
t1 ≤ t2, y(t1:t2) is a short hand notation for vec(y(t1), y(t1 +
1), . . . , y(t2)).

Given random vectors x, y, and z,E[x] denotes the mean of x,
E[x|y] denotes the conditional mean of random variable x given
random variable y, cov(x, y) denotes the covariance between
x and y, and x ⊥⊥ y|z denotes that x and y are conditionally
independent given z.

Superscript index agents and local, common, and stochastic
components of state and control. Subscripts denote components
of vectors and matrices. The notation x̂(t|i) denotes the estimate
of variable x at time t conditioned on the information available
at agent i at time t.

Given matrices A, B, C, Q, R, Σ, Σ′, and P of appropriate
dimensions, we use the following operators:

R(P,A,B,Q,R) = Q+AᵀPA

−AᵀPB(R+BᵀPB)−1BᵀPA

G(P,A,B,R) = (R+BᵀPB)−1BᵀPA

K(P,A,C,Σ,Σ′) = (APAᵀCᵀ +ΣCᵀ)

(CAPAᵀCᵀ + CΣCᵀ +Σ′)−1

and

F(P,A,C,Σ,Σ′) = APAᵀ +Σ

−K(CAPAᵀCᵀ + CΣCᵀ +Σ′)Kᵀ

where K = K(P,A,C,Σ,Σ′).

II. MODEL AND PROBLEM FORMULATION

A. Problem Formulation

Consider a decentralized control system with one major and n
minor agents that evolve in discrete time over a finite horizon T .
We use index 0 to indicate the major agent and use index i,
i ∈ N := {1, . . . , n}, to indicate a minor agent. We also define
N0 := {0, 1, . . . , n} as the set of all agents. Letxi(t) ∈ Rdi

x and
ui(t) ∈ Rdi

u denote the state and control input of agent i ∈ N0.
1) System Dynamics: All agents have linear dynamics. The

dynamics of the major agent is not affected by the minor agents.
In particular, the initial state of the major agent is given byx0(1),
and for t ≥ 1, the state of the major agent evolves according to

x0(t+ 1) = A00x0(t) +B00u0(t) + w0(t) (1)

where {w0(t)}t≥1, w0(t) ∈ Rd0
x , is a noise process.

In contrast, the dynamics of the minor agents are affected by
the state of the major agent. For agent i ∈ N , the initial state is
given by xi(1), and for t ≥ 1, the state evolves according to

xi(t+ 1)=Aiixi(t)+Ai0x0(t)+Biiui(t)+Bi0u0(t) + wi(t)
(2)

where {wi(t)}t≥1, wi(t) ∈ Rdi
x , is a noise process. Further-

more, the minor agent i ∈ N generates an output yi(t) ∈ Rdi
y

given by

yi(t) = Ciixi(t) + vi(t) i ∈ N (3)

where {vi(t)}t≥1, vi(t) ∈ Rdi
y , is a noise process.

Assumption 1: We assume that all primitive random
variables—the initial states {x0(1), x1(1), . . . , xn(1)}, the pro-
cess noises {wi(1), . . . , wi(T )}i∈N0

, and the observation noises
{vi(1), . . . , vi(T )}i∈N are defined on a common probability
space, are independent and have zero mean and finite variance.
We use Σx

i to denote the variance of the initial state xi(1), Σw
i to

denote the variance of the process noise wi(t) and Σv
i to denote

the variance of the observation noise vi(t).
Note that we do not assume that the primitive random vari-

ables have a Gaussian distribution. For some of the results,
we impose an additional assumption that the primitive random
variables have a density.

Assumption 2: All primitive random variables (which are
defined on a common probability space) have a joint density.
We denote the marginal density of xi(1), i ∈ N0, wi(t), i ∈
N0, and vi(t), i ∈ N , by πxi(1), ϕi,t, and νi,t, respectively.

Let x(t) = vec(x0(t), . . . , xn(t)) denote the state of the sys-
tem, u(t) = vec(u0(t), . . . , un(t)) denote the control actions of
all controllers, and w(t) = vec(w0(t), . . . , wn(t)) denote the
system disturbance. Then, the dynamics (1) and (2) can be
written in vector form as

x(t+ 1) = Ax(t) +Bu(t) + w(t) (4)

Authorized licensed use limited to: McGill University. Downloaded on August 01,2023 at 19:10:52 UTC from IEEE Xplore.  Restrictions apply. 



AFSHARI AND MAHAJAN: DECENTRALIZED LINEAR QUADRATIC SYSTEMS WITH MAJOR AND MINOR AGENTS AND NON-GAUSSIAN NOISE 4669

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A00 0 0 · · · 0

A10 A11 0 · · · 0

A20 0 A22 · · · 0
...

...
. . .

. . .
...

An0 0 · · · 0 Ann

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B00 0 0 · · · 0

B10 B11 0 · · · 0

B20 0 B22 · · · 0
...

...
. . .

. . .
...

Bn0 0 · · · 0 Bnn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that A and B are sparse block lower triangular matrices.
2) Information Structure: The system has partial output

feedback: the major agent observes its own state while minor
agent i, i ∈ N , observes the state of the major agent and its own
output. Thus, the information I0(t) available to the major agent
is given by

I0(t) := {x0(1:t), u0(1:t− 1)} (5)

while the information Ii(t) available to minor agent i, i ∈ N , is
given by

Ii(t) := {x0(1:t), yi(1:t), u0(1:t− 1), ui(1:t− 1)}. (6)

3) Admissible Control Strategies: At time t, controller i ∈
N0 chooses control action ui(t) as a function of the information
Ii(t) available to it, i.e.,

ui(t) = gi,t(Ii(t)), i ∈ N0.

The function gi,t is called the control law of controller i, i ∈
N0, at time t. The collection gi := (gi,1, . . . , gi,T ) is called the
control strategy of controller i and (g0, . . . , gn) is called the
control strategy of the system.

Let L2(Rn) denote the family of all square integrable
random variables, i.e., random variables Z ∈ Rn such that
E[|Z|2] < ∞. We consider two classes of control strategies.
The first, which we call general control strategies and denote
by G , is where gi,t is a measurable function that maps Ii(t) to
ui(t) that satisfies the property that for any Ii(t) ∈ L2(Rdi

I ),
where diI = t× (d0x + diy) + (t− 1)× (d0u + diu), i ∈ N , we
have E[|gi,t(Ii(t))|2] < ∞.

The second, which we call affine control strategies and denote
by GA, is where gi,t is an affine function that maps Ii(t) to ui(t).

4) System Performance and Control Objective: At
time t ∈ {1, . . . , T − 1}, the system incurs a per-step cost of

c(x(t), u(t)) = x(t)ᵀQx(t) + u(t)ᵀRu(t) (7)

and at the time T , the system incurs a terminal cost of

C(x(T )) = xᵀ(T )QTx(T ). (8)

It is assumed that Q and QT are positive semidefinite and R is
positive definite.

The performance of any strategy (g0, . . . , gn) is given by

J(g0, . . . , gn) = E

[
T−1∑
t=1

c(x(t), u(t)) + C(x(T ))

]
(9)

where the expectation is with respect to the joint measure on
all the system variables induced by the choice of the strategy
(g0, . . . , gn) ∈ G.

We are interested in the following optimization problems.
Problem 1: In the system described above, choose a general

control strategy (g0, . . . , gn) ∈ G to minimize the total expected
cost given by (9).

The information structure of the model is partially nested [6],
but the noise is not Gaussian. So, we cannot assert that there is no
loss of optimality in restricting attention to linear strategies. In
fact, our main result shows that the optimal policy of Problem 1
is nonlinear. In certain applications, it is desirable to restrict
attention to linear strategies. For that reason, we also consider
the following optimization problem.

Problem 2: In the system described above, choose an affine
strategy (g0, . . . , gn) ∈ GA to minimize the total expected cost
given by (9).

B. Roadmap of the Solution Approach

The rest of the article is organized as follows. In Section III,
we present several preliminary results to simplify the analysis.
These include a common-information-based splitting of state
and control actions, a static reduction of the information struc-
ture, and establishing conditional independence of the various
components of the state. We combine these results to split the
per-step cost and then use completion of squares to rewrite the
total cost as the sum of three terms: The first depends on the
common component of the state and control action, the second
depends on the local component of the state and control action,
and the third depends on the stochastic component of the state.
A key feature of this decomposition is that the third term does
not depend on the choice of the control strategy. So, we can
focus on the first two terms to find the optimal or the best linear
strategy.

Our next step is to use orthogonal projection to simplify
the first two terms. In Section IV, we simplify these terms
using orthogonality properties of the MMSE estimate and the
estimation error; in Section V, we simplify these terms using or-
thogonality properties of the LLMS estimate and the estimation
error. The final expression of the total cost in both cases is such
that the optimal and best linear strategies can be identified by
inspection.

III. PRELIMINARY RESULTS

A. Common Information Based State and
Control Splitting

Following [34], we split the information at each agent into
common and local information. The common information is
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defined as

Ic(t) :=
⋂
i∈N0

Ii(t) = {x0(1:t), u0(1:t− 1)} = I0(t). (10)

The local information is the remaining information at each agent.
Thus,

I�0(t) := I0(t) \ Ic(t) = ∅ (11a)

I�i (t) := Ii(t) \ Ic(t) = {yi(1:t), ui(1:t− 1)}. (11b)

Thus, although there is common information among the agents,
the system does not have a partially history sharing information
structure [34] because the local information at agent i ∈ N
is increasing with time. Hence, the approach in [29] and [34]
cannot be used directly.

Instead, we combine the idea of common information with a
standard idea in linear systems and split the state and the control
actions into different components based on the common infor-
mation. First, we split the control action into two components:
u(t) = uc(t) + u�(t), where

uc(t) = E[u(t)|Ic(t)], u�(t) = u(t)− uc(t). (12)

We refer to uc(t) and u�(t) as the common control and the local
control, respectively.

Based on the above splitting of control actions, we split
the state into three components: x(t) = xc(t) + x�(t) + xs(t),
where

xc(1) = 0, xc(t+ 1) = Axc(t) +Buc(t) (13a)

x�(1) = 0, x�(t+ 1) = Ax�(t) +Bu�(t) (13b)

xs(1) = x(1), xs(t+ 1) = Axs(t) + w(t). (13c)

We refer to xc(t), x�(t), xs(t) as the common, local, and
stochastic components of the state, respectively. Note that the
stochastic component is control free (i.e., does not depend on
the control actions).

Based on the above splitting of state, we split the observations
of agent i ∈ N into three components as well: yi(t) = yci (t) +
y�i (t) + ysi (t), where

yci (t) = Ciix
c
i (t) (14a)

y�i (t) = Ciix
�
i(t) (14b)

ysi (t) = Ciix
s
i (t) + vi(t). (14c)

We refer to yci (t), y
�
i (t), and ysi (t) as the common, local, and

stochastic components of the observation, respectively. Note that
since xs

i (t) is control free, so is ysi (t).
Lemma 1: For any strategy g ∈ G , the split components of

the state and the control actions satisfy the following properties:
P1) u�

0(t) = 0.
P2) x�

0(t) = 0.
P3) E[u�

i(t)|Ic(t)] = 0, i ∈ {1, . . . , n}.
P4) E[uc(t)ᵀMu�(t)] = 0, where M is any matrix of com-

patible dimensions.
P5) E[u�

i(t)] = 0, i ∈ {1, . . . , n}.
P6) E[xc(t)|Ic(t)] = xc(t).

The proof is presented in Appendix A.

B. Static Reduction

We define the following information structure that does not
depend on the control strategy:

Is0(t) = {xs
0(1:t)} (15a)

Isi (t) = {xs
0(1:t), y

s
i (1:t)}, i ∈ N. (15b)

We now show that the above information structure may be
viewed as the static reduction of the original information struc-
ture [6] and [35].

Lemma 2: For any arbitrary but fixed strategy g ∈ G ,

Ii(t) ≡ Isi (t), i ∈ N0

i.e., both sets generate the same sigma-algebra or, equivalently,
they are functions of each other. Moreover, if g ∈ GA then Ii(t)
and Isi (t), i ∈ N0, are linear functions of each other.

The proof is presented in Appendix B. In the sequel, we use
Lemma 2 to replace conditioning on Ii(t) by conditioning on
Isi (t) and to replace a linear function of Ii(t) by a linear function
of Isi (t). As a first implication, we derive the following additional
properties of the split components of the state.

Lemma 3: For any strategy g ∈ G , the split components of
the state and the control action satisfy the following additional
properties: for any i ∈ N ,
P7) For any τ ≤ t, E[u�

i(τ)|Ic(t)] = 0.
P8) For any τ ≤ t, E[x�

i(τ)|Ic(t)] = 0.
For any matrix M of appropriate dimensions:

P9) E[x�
i(t)

ᵀMxs
0(t)] = 0.

P10) E[x�
i(t)

ᵀMxc(t)] = 0.
P11) E[u�

i(t)
ᵀMxs

0(t)] = 0.
The proof is presented in Appendix C.

C. Conditional Independence and Split of Per-Step Cost

Lemma 4: For any strategy g ∈ G and any i, j ∈ N , i 
= j,
we have the following:

1) (xi(1:t), ui(1:t)) ⊥⊥ (xj(1:t), uj(1:t)) | Ic(t).
2) xs

i (1:t) ⊥⊥ xs
j(1:t) | Is0(t).

3) (x�
i(1:t), u

�
i(1:t)) ⊥⊥ (x�

j(1:t), u
�
j(1:t)) | Ic(t).

The proof is presented in Appendix D.
For ease of notation, we consider the following combinations

of different components of the state:

zc(t) = xc(t) + xs(t), z�i (t) = x�
i(t) + xs

i (t). (16)

Due to the conditional independence of Lemma 4, the per-step
cost simplifies as follows.

Lemma 5: The per-step cost simplifies as follows:

E
[
x(t)ᵀQx(t)

]
= E

[
zc(t)ᵀQzc(t)

+
n∑

i=1

z�i (t)
ᵀQiiz

�
i (t)−

n∑
i=1

xs
i (t)Qiix

s
i (t)

]
(17)
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and

E
[
u(t)ᵀRu(t)

]
= E

[
uc(t)ᵀRuc(t) +

∑
i∈N

u�
i(t)

ᵀRiiu
�
i(t)

]
.

(18)
The proof is presented in Appendix E.

D. Completion of Squares

Lemma 6: For random variables (x, u, w) such thatw is zero-
mean and independent of (x, u), and given matrices A, B, R,
and S of appropriate dimensions, we have

E[uᵀRu+ (Ax+Bu+ w)ᵀS(Ax+Bu+ w)]

= E[(u+ Lx)ᵀΔ(u+ Lx)] + E[xᵀS̃x] + E[wᵀSw]

where Δ = [R+BᵀSB], L = Δ−1BᵀSA, and S̃ = AᵀSA−
LᵀΔL.

Proof: Since w is zero mean and independent of (x, u):

E[(Ax+Bu+ w)ᵀS(Ax+Bu+ w)]

= E[(Ax+Bu)ᵀS(Ax+Bu) + wᵀSw].

Now, we can show

uᵀRu+ (Ax+Bu)ᵀS(Ax+Bu)

= (u+ Lx)ᵀΔ(u+ Lx) + xᵀS̃x

by expanding both sides and combining the coefficients. The
proof follows by combining both the equations. �

Let Sc(1:T ) and S�
i (1:T ) denote the solution to the following

Riccati equations: Initialize Sc(T ) = QT and S�
i (T ) = [QT ]ii,

i ∈ N . Then, for t ∈ {T − 1, . . . , 1}, recursively define

Sc(t) = R(Sc(t+ 1), A,B,Q,R) (19)

S�
i (t) = R(S�

i (t+ 1), Aii, Bii, Qii, Rii), i ∈ N. (20)

Define the gains

Lc(t) = G(Sc(t+ 1), A,B,R) (21)

L�
i(t) = G(S�

i (t+ 1), Aii, Bii, Rii), i ∈ N (22)

and the matrices

Δc(t) = [R+BᵀSc(t+ 1)B]

Δ�
i(t) = [Rii +Bᵀ

iiS
�
i (t+ 1)Bii].

Lemma 7: For any strategy g ∈ G , the total cost may be split
as

J(g) = Jc(g) +
∑
i∈N

J�
i (g) + Js (23)

where Jc(g) is given by

E

[
T−1∑
t=1

(uc(t) + Lc(t)zc(t))ᵀΔc(t)(uc(t) + Lc(t)zc(t))

]

and J�
i (g), i ∈ N , is given by

E

[
T−1∑
t=1

(u�
i(t) + L�

i(t)z
�
i (t))

ᵀΔ�
i(t)(u

�
i(t) + L�

i(t)z
�
i (t))

]

and Js is given by

E

[
x(1)ᵀSc(1)x(1) +

n∑
i=1

xi(1)
ᵀS�

i (1)xi(1)

+

T−1∑
t=1

[
w(t)ᵀSc(t+ 1)w(t) +

n∑
i=1

wi(t)
ᵀS�

i (t+ 1)wi(t)

]

+
T−1∑
t=1

n∑
i=1

[
(Ai0x

s
0(t))

ᵀS�
i (t+ 1)(Ai0x

s
0(t) + 2Aiix

s
i (t))

]

−
T−1∑
t=1

n∑
i=1

xs
i (t)Qiix

s
i (t)−

n∑
i=1

xs
i (T )[QT ]iix

s
i (T )

]
.

Proof: We start by rewriting the total cost using the result of
Lemma 5. In particular, J(g) can be written as

E

[
T−1∑
t=1

zc(t)ᵀQzc(t) + uc(t)ᵀRuc(t) + zc(T )ᵀQT z
c(T )

]

+ E

[
T−1∑
t=1

n∑
i=1

z�i (t)
ᵀQiiz

�
i (t) + u�

i(t)
ᵀRiiu

�
i(t)

+

n∑
i=1

z�i (T )
ᵀ[QT ]iiz

�
i (T )

]

− E

[
T−1∑
t=1

n∑
i=1

xs
i (t)

ᵀQiix
s
i (t)−

n∑
i=1

xs
i (T )

ᵀ[QT ]iix
s
i (T )

]
.

The dynamics of zc(t) and z�(t) may be written as

zc(t+ 1) = Azc(t) +Buc(t) + w(t)

z�i (t+ 1) = Aiiz
�
i (t) +Ai0x

s
0(t) +Biiu

�
i(t) + wi(t).

Note that w(t) is zero mean and independent of (zc(t), uc(t))
(because both zc(t) and uc(t) depend on w(1:t− 1), which is
independent of w(t)). Similarly, w(t) is zero mean and indepen-
dent of (vec(xs

0(t), z
�
i (t)), u

�
i(t)). The result then follows from

recursively applying Lemma 6, (P9), and (P11). �
Remark 1: The term Js is control-free and depends on only

the primitive random variables. Hence minimizingJ(g) is equiv-
alent to minimizing Jc(g) +

∑
i∈N J�

i (g).
In the next two sections, we simplify Jc(g) +

∑
i∈N J�

i (g)
using orthogonality properties of MMSE/ LLMS estimates and
the corresponding estimation error.

IV. MAIN RESULTS FOR PROBLEM 1

A. Orthogonal Projection

As explained in Remark 1, minimizing J(g) is equivalent
to minimizing Jc(g) +

∑
i∈N J�

i (g) defined in Lemma 7. To
simplify Jc(g) +

∑
i∈N J�

i (g), define

ẑ(t|c) := E[zc(t)|Ic(t)] (24a)

z̆�i (t|i) := E[z�i (t)|Ii(t)]− E[z�i (t)|I0(t)]. (24b)
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Define the “estimation errors”

z̃c(t) = zc(t)− ẑ(t|c), z̃�i (t) = z�i (t)− z̆�i (t|i).
Lemma 8: For any strategyg ∈ G , the variables defined above

satisfy the following properties.
C1) z̃c(t) and z̃�i (t) are control-free and may be written just

in terms of the primitive random variables.
C2) E[z̃c(t)|Ic(t)] = 0.

For any matrix M of appropriate dimensions:
C3) E[z̃c(t)ᵀMẑ(t|c)] = 0.
C4) E[uc(t)ᵀMz̃c(t)] = 0.
C5) E[z̃�i (t)

ᵀMz̆�i (t|i)] = 0.
C6) E[u�

i(t)
ᵀMz̃�i (t)] = 0.

The proof is presented in Appendix F.
An implication of the above is the following.
Lemma 9: The per-step terms in Jc(g) and J�

i (g) simplify as
follows:

E [(uc(t) + Lc(t)zc(t))ᵀΔc(t)(uc(t) + Lc(t)zc(t))]

= E [(uc(t) + Lc(t)ẑ(t|c))ᵀΔc(t)(uc(t) + Lc(t)ẑ(t|c))]
+ E [z̃c(t)ᵀLc(t)ᵀΔc(t)Lc(t)z̃c(t)] (25)

and

E
[
(u�

i(t) + L�
i(t)z

�
i (t))

ᵀΔ�
i(t)(u

�
i(t) + L�

i(t)z
�
i (t))

]
= E

[
(u�

i(t) + L�
i(t)z̆

�
i (t|i))ᵀΔ�

i(t)(u
�
i(t) + L�

i(t)z̆
�
i (t|i))

]
+ E

[
z̃�i (t)

ᵀL�
i(t)

ᵀΔ�
i(t)L

�
i(t)z̃

�
i (t)

]
. (26)

Proof: Equation (25) follows from (C2) and is equivalent to

E[uc(t)ᵀΔc(t)Lc(t)z̃c(t)] = 0 (27)

E[ẑ(t|c)(t)ᵀLc(t)ᵀΔc(t)Lc(t)z̃c(t)] = 0 (28)

which is the direct result of (C3) and (C4).
Equation (26) is equivalent to

E[u�
i(t)

ᵀΔ�
i(t)L

�
i(t)z̃

�(t)] = 0 (29)

E[z̃�i (t)
ᵀL�

i(t)
ᵀΔ�

i(t)L
�
i(t)z̆

�
i (t|i)] = 0 (30)

which is a direct result of (C5) and (C6). �
An immediate implication of Lemma 9 is the following.
Lemma 10: For any strategy g ∈ G , the cost Jc(t) and J�

i (t)
defined in Lemma 7 may be further split as

Jc(g) = Ĵc(g) + J̃c, J�
i (g) = J̆�

i (g) + J̃�
i

where Ĵc(g) is given by

E

[
T−1∑
t=1

(uc(t) + Lc(t)ẑ(t|c))ᵀΔc(t)(uc(t) + Lc(t)ẑ(t|c))
]

and J̃c is given by

E

[
T−1∑
t=1

(Lc(t)z̃c(t))ᵀΔc(t)Lc(t)z̃c(t)

]

and J̆�
i (g), i ∈ N , is given by

E

[
T−1∑
t=1

(u�
i(t) + L�

i(t)z̆
�
i (t|i))ᵀΔ�

i(t)(u
�
i(t) + L�

i(t)z̆
�
i (t|i))

]

and J̃�
i , i ∈ N , is given by

E

[
T−1∑
t=1

(L�
i(t)z̃

�
i (t))

ᵀΔ�
i(t)L

�
i(t)z̃

�
i (t)

]
.

Remark 2: Property (C1) implies that the terms J̃c and J̃�
i are

control-free and depend only on the primitive random variables.
Combined with Remark 1, this implies that minimizing J(g) is
equivalent to minimizing Ĵc(g) +

∑
i∈N J̆ i(g).

Theorem 1: The optimal control strategy of Problem 1 is
unique and is given by

uc(t) = − Lc(t)ẑ(t|c) (31a)

u�
i(t) = − L�

i(t)z̆
�
i (t|i). (31b)

Furthermore, the optimal performance is given by

J∗ := inf
g∈G

J(g) = J̃c +
∑
i∈N

J̃�
i

where J̃c and J̃�
i are defined in Lemma 10.

Proof: As argued in Remark 2, minimizing J(g) is equiv-
alent to minimizing Ĵc(g) +

∑
i∈N J̆ i(g). By assumption, R

is symmetric and positive definite and, therefore, so is Rii. It
can be shown recursively that Sc(t) and S�

i (t) are symmetric
and positive-semidefinite. Hence, both Δc(t) and Δ�

i(t) are
symmetric and positive definite. Therefore

Ĵc(g) +
∑
i∈N

J̆�
i (g) ≥ 0

with equality if and only if the strategy g is given by (31). �
The optimal control strategy in Theorem 1 is described in

terms of the common and local components of the control. We
can write it in terms of the control actions of the agents as
follows. Let

x̂(t|c) = E[x(t) | Ic(t)] and x̂(t|i) = E[x(t) | Ii(t)]
denote the major and ith minor agent’s MMSE estimate of the
state. Equations (16) and (24) imply the following.

Lemma 11: The common and local information based es-
timates ẑ(t|c) and z̆�i (t|i) are related to the major and minor
agents’ MMSE estimates as follows:

ẑ(t|c) = x̂(t|c) and z̆�i (t|i) = x̂i(t|i)− x̂i(t|c).
Proof: (P8) implies that x̂(t|c) = ẑ(t|c). Moreover, since

xc
i (t) is a function of Ic(t) (and, therefore, a function of Ii(t)),

we have

x̂i(t|i)− x̂i(t|c) = xc
i (t) + E[x�

i(t) + xs
i (t) | Ii(t)]

− xc
i (t)− E[x�

i(t) + xs
i (t) | I0(t)]

= z̆�i (t|i)(t). �
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Let x̂i(t|c) and x̂i(t|i) denote the ith element of x̂(t|c) and
x̂(t|i), respectively. Moreover, let fi,t denote the conditional
density of xi(t) given Ii(t). Note that x̂i(t|i) is the mean of fi,t.

Theorem 2: The optimal control strategy of Problem 1 is
unique and is given by

u0(t) = − Lc
0(t)x̂(t|c) (32a)

and for all i ∈ N,

ui(t) = − Lc
i (t)x̂(t|c)− L�

i(t)(x̂i(t|i)− x̂i(t|c)) (32b)

where Lc
i (t) denote the ith row of Lc(t). The major agent’s

MMSE estimate can be recursively updated as follows: x̂(1|c) =
vec(x1(1), 0, . . . , 0) and

x̂(t+ 1|c) = A

⎡
⎢⎢⎢⎢⎣

x0(t)

x̂1(t|c)
...

x̂n(t|c)

⎤
⎥⎥⎥⎥⎦+B

⎡
⎢⎢⎢⎢⎣

u0(t)

uc
1(t|c)

...

uc
n(t|c)

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
w0(t)

0
...

0

⎤
⎥⎥⎥⎥⎦ (33)

where

w0(t) = x0(t+ 1)−A00x0(t)−B00u0(t)

anduc
i (t|c) = −Lc

i (t)x̂(t|c). Furthermore, under Assumption 2,
the ith minor agent’s MMSE estimate is given by

x̂i(t|i) = xc
i (t) + x�

i(t) +

∫
xs
i (t)fi,t(x

s
i,t)dx

s
i (t) (34)

where the conditional density fi,t may be updated using the
following Bayesian filter: for any xs

i (t),

fi,t(x
s
i (t))

=
βi(t)

∫
γi(t)γ0(t)fi,t−1(x

s
i (t− 1))dxs

i (t− 1)∫
βi(t)

∫
γi(t)γ0(t)fi,t−1(xs

i (t− 1))dxs
i (t− 1)dxs

i (t)
(35)

where

βi(t) = νi,t(y
s
i (t)− Ciix

s
i (t))

γ0(t) = ϕ0,t

(
xs
0(t)−A00x

s
0(t− 1)

)
γi(t) = ϕi,t

(
xs
i (t)−Aiix

s
i (t− 1)−Ai0x

s
0(t− 1)

)
andϕi,t and νi,t are the distributions of the noise variables wi(t)
and vi(t), respectively.

Proof: The structure of optimal policies follows from
Lemma 11 and Theorem 1.

We establish the update of the major agent’s MMSE estimate
in two steps. First note that

x̂0(t+ 1|c) = E[x0(t+ 1)|Ic(t+ 1)] = x0(t+ 1) (36)

because x0(t+ 1) is part of Ic(t+ 1). This proves the zeroth
component of (33). Next, for any i ∈ N ,

x̂i(t+ 1|c) = E[xi(t+ 1)|Ic(t+ 1)]

(a)
= E[Ai0x0(t) +Bi0u0(t) +Aiixi(t) +Biiui(t)|Ic(t+ 1)]

(b)
= Ai0x0(t) +Bi0u0(t) + E[Aiixi(t) +Biiui(t)|Ic(t)]
= Ai0x0(t) +Aiix̂i(t|c) +Bi0u0(t) +Biiu

c
i (t) (37)

where (a) is because wi(t) is zero mean and independent of
Ic(t+ 1) and (b) follows from the following:

1) x0(t) and u0(t) are part of Ic(t+ 1) so can be taken out
of the expectation;

2) Ic(t+ 1) is equivalent to (Ic(t), u0(t), x0(t+ 1))which,
in turn, is equivalent to (Ic(t), u0(t), w0(t)). Now,

E[Aiixi(t) +Biiui(t)|Ic(t), u0(t), w0(t)]

= E[Aiixi(t) +Biiui(t)|Ic(t)]
becauseu0(t) can be removed from the conditioning since
it is a function of Ic(t) and w0(t) can be removed from
the conditioning because it is independent of xi(t) and
ui(t).

This proves the ith component of (33).
Finally, to compute x̂i(t|i), we use the state split in (13b). We

have

x̂i(t|i) = E[xi(t)|Ii(t)]
= E[xc

i (t) + x�
i(t) + xs

i (t)|Ii(t)]
(a)
= xc

i (t) + x�
i(t) + E[xs

i (t)|Ii(t)]
(b)
= xc

i (t) + x�
i(t) + E[xs

i (t)|Isi (t)],
where in (a), we use the fact that xc

i (t) and x�
i(t) are measurable

functions of Ii(t), and in (b), we use Lemma 2. Now, we
consider the update of the conditional density. With a slight abuse
of notation, we use P(ysi (t)|xs

i (t)) to denote the conditional
density of ysi (t) given xs

i (t) and similar interpretations hold for
other terms. Consider

fi,t(x
s
i (t)) = P(xs

i (t)|Isi (t))

=

∫
P(xs

i (t), x
s
i (t− 1)|Isi (t))dxs

i (t− 1). (38)

Substituting Isi (t) = (Isi (t− 1), ysi (t), x
s
0(t)) in (38) and using

Bayes rule, we get that fi,t(xs
i (t)) is equal to∫

P(ysi (t), x
s
i (t), x

s
0(t)|Isi (t))dxs

i (t− 1)∫∫
P(ysi (t), x

s
i (t), x

s
0(t)|Isi (t))dxs

i (t− 1)dxs
i (t)

. (39)

Now consider

P(ysi (t), x
s
i (t), x

s
0(t)|Isi (t))

= P(ysi (t)|xs
i (t))

× P(xs
i (t)|xs

0(t− 1), xs
i (t− 1))

× P(xs
0(t)|xs

0(t− 1))× P(xs
i (t− 1)|Isi (t− 1)). (40)

Substituting (40) into (39) gives the updated equation (35). �

B. Implementation of the Optimal Control Strategy

Based on Theorem 2, the optimal control strategy can be
implemented as follows.

1) Computation of the Gains: Before the system starts
running, the agents perform the following computations.

1) All agents solve the Riccati equation (19) and compute
the gainsLc(t) using (21). The major agent stores the row
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Lc
0(t) while minor agent i stores the row Lc

i (t). For ease
of reference, we repeat the equations here:

Sc(t) = R(Sc(t+ 1), A,B,Q,R)

Lc(t) = G(Sc(t+ 1), A,B,R).

Note that these are global equations that depend on the
dynamics and the cost of the complete system.

2) Minor agent i solves the Riccati equation (20) and com-
putes and stores the gains L�

i(t) using (22). For ease of
reference, we repeat them here

S�
i (t) = R(S�

i (t+ 1), Aii, Bii, Qii, Rii)

L�
i(t) = G(S�

i (t+ 1), Aii, Bii, Rii).

Note that these are local equations that depend on the
local dynamics and the cost of the minor agent i.

2) Filtering and Tracking of Different Components of the
State: Once the system is running, the agents keep track of the
following components of the state and their estimates:

1) All agents keep track of the major agent’s MMSE
estimate using (33), which we repeat here: x̂(1|c) =
vec(x1(0), 0, . . . , 0) and

x̂(t+ 1|c) = A

⎡
⎢⎢⎢⎢⎣

x0(t)

x̂1(t|c)
...

x̂n(t|c)

⎤
⎥⎥⎥⎥⎦+B

⎡
⎢⎢⎢⎢⎣

u0(t)

uc
1(t|c)

...

uc
n(t|c)

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
w0(t)

0
...

0

⎤
⎥⎥⎥⎥⎦ .

2) Agent i keeps track of the density fi,t of xi(t) given Isi (t)
using the Bayesian filter (35) and computes the mean
x̂i(t|i) of this density. Note that the Bayesian filter (35)
does not depend on the control strategy.

3) Implementation of the Control Strategies: Finally, the
agents choose the control actions as follows.

1) The major agent chooses u0(t) using (32a), which we
repeat as follows:

u0(t) = uc
0(t) = −Lc

0(t)x̂(t|c).
2) The minor agent chooses ui(t) using (32b), which we

repeat as follows:

ui(t) = uc
i (t) + u�

i(t)

= −Lc
i (t)x̂(t|c)− L�

i(t)(x̂i(t|i)− x̂i(t|c)).

C. Special Case of State Feedback

Consider the special case of the model when each minor agent
observes its state perfectly. This corresponds to Cii = I and
vi(t) = 0. The information structure remains the same as before.
In this case, the result of Theorem 2 simplifies as follows. The
optimal control action of the major agent is

u0(t) = Lc
0(t)x̂(t|c) (41)

and that of the ith minor agent, i ∈ N , is

ui(t) = Lc
i (t)x̂(t|c) + L�

i(t)(xi(t)− x̂i(t|c)) (42)

where x̂(t|c) = E[x(t)|I0(t)]. A similar result for only one
minor agent was derived in [19].

The following remarks are in order.
1) The major agent observes its local state and the minor

agents observe their local state and the state of the major
agent. Nonetheless, the optimal control strategy involves
the major agent’s MMSE estimate of the global state.

2) As argued before, the major agent’s MMSE estimate of
the state of the system evolves according to a linear filter.
Therefore, the optimal control action is a linear function
of the data.

3) In light of the above result, we may view the optimal solu-
tion for partial output feedback as a certainty equivalence
solution. In particular, the optimal strategy (32b) of the
minor agent in partial output feedback is the same as the
optimal strategy in state feedback where the state xi(t) is
replaced by the MMSE estimate of the state.

V. MAIN RESULTS FOR PROBLEM 2

The main idea of this section is the same as that of Section IV;
however, instead of defining ẑ(t|c) and z̆�i (t|i) in terms of
expectation (which can be nonlinear), we define them in terms
of Hilbert space projections that are linear. We first start with an
overview of basic results for Hilbert space projections.

A. Preliminaries of Hilbert Space Projections

Given zero-mean random variables x and y defined on a
common probability space, the least linear mean square estimate
(LLMS)L[x|span (y)] is the projection of x on toY = span (y)
and satisfies the orthogonal projection property: for any z ∈ Y ,

E[(x− L[x|Y ])zᵀ] = 0 and E[(x− L[x|Y ])ᵀz] = 0. (43)

For any arbitrary but fixed strategy g ∈ GA and any agent i ∈
N0, define Hi(t) = span {Ii(t)} and Hs

i (t) = span {Isi (t)}.
We can split Hi(t) and Hs

i (t) into orthogonal subspaces

Hi(t) = H0(t)⊕ H̃i(t) and Hs
i (t) = Hs

0(t)⊕ H̃s
i (t)

where H̃i(t) is the orthogonal complement ofH0(t)with respect
to Hi(t) and a similar interpretation holds for H̃s

i (t). Thus, for
any random variable v

L[v | Hi(t)] = L[v | H0(t)] + L[v | H̃i(t)] (44)

and similar interpretations holds for projections on Hs
i (t).

Now, define W0(t) = span{x0(1), w0(1:t− 1)}, and,
for any minor agent i ∈ N , Wi(t) = span{xi(1), wi(1:t−
1), vi(1:t)}. An immediate implication of Lemma 2 is the
following.

Lemma 12: For any g ∈ GA and i ∈ N0, Hi(t) = Hs
i (t);

therefore, H̃i(t) = H̃s
i (t). Furthermore, for all t and i ∈ N ,

1) H0(t) = Hs
0(t) = W0(t).

2) Hi(t) = Hs
i (t) ⊆ W0(t)⊕Wi(t).

3) H̃i(t) = H̃s
i (t) ⊆ Wi(t).

Proof: By construction, xs
0(t) ∈ W0(t) and, it is easy to

show that w0(t− 1) ∈ Hs(t). Hence, Hs
0(t) = W0(t). Simi-

larly, by construction, ysi (t) ∈ W0(t)⊕Wi(t). Hence,Hs
i (t) ⊆

W0(t)⊕Wi(t). Finally, consider any vector bi ∈ H̃s
i (t). Then,

Authorized licensed use limited to: McGill University. Downloaded on August 01,2023 at 19:10:52 UTC from IEEE Xplore.  Restrictions apply. 



AFSHARI AND MAHAJAN: DECENTRALIZED LINEAR QUADRATIC SYSTEMS WITH MAJOR AND MINOR AGENTS AND NON-GAUSSIAN NOISE 4675

bi ∈ W s
i (t) as each element of H̃s

i is a specific linear function
of Wi(t) due to linear dynamics of the system. �

Lemma 13: For any strategy g ∈ GA,

uc(t) = E[u(t) | Ic(t)] ∈ Hs
0(t)

u�
i(t) = ui(t)− uc(t) ∈ H̃s

i (t).

Proof: For any strategy g ∈ GA, ui(t) ∈ Hi(t) = Hs
i (t) =

Hs
0(t)⊕ H̃s

i (t). Thus, by Lemma 12, ui(t) ∈ W0(t)⊕Wi(t),
which are independent subspaces. Therefore, the result follows
from orthogonal projection (43) and independence ofW0(t) and
Wi(t). �

Proof: For any strategy g ∈ GA, ui(t) ∈ Hi(t) = Hs
i (t) =

Hs
0(t)⊕ H̃s

i (t). Hence, there exist unique vectors ai(t) ∈
Hs

0(t) and bi(t) ∈ H̃s
i (t), such that ui(t) = ai(t) + bi(t).

We have

E[ui(t) | Ic(t)] (a)= E[ai(t) + bi(t) | Ic(t)]
(b)
= E[ai(t) | Ic(t)] (c)= ai(t)

where (a) uses the unique orthogonal decomposition ui(t) =
ai(t) + bi(t), (b) usesE[bi(t) | Ic(t)] = 0 from Lemma 12, Part
3, and (c) uses E[ai(t) | Ic(t)] = ai(t) from Lemma 12, Part
2. Hence, uc(t) = ai(t) ∈ Hs

0(t). Moreover, u�
i(t) = u(t)−

uc(t) = u(t)− ai(t) = bi(t) ∈ H̃s
i (t). �

Lemma 14: For any g ∈ GA, we have the following.
S1) For any τ < t, uc(τ) ∈ H0(τ) ⊂ H0(t).
S2) For any τ ≤ t, xc(τ) ∈ H0(t).
S3) For any τ ≤ t, L[x�

i(τ)|H0(t)] = 0.
Proof: Using (13), we have the following.
S1) From the results of Lemma 13, for any τ < t, uc(τ) ∈

H0(τ) where H0(τ) ⊂ H0(t).
S2) For any τ ≤ t, by construction,xc(τ) is a linear function

of uc(1:τ − 1). Hence, by (S1), xc(τ) ∈ H0(τ − 1) ⊂
H0(t).

S3) For any τ ≤ t, by construction, x�
i(τ) is a linear func-

tion of u�
i(1:τ − 1). Hence, it belongs to H̃i(t) by

Lemma 13. �

B. Orthogonal Projection

We use the same notation as in Section IV with the under-
standing that the terms are defined differently. We do not use any
result from Section IV here, so the overlap of notation should
not cause any confusion.

As explained in Remark 1, minimizing J(g) is equivalent
to minimizing Jc(g) +

∑
i∈N J�

i (g) defined in Lemma 7. To
simplify Jc(g) +

∑
i∈N J�

i (g), define

ẑ(t|c) := L[zc(t)|H0(t)] (45)

z̆�i (t|i) := L[z�i (t)|Hi(t)]− L[z�i (t)|H0(t)]. (46)

Equations (44) and (46) imply that

z̆�i (t|i) = L[z�i (t)|H̃i(t)]. (47)

Define the estimation errors

z̃c(t) = zc(t)− ẑ(t|c), z̃�i (t) = z�i (t)− z̆�i (t|i).

Lemma 15: For any strategy g ∈ GA the properties (C1) and
(C3)–(C6) hold for ẑ(t|c), z̆�i (t|i), z̃c(t), and z̃�i (t) defined
above.

The proof is presented in Appendix G. An implication of the
above is the following.

Lemma 16: For any strategy g ∈ GA, the results of Lemma 9,
hold with ẑ(t|c) and z̆�i (t|i) defined by (45) and (46).

Proof: As mentioned in the proof of Lemma 9, (25) follows
from (C3) and (C4) and is equivalent to (27) and (28).

Equation (26) follows from (C5) and (C6) and is equivalent
to (29) and (30). �

An immediate implication of Lemma 16 is the following.
Lemma 17: For any strategy g ∈ GA, the results of Lemma 10

hold with ẑ(t|c) and z̆�i (t|i) defined by (45) and (46).
Remark 3: The terms J̃c and J̃�

i are control-free and de-
pend only on the primitive random variables. Combined with
Remark 1, this implies that minimizing J(g) is equivalent to
minimizing Ĵc(g) +

∑
i∈N J̆ i(g).

C. Main Results

Theorem 3: The optimal control strategy of Problem 2 is
unique and is given by

uc(t) = −Lc(t)ẑ(t|c) (48a)

u�
i(t) = −L�

i(t)z̆
�
i (t|i). (48b)

Furthermore, the optimal performance is given by

J∗
A := inf

g∈GA

J(g) = J̃c +
∑
i∈N

J̃�
i

where J̃c and J̃�
i are defined in Lemma 10 with ẑ(t|c) and z̆�i (t|i)

defined by (45) and (46).
Proof: The proof relies on symmetric property and positive

definiteness of both Δc(t) and Δ�
i(t) and is the same as that of

Theorem 1. �
Now let

x̂(t|c) = L[x(t) | Ic(t)] and x̂(t|i) = L[x(t) | Ii(t)]
denote the major and the ith minor agent’s LLMS estimate of
the state. Let x̂i(t|c) and x̂i(t|i) denote the ith element of x̂(t|c)
and x̂(t|i), respectively. Equations (16), (45), and (46) imply the
following.

Lemma 18: The common and local information based es-
timates ẑ(t|c) and z̆�i (t|i) are related to the major and minor
agents’ LLMS estimates as follows:

ẑ(t|c) = x̂(t|c) and z̆�i (t|i) = x̂i(t|i)− x̂i(t|c).
Proof: First observe that (P8) implies x̂(t|c) = ẑ(t|c) ∈

H0(t). Now consider that

x̂(t|i)− x̂(t|c) (a)
= xc

i (t) + L[x�
i(t) + xs

i (t) | Hi(t)]

− xc
i (t)− L[x�

i(t) + xs
i (t) | H0(t)]

(b)
= L[x�

i(t) + xs
i (t) | H̃i(t)] + L[x�

i(t) + xs
i (t) | H0(t)]

− L[x�
i(t) + xs

i (t) | H0(t)]

= z̆�i (t|i)
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where (a) follows from (S2) and (b) uses (44). �
Theorem 4: The optimal control strategy of Problem 2 is

unique and is given by

u0(t) = − Lc
0(t)x̂(t|c) (49a)

and for all i ∈ N,

ui(t) = − Lc
i (t)x̂(t|c)− L�

i(t)(x̂i(t|i)− x̂i(t|c)) (49b)

where Lc
i (t) denote the ith row of Lc(t). The major agent’s

LLMS estimate follows the same recursive update rule (33) as
the major agent’s MMSE estimate. Furthermore, the ith minor
agent’s LLMS estimate is given as follows: x̂i(t|0) = 0 and for
t > 1:

x̂i(t|i) = Aiix̂i(t− 1|i) +Ai0x0(t− 1)

+Biiui(t− 1) +Bi0u0(t− 1) +Ki(t)ỹi(t) (50)

where

ỹi(t) = yi(t)− Cii

(
Ai0x0(t− 1) +Aiix̂i(t− 1|i)

+Bi0u0(t− 1) +Biiui(t− 1)
)

and Ki(t) is computed by the following standard recursive least
square equations: Ki(1) = 0, and for t > 1,

Ki(t) = K(Pi(t− 1), Aii, Cii,Σ
w
i ,Σ

v
i ). (51)

Finally in the above equation, Pi(t) = var(xi(t)− x̂i(t|i)) and
can be recursively updated as follows. Pi(1) = Σx

i , and for t >
1,

Pi(t) = F(Pi(t− 1), Aii, Cii,Σ
w
i ,Σ

v
i )

Proof: The structure of optimal policies for the major agent
follows from Lemma 18 and Theorem 3.

The update of the major agent’s MMSE estimate in Theorem 2
is linear. Hence, the major agent’s LLMS estimate is the same as
the MMSE estimate and follows the same recursive equations.

To prove the update of the ith agent’s LLMS estimate, we split
the state of agent i into two components:xi(t) = xg

i (t) + xw
i (t),

where

xg
i (t+ 1) = Aiix

g
i (t) +Ai0x0(t) +Biiui(t) +Bi0u0(t)

xw
i (t+ 1) = Aiix

w
i (t) + wi(t).

Based on this splitting of state, we split the observation of agent
i ∈ N into two components as follows: yi(t) = ygi (t) + ywi (t),
where

ygi (t) = Ciix
g
i (t), and ywi (t) = Ciix

w
i (t) + vi(t).

Observe that xw
i (t) and ywi (t) do not depend on the control

actions at agent i ∈ N . Now, we have

x̂i(t|i) = L[xi(t)|Ii(t)] (a)= xg
i (t) + L[xw

i (t)|Ii(t)]
(b)
= xg

i (t) + L[xw
i (t)|xw

0 (1:t), y
w
i (1:t)]

(c)
= xg

i (t) + L[xw
i (t)|ywi (1:t)] (52)

where (a) follows from the state split to xg
i (t) and xw

i (t),
(b) follows from static reduction argument similar to the one
presented in Lemma 2, and (c) follows from Assumption 1.

Let us define x̂w
i (t|i) = L[xw

i (t)|ywi (1:t)]. Observe that
x̂w
i (t|i) can be recursively updated using the standard LLMS

updates [4] as follows:

x̂w
i (t|i) = Aiix̂

w
i (t− 1|i) +Ki(t)ỹ

w
i (t) (53)

where

ỹwi (t) = ywi (t)− CiiAiix̂
w
i (t− 1|i)

and Ki(t) is given by (51) where Pi(t) = var(xw
i (t)−

x̂w
i (t|i)) = var(xi(t)− x̂i(t|i)), which follows from (52). Note

that (52) also implies that

ỹwi (t) = yi(t)− ygi (t)− CiiAiix̂
w
i (t− 1|i)

= yi(t)− Cii(x
g
i (t) +Aiix̂

w
i (t− 1|i))

= ỹi(t) (54)

where we use the dynamics of xg
i (t) and (52) to simplify the last

step.
Finally, to show the recursive form of x̂i(t|i), substitute (53)

in (52), to get

x̂i(t|i) = xg
i (t) + x̂w

i (t|i)
= Aiix

g
i (t− 1) +Ai0x0(t− 1) +Biiui(t− 1)

+Bi0u0(t− 1) +Aiix̂
w
i (t− 1|i) +Ki(t)ỹ

w
i (t)

= Aiix̂i(t− 1|i) +Ai0x0(t− 1) +Biiui(t− 1)

+Bi0u0(t− 1) +Ki(t)ỹ
w
i (t).

The result then follows from substituting (54) in the above
equation. �

Remark 4: The best linear strategies derived in Theorem 4
have a similar structure to the best linear strategies derived in [21]
using spectral factorization techniques for a model with only one
minor agent and stable A.

Remark 5: Due to the separation of estimation and control,
the difference in performance J∗ of the optimal policy derived
in Theorem 2 and the performance J∗

A of the best linear policy
derived in Theorem 4 depends on the difference in error covari-
ance between MMSE and LLMS filters. This error covariance
depends on the exact distribution of the non-Gaussian noise.
There is evidence to suggest that MMSE filters can perform
significantly better than LLMS filters in some settings (low
signal-to-noise ratio with a noise that differs significantly from
Gaussian) [36].

D. Implementation of the Optimal Control Strategy

Remarkably, the implementation of the best linear control
strategy is exactly the same as that of the optimal strategy with
one difference: The minor agents use a recursive least squares
filter instead of a Bayesian filter to update the estimate x̂i(t|i).
The rest of the implementation is the same as described in
Section IV-B.
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VI. DISCUSSION AND CONCLUSION

We consider a decentralized linear quadratic system with a
major agent and a collection of minor agents with a partially
nested information structure and partial output feedback. The
key feature of our model is that we do not assume that the noise
has a Gaussian distribution. Therefore, the optimal strategy is
not necessarily linear. Nonetheless, we show that the optimal
strategy has an elegant structure and the following salient fea-
tures.

1) The common component uc(t) of the control actions
is a linear function of the major agent’s MMSE es-
timate x̂(t|c) of the system state. The MMSE esti-
mate x̂(t|c) can be updated using a linear filter and
the corresponding gains Lc(t) are computed from the
solution of a “global” Riccati equation.

2) The local component u�
i(t) of the control action at minor

agent i is a linear function of offset between the minor
agent’s MMSE estimate x̂i(t|i) of the minor agent’s state
and the major agent’s estimate x̂i(t|c) of the minor agent’s
state. The corresponding gains L�

i(t) are computed from
the solution of a “local” Riccati equation.

3) The minor agent’s MMSE estimate x̂i(t|i) is, in general,
a nonlinear function of the data Ii(t). Thus, the optimal
strategy of the minor agent is a nonlinear function of
its data. Nonetheless, the update (35) of the conditional
density does not depend on the control strategy. Thus,
there is a separation between estimation and control.

Interestingly, the optimal strategy is closely related to the best
linear strategy. The best linear strategy has the following salient
features.

1) Since the major agents’ MMSE estimate x̂(t|c) is a linear
function of the data, the major agent’s LLMS estimate is
the same as the MMSE estimate. Therefore, the common
component uc(t) of the control actions remains the same
as the optimal controller.

2) The minor agent’s LLMS estimate x̂i(t|i) is updated
according to the recursive least squares filter rather than
the Bayesian filter used for updating MMSE estimates.

3) Therefore, the structure of the best linear controller is
the same as the structure of the optimal control with the
exception that the minor agent’s MMSE estimate of its
local state are replaced by its LLMS estimates!

In light of the results presented in this article, a natural ques-
tion is whether these salient features are specific to the model
presented in this article or they hold for more general models
with delayed sharing of information and coupling between minor
agents as well. We hope to be able to address these questions in
the future.

APPENDIX A
PROOF OF LEMMA 1

We prove each property separately.
P1) u0(t) is a function of I0(t) which, by (10), equals Ic(t).

Thus, uc
0(t) = u(t), and hence, u�

0(t) = 0.
P2) This follows from (P1) and the fact thatA andB matrices

are block lower triangular.

P3) This follows from the definition of u�
i(t).

P4) This follows from the following:

E[uc(t)ᵀMu�(t)]
(a)
= E[E[uc(t)ᵀMu�(t)|Ic(t)]]
(b)
= E[uc(t)ᵀME[u�(t)|Ic(t)]] = 0

where (a) uses the towering property and (b) uses (P3).
P5) This follows from (P4) and the smoothing property of

conditional expectation.
P6) By construction, xc(t) is a function of uc(1:t− 1),

which, by definition, is a function of Ic(t).

APPENDIX B
PROOF OF LEMMA 2

For notational convenience, we use SA �SB to denote that
set SA is a function of set SB . Note that the relation �is
transitive.

We consider the cases i = 0 and i 
= 0 separately. For both
cases, we will show that Ii(t) �Isi (t) and Isi (t) �Ii(t).

For i = 0, first note that (P2) implies

x0(t) = xc
0(t) + xs

0(t). (55)

By construction uc
0(t) �u0(1:t− 1) ⊂ I0(t). Thus, xs

0(t) =
x0(t)− xc

0(t), both of which are functions of I0(t). Hence,
Is0(t) �I0(t).

We prove the reverse implication by induction. Note that
x0(1) = xs

0(1). Thus, I0(1) �Is0(1). This forms the basis of
induction. Now assume that I0(t) �Is0(t) and consider I0(t+
1) = {I0(t), x0(t+ 1), u0(t)}. Since u0(t) �I0(t) and, by the
induction hypothesis, I0(t) �Is0(t), we have u0(t) �Is0(t).
Moreover, by (55), xc(t) = x0(t)− xs

0(t) and, therefore, by the
induction hypothesis, xc(t) �Is0(t). Since both u0(t) �Is0(t)
and xc(t) �Is0(t), we have xc

0(t+ 1) �Is0(t), and hence,
xc
0(t+ 1) �I0(s). By (55), x0(t+ 1) = xc

0(t+ 1) + xs
0(t+

1). Hence, x0(t+ 1) �Is0(t+ 1). Thus, we have shown that
each components of I0(t+ 1) = {I0(t), x0(t+ 1), u0(t)} �
Is0(t+ 1). Thus, by induction, I0(t) �Is0(t).

We have thus shown that Is0(t) �I0(t) and I0(t) �Is0(t).
This proves that I0(s) ≡ Is0(t).

Now consider i 
= 0. By construction, xc
i (t) + x�

i(t) �
{u0(1:t− 1), ui(1:t− 1)} ⊂ Ii(t). Thus, yci (t) + y�i (t) �
Ii(t) and, hence ysi (t) = yi(t)− yci (t)− y�i (t) is a function of
Ii(t). We have already shown that xs

0(1:t) �x0(1:t). Thus,
Isi (t) �Ii(t).

We prove the reverse implication by induction. Note that
yci (1) = y�i (1) = 0. Thus, yi(1) = ysi (1) and, as shown be-
fore x0(1) = xs

0(1). Thus, Ii(1) �Isi (1). This forms the ba-
sis of induction. Now assume that Ii(t) �Isi (t) and consider
Ii(t+ 1) = {Ii(t), x0(t+ 1), u0(t), yi(t+ 1), ui(t)}. We have
already shown that x0(t+ 1) and u0(t) are functions of
Is0(t+ 1) ⊂ Isi (t+ 1). For ui(t), observe that ui(t) �Ii(t)
and therefore, by the induction hypothesis, ui(t) �Isi (t).
As was the case for i = 0, we can argue that xc

i (t+ 1) +
x�
i(t+ 1) �Isi (t), and therefore, yci (t+ 1) + y�i (t+ 1) �

Isi (t). Thus, from (14), yi(t+ 1) �Isi (t+ 1). Thus, by induc-
tion Ii(t) �Isi (t).
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We have thus shown that Isi (t) �Ii(t) and Ii(t) �Isi (t).
This proves that Ii(s) ≡ Isi (t).

Finally, if g ∈ GA, all the relationships �in the above ar-
gument are linear functions. Thus, Ii(t) and Isi (t) are linear
functions of each other.

APPENDIX C
PROOF OF LEMMA 3

We prove each property separately.
P7) For τ = t, the result is the same as (P4). Now consider

τ < t. Recall that Ic(t) = I0(t). Thus, by Lemma 2

E[u�
i(t)|Ic(t)] = E[u�

i(t)|Is0(t)].
Now observe that

Is0(t) = {xs
0(1:t)} ≡ {xs

0(1:τ), w0(τ :t− 1)}
= {Is0(τ), w0(τ :t− 1)}.

Thus

E[u�
i(τ)|Is0(t)] = E[u�

i(τ)|Is0(τ), w0(τ :t− 1)]

(a)
= E[u�

i(τ)|Is0(τ)]
(b)
= E[u�

i(τ)|I0(τ)]
(c)
= 0

where (a) holds because u�
0(τ) is independent of future

noise w0(τ :t− 1), (b) uses Lemma 2, and (c) follows
from (P4).

P8) Combining (13b) and (P1), we get

x�
i(τ) =

τ−1∑
σ=1

Aσ−1
ii Biiu

�
i(τ − σ).

Hence, the result follows from (P7).
P9) By the smoothing property of conditional expectation,

we have

E[(x�
i(t))

ᵀMxs
0(t)] = E

[
E[(x�

i(t))
ᵀMxs

0(t)|Is0(t)]
]

(a)
= E

[
E[(x�

i(t))
ᵀ|Is0(t)]Mxs

0(t)
]

(b)
= 0

where (a) follows because xs
0(t) is part of Is0(t) and

(b) follows from Lemma 2 and (P8).
P10) By the smoothing property of conditional expectation,

we have

E[(x�
i(t))

ᵀMxc(t)] = E
[
E[(x�

i(t))
ᵀMxc(t)|Ic(t)]]

(a)
= E

[
E[(x�

i(t))
ᵀ|Ic(t)]Mxc(t)

]
(b)
= 0

where (a) follows because xc(t) is a function of Ic(t)
and (b) follows from (P8).

P11) By the smoothing property of conditional expectation,
we have

E[(u�
i(t))

ᵀMxs
0(t)] = E

[
E[(u�

i(t))
ᵀMxs

0(t)|Ic(t)]
]

(a)
= E

[
E[(u�

i(t))
ᵀ|Ic(t)]Mxs

0(t)
]

(b)
= 0

where (a) follows because xs
0(t) is in Is0(t), and there-

fore, a function of Ic(t) and (b) follows from (P4).

APPENDIX D
PROOF OF LEMMA 4

We prove each part separately.
1) Arbitrarily fix a strategy g ∈ G and define the following

σ-algebras:

F0(t) = σ(x0(1), w0(1:t− 1))

Fi(t)=σ(x0(1), xi(1), w0(1:t−1), wi(1:t−1)), i ∈ N.

It follows from Assumption 1 that {Fi(t)}i∈N are condi-
tionally independent givenF0(t). From an argument sim-
ilar to the one used in the proof of Lemma 2, we can show
that xi(t) is function (which may depend on the strategy
g) of (x0(1), xi(1), w0(1:t− 1), wi(1:t− 1)). Thus, for
any Borel measurable subset Di(t) of Rt(di

x+di
u), the

eventEi(t) = {(xi(1:t), ui(1:t)) ∈ Di(t)} isFi(t)mea-
surable.
Similarly, from an argument similar to Lemma 2, we can
show that σ(Ic(t)) = σ(Is0(t)) = F0(t). Thus,

P ({(xi(1:t), ui(1:t)) ∈ Di(t)}i∈N |Ic(t))

= P ({Ei(t)}i∈N |F0(t)) =

n∏
i=1

P (Ei(t)|F0(t))

where the last equality follows from the fact that
{Fi(t)}i∈N are conditionally independent given F0(t).

2) We prove this by induction. For t = 1, xs
i (1) = xi(1) and

Is0(1) = {xs
0(1)} = {x0(1)}. By Assumption 1,xi(1) ⊥⊥

xj(1) | x0(1). Thus, xs
i (1) ⊥⊥ xs

j(1) | xs
0(1). This forms

the basis of induction. Now assume that xs
i (1:t) ⊥⊥

xs
j(1:t) | Is0(t). From the dynamics (13c), we have

xs
0(t+ 1) = A00x

s
0(t) + w0(t)

xs
i (t+ 1) = Aiix

s
i (t) +Ai0x

s
0(t) + wi(t), i ∈ N.

By Assumption 1, w0(t) ⊥⊥ wi(t) ⊥⊥ wj(t). This, com-
bined with the induction hypothesis implies that
xs
i (1:t+ 1) ⊥⊥ xs

j(1:t+ 1) | Is0(t+ 1). Hence, the result
holds by induction.

3) Recall that x�
i(t) = xi(t)− xc

i (t)− xs
i (t) and u�

i(t) =
ui(t)− uc

i (t). Since xc
i (t) and uc

i (t) are functions of
Ic(t), the result follows from the result of the previous
two parts.

APPENDIX E
PROOF OF LEMMA 5

First consider (17). Since x(t) = zc(t) + x�(t), we have

E
[
x(t)ᵀQx(t)

]
= E

[
zc(t)ᵀQzc(t) + x�(t)ᵀQx�(t)

+ 2x�(t)ᵀQzc(t)
]
. (56)
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Now from (P2) and Lemma 4, we have

E[x�(t)ᵀQx�(t)] =
∑
i∈N

E[x�
i(t)

ᵀQiix
�
i(t)]. (57)

From (P10), we have

E[x�(t)ᵀQzc(t)] = E[x�(t)ᵀQxs(t)]

=
∑
i∈N

E[x�
i(t)

ᵀQiix
s
i (t)] (58)

where the last equality follows from (P2), (P9), and Lemma 4.
Substituting (57) and (58) into (56) and completing the

squares, we get (17).
Now consider (18). From (P4), we get

E
[
u(t)ᵀRu(t)

]
= E

[
uc(t)ᵀRuc(t) + u�(t)ᵀRu�(t)

]
. (59)

From (P1) and Lemma 4, we get

E[u�(t)ᵀRu�(t)] =
∑
i∈N

E[u�
i(t)

ᵀRiiu
�
i(t)]. (60)

Substituting (60) into (59), we get (18).

APPENDIX F
PROOF OF LEMMA 8

We prove each property separately.
C1) For z̃c(t), observe that

ẑ(t|c)=E[xc(t) + xs(t)|Ic(t)]=xc(t) + E[xs(t)|Is0(t)]
where the second equality uses (P6) and Lemma 2. Thus

z̃c(t) := zc(t)− ẑ(t|c) = xs(t)− E[xs(t)|Is0(t)]
which is control-free and depends only on the primitive
random variables.
For z̃�i (t), observe that

z̆�i (t|i) = E[z�i (t)|Ii(t)]− E[z�i (t)|I0(t)]
= x�

i(t) + E[xs
i (t)|Ii(t)]

− E[x�
i(t)|I0(t)]− E[xs

i (t)|I0(t)]
(a)
= x�

i(t) + E[xs
i (t)|Isi (t)]− E[xs

2(t)|Is0(t)]
where (a) uses Lemma 2 and (P8). Thus

z̃�i (t) = z�i (t)− z̆�i (t|i)
= xs

i (t)− E[xs
i (t)|Isi (t)] + E[xs

i (t)|Is0(t)]
which is control-free and depends only on the primitive
random variables.

C2) Observe that

E[z̃c(t)|Ic(t)] = E[zc(t)− ẑ(t|c)|Ic(t)] = 0.

C3) This follows immediately from the fact that the error of
a mean-squared estimator is orthogonal to the estimate.

C4) Using the smoothing property we have,

E[uc(t)Mz̃c(t)] = E[E[uc(t)Mz̃c(t)|Ic(t)]]
(a)
= E[uc(t)ME[z̃c(t)|Ic(t)]] (b)= 0

where (a) uses the fact that uc(t) is measurable with
respect to the common information and (b) uses (C2).

C5) For ease of notation, define

d̂1(t) = E[z�i (t)|Ii(t)], d̃1(t) = z�i (t)− d̂1(t)

d̂2(t) = E[z�i (t)|I0(t)], d̃2(t) = z�i (t)− d̂2(t).

So, we can write

z�i (t) = d̂1(t) + d̃1(t) = d̂2(t) + d̃2(t)

z̆�i (t|i) = d̂1(t)− d̂2(t)

z̃�i (t) = z�i (t)− d̂1(t) + d̂2(t) = d̃1(t) + d̂2(t).

From the orthogonality principle, d̃1(t) ⊥ d̂1(t) and
d̃2(t) ⊥ d̂2(t). Since I0(t) is a subset of Ii(t), d̃1(t) ⊥
d̂2(t). Then, we have

E[(z̃�i (t))
ᵀz̆�i (t|i)] = E[(d̃1(t)+d̂2(t))

ᵀ(d̂1(t)−d̂2(t))]

= E[d̂2(t)
ᵀ(d̂1(t)− d̂2(t))]

= E[d̂2(t)
ᵀ(d̃2(t)− d̃1(t))]

= 0. (61)

C6) Recall the definitions of d̂1(t) and d̂2(t) from the proof
of (C5). Since z̃�i (t) = d̃1(t) + d̂2(t), we have

E[u�
i(t)

ᵀMz̃�i (t)] = E[u�
i(t)

ᵀMd̃1(t)]

+ E[u�
i(t)

ᵀMd̂2(t)].

Now, we show that both terms are zero. Consider

E[u�
i(t)

ᵀMd̃1(t)] = E[E[u�
i(t)

ᵀMd̃1(t) | Ii(t)]]
(a)
= E[u�

i(t)
ᵀME[d̃1(t) | Ii(t)]]

(b)
= 0

where (a) follows because u�
i(t) is a function of Ii(t)

and (b) follows from the definition of d̃1(t). Now con-
sider

E[u�
i(t)

ᵀMd̂2(t)] = E[E[u�
i(t)

ᵀMd̂2(t) | I0(t)]]
(c)
= E[E[u�

i(t)
ᵀ | I0(t)]Md̂2(t)]

(d)
= 0,

where (c) follows from the definition of d̂2(t) and (d)
follows from (P4).

APPENDIX G
PROOF OF LEMMA 15

We prove each property separately.
C1) For z̃c(t), observe that

ẑ(t|c)=L[xc(t)+xs(t)|H0(t)]=xc(t)+L[xs(t)|Hs
0(t)]
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where the second equality uses (S2) and Remark 12.
Thus

z̃c(t) := zc(t)− ẑ(t|c) = xs(t)− L[xs(t)|Hs
0(t)]

which is control-free and depends only on the primitive
random variables.
For z̃�i (t), observe that

z̃�i = z�i (t)− L[z�i (t)|H̃i(t)]

= x�
i(t) + xs

i (t)− L[x�
i(t) + xs

i (t)|H̃i(t)]

(a)
= xs

i (t)− L[xs
i (t)|H̃i(t)]

(b)
= xs

i (t)− L[xs
i (t)|H̃s

i (t)]

where (a) uses (S3) and (b) uses Remark 12. Thus,
z̃�i (t) is control-free and depends only on the primitive
random variables.

C3) By definition, Mẑ(t|c) is a linear function of Ic(t).
Hence, E[z̃c(t)ᵀMẑ(t|c)] = 0 by (43).

C4) Mᵀuc(t) is a linear function of uc(t) and, hence, by
(S1) belongs to H0(t). Hence, E[z̃c(t)ᵀMᵀuc(t)] = 0
by (43). Therefore, E[uc(t)ᵀMz̃c(t)] = 0.

C5) Again by definition, Mz̆�i (t|i) is a linear function of
Ĩi(t). Hence, E[z̃�i (t)

ᵀMz̆�i (t|i)] = 0 by (43).
C6) Mᵀu�

i(t) is a linear function of u�
i(t) which belongs to

H̃i(t) by Lemma 13, and, hence, is a linear function of
Ĩi(t). Therefore E[z̃�i (t)

ᵀMᵀu�
i(t)] = 0 by (43), which

results in E[u�
i(t)

ᵀMz̃�i (t)] = 0.

REFERENCES

[1] W. M. Wonham, “On the separation theorem of stochastic control,” SIAM
J. Control, vol. 6, no. 2, pp. 312–326, 1968.

[2] J. G. Root, “Optimum control of non-Gaussian linear stochastic sys-
tems with inaccessible state variables,” SIAM J. Control, vol. 7, no. 2,
pp. 317–323, 1969.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA, USA: Athena Scientific, 2000.

[4] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2000.

[5] H. S. Witsenhausen, “A counterexample in stochastic optimum control,”
SIAM J. Control, vol. 6, no. 1, pp. 131–147, 1968.

[6] Y.-C. Ho and K.-C. Chu, “Team decision theory and information struc-
tures in optimal control problems—Part I,” IEEE Trans. Autom. Control,
vol. AC-17, no. 1, pp. 15–22, Feb. 1972.

[7] T. Yoshikawa, “Dynamic programming approach to decentralized stochas-
tic control problems,” IEEE Trans. Autom. Control, vol. AC-20, no. 6,
pp. 796–797, Dec. 1975.

[8] P. Varaiya and J. Walrand, “On delayed sharing patterns,” IEEE Trans.
Autom. Control, vol. AC-23, no. 3, pp. 443–445, Jun. 1978.

[9] M. Afshari and A. Mahajan, “Multi-agent estimation and filtering for min-
imizing team mean-squared error,” IEEE Trans. Signal Process., vol. 69,
pp. 5206–5221, Aug. 2021.

[10] N. Nayyar, D. Kalathil, and R. Jain, “Optimal decentralized control with
asymmetric one-step delayed information sharing,” IEEE Trans. Control
Netw. Syst., vol. 5, no. 1, pp. 653–663, Mar. 2018.

[11] H. R. Feyzmahdavian, A. Alam, and A. Gattami, “Optimal dis-
tributed controller design with communication delays: Application
to vehicle formations,” in Proc. IEEE Conf. Decis. Control, 2012,
pp. 2232–2237.

[12] L. Lessard and A. Nayyar, “Structural results and explicit solution for
two-player LQG systems on a finite time horizon,” in Proc. IEEE Conf.
Decis. Control, 2013, pp. 6542–6549.

[13] M. Afshari and A. Mahajan, “Optimal local and remote controllers with
unreliable uplink channels: An elementary proof,” IEEE Trans. Autom.
Control, vol. 65, no. 8, pp. 3616–3622, Aug. 2020.

[14] B. Bamieh and P. G. Voulgaris, “A convex characterization of dis-
tributed control problems in spatially invariant systems with commu-
nication constraints,” Syst. Control Lett., vol. 54, no. 6, pp. 575–583,
2005.

[15] M. Rotkowitz and S. Lall, “A characterization of convex problems in
decentralized control,” IEEE Trans. Autom. Control, vol. 51, no. 2,
pp. 274–286, Feb. 2006.

[16] P. Whittle and J. Rudge, “The optimal linear solution of a symmetric
team control problem,” J. Appl. Probability, vol. 11, no. 2, pp. 377–381,
1974.

[17] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over posets:
A. state-space solution for state-feedback,” IEEE Trans. Autom. Control,
vol. 58, no. 12, pp. 3084–3096, Dec. 2013.

[18] J. Swigart and S. Lall, “An explicit state-space solution for a decentralized
two-player optimal linear-quadratic regulator,” in Proc. Amer. Control
Conf., 2010, pp. 6385–6390.

[19] J. Swigart and S. Lall, “An explicit dynamic programming solution for
a decentralized two-player optimal linear-quadratic regulator,” in Proc.
Math. Theory Netw. Syst., 2010, pp. 1443–1447.

[20] J. Swigart and S. Lall, “Optimal synthesis and explicit state-space solution
for a decentralized two-player linear-quadratic regulator,” in Proc. IEEE
Conf. Decis. Control, 2010, pp. 132–137.

[21] J. Swigart and S. Lall, “Optimal controller synthesis for a decentralized
two-player system with partial output feedback,” in Proc. Amer. Control
Conf., 2011, pp. 317–323.

[22] L. Lessard and S. Lall, “A state-space solution to the two-player decentral-
ized optimal control problem,” in Proc. Annu. Allerton Conf. Commun.,
Control, Comput., 2011, pp. 1559–1564.

[23] L. Lessard and S. Lall, “Optimal controller synthesis for the decentralized
two-player problem with output feedback,” in Proc. Amer. Control Conf.,
2012, pp. 6314–6321.

[24] L. Lessard, “Optimal control of a fully decentralized quadratic regula-
tor,” in Proc. Annu. Allerton Conf. Commun., Control, Comput., 2012,
pp. 48–54.

[25] L. Lessard and S. Lall, “Optimal control of two-player systems with output
feedback,” IEEE Trans. Autom. Control, vol. 60, no. 8, pp. 2129–2144,
Aug. 2015.

[26] J. H. Kim and S. Lall, “A unifying condition for separable two player
optimal control problems,” in Proc. IEEE Conf. Decis. Control Eur. Control
Conf., 2011, pp. 3818–3823.

[27] J. H. Kim and S. Lall, “Separable optimal cooperative control problems,”
in Proc. Amer. Control Conf., 2012, pp. 5868–5873.

[28] L. Lessard, “Decentralized LQG control of systems with a broad-
cast architecture,” in Proc. IEEE Conf. Decis. Control, 2012,
pp. 6241–6246.

[29] A. Mahajan and A. Nayyar, “Sufficient statistics for linear con-
trol strategies in decentralized systems with partial history shar-
ing,” IEEE Trans. Autom. Control, vol. 60, no. 8, pp. 2046–2056,
Aug. 2015.

[30] M. Huang, “Large-population LQG games involving a major player: The
Nash certainty equivalence principle,” SIAM J. Control Optim., vol. 48,
no. 5, pp. 3318–3353, Jan. 2010.

[31] P. E. Caines and A. C. Kizilkale, “ε-Nash equilibria for partially observed
LQG mean field games with a major player,” IEEE Trans. Autom. Control,
vol. 62, no. 7, pp. 3225–3234, Jul. 2017.

[32] D. Firoozi and P. E. Caines, “ε-Nash equilibria for major minor
LQG mean field games with partial observations of all agents,” IEEE
Trans. Automat. Control, vol. 66, no. 6, pp. 2778–2786, Jun. 2021,
doi: 10.1109/TAC.2020.3010129.

[33] J.-M. Lasry and P.-L. Lions, “Mean-field games with a major
player,” Comptes Rendus Mathematique, vol. 356, no. 8, pp. 886–890,
Aug. 2018.

[34] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochas-
tic control with partial history sharing: A common information ap-
proach,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1644–1658,
Jul. 2013.

[35] H. S. Witsenhausen, “Equivalent stochastic control problems,” Math.
Control Signals Syst., vol. 1, pp. 3–11, 1988.

[36] B. S. Rao and H. F. Durrant-Whyte, “Fully decentralised algorithm for
multisensor Kalman filtering,” Proc. Inst. Elect. Eng. D.—Control Theory
Appl., vol. 138, no. 5, pp. 413–420, Sep. 1991.

Authorized licensed use limited to: McGill University. Downloaded on August 01,2023 at 19:10:52 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TAC.2020.3010129


AFSHARI AND MAHAJAN: DECENTRALIZED LINEAR QUADRATIC SYSTEMS WITH MAJOR AND MINOR AGENTS AND NON-GAUSSIAN NOISE 4681

Mohammad Afshari (Member, IEEE) received
the B.S. and the M.S. degrees in electrical en-
gineering from the Isfahan University of Tech-
nology, Isfahan, Iran, in 2010 and 2012, respec-
tively, and the Ph.D. degree in electrical and
computer engineering from McGill University,
Montreal, QC, Canada, in 2021. From 2021 to
2022, he was a Postdoctoral Fellow with the Uni-
versity of Alberta, Alberta, Canada. Currently,
he is a Postdoctoral Fellow with the Georgia
Institute of Technology, Atlanta, GA, USA.

His current research interests include decentralized stochastic con-
trol, multi-agent systems, and reinforcement learning.

Mr Afshari is a member of the Institute for Robotics and Intelligent
Machines (IRIM) and the Dynamics and Control Systems Laboratory
(DCSL) at Georgia Institute of Technology.

Aditya Mahajan (Senior Member, IEEE) re-
ceived the B.Tech degree in electrical engineer-
ing from the Indian Institute of Technology, Kan-
pur, India, in 2003, and the M.S. and Ph.D.
degrees in electrical engineering and computer
science from the University of Michigan, Ann
Arbor, MI, USA, in 2006 and 2008, respectively.

From 2008 to 2010, he was a Postdoctoral
Researcher with Yale University, New Haven,
CT, USA. Since 2010, he has been with the
Department of Electrical and Computer Engi-

neering, McGill University, Montreal, QC, Canada, where he is currently
an Associate Professor. His principal research interests include learning
and control of decentralized multiagent systems, multiarmed bandits,
and reinforcement learning.

Dr. Mahajan is currently an Associate Editor for the IEEE TRANSAC-
TIONS OF AUTOMATIC CONTROL, IEEE CONTROL SYSTEM LETTERS, and
Mathematics of Control, Signal, and Systems. He was an Associate
Editor for the IEEE Control Systems Society Conference Editorial Board
from 2014 to 2017. He is the recipient of the 2015 George Axelby
Outstanding Paper Award, the 2014 CDC Best Student Paper Award
(as a supervisor), and the 2016 NecSys Best Student Paper Award (as
a supervisor).

Authorized licensed use limited to: McGill University. Downloaded on August 01,2023 at 19:10:52 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


