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Abstract—A general model of decentralized stochastic control
called partial history sharing information structure is presented.
In this model, at each step the controllers share part of their
observation and control history with each other. This general
model subsumes several existing models of information sharing
as special cases. Based on the information commonly known to
all the controllers, the decentralized problem is reformulated
as an equivalent centralized problem from the perspective of a
coordinator. The coordinator knows the common information
and selects prescriptions that map each controller’s local infor-
mation to its control actions. The optimal control problem at the
coordinator is shown to be a partially observable Markov decision
process (POMDP) which is solved using techniques from Markov
decision theory. This approach provides 1) structural results
for optimal strategies and 2) a dynamic program for obtaining
optimal strategies for all controllers in the original decentral-
ized problem. Thus, this approach unifies the various ad-hoc
approaches taken in the literature. In addition, the structural
results on optimal control strategies obtained by the proposed
approach cannot be obtained by the existing generic approach
(the person-by-person approach) for obtaining structural results
in decentralized problems; and the dynamic program obtained
by the proposed approach is simpler than that obtained by the
existing generic approach (the designer’s approach) for obtaining
dynamic programs in decentralized problems.

Index Terms—Decentralized control, information structures,
Markov decision theory, stochastic control, team theory.

I. INTRODUCTION

S TOCHASTIC control theory provides analytic and com-
putational techniques for centralized decision making in

stochastic systems with noisy observations. For specific models
such as Markov decision processes and linear quadratic and
Gaussian systems, stochastic control gives results that are intu-
itively appealing and computationally tractable. However, these
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results are derived under the assumption that all decisions are
made by a centralized decision maker who sees all observa-
tions and perfectly recalls past observations and actions. This as-
sumption of a centralized decision maker is not true in a number
of modern control applications such as networked control sys-
tems, communication and queuing networks, sensor networks,
and smart grids. In such applications, decisions are made by
multiple decision makers who have access to different informa-
tion. In this paper, we investigate such problems of decentral-
ized stochastic control.
The techniques from centralized stochastic control cannot be

directly applied to decentralized control problems. Nonetheless,
two general solution approaches that indirectly use techniques
from centralized stochastic control have been used in the liter-
ature: 1) the person-by-person approach which takes the view-
point of an individual decision maker (DM); and 2) the de-
signer’s approach which takes the viewpoint of the collective
team of DMs.
The person-by-person approach investigates the decentral-

ized control problem from the viewpoint of one DM, say DM
and proceeds as follows: 1) arbitrarily fix the strategy of all DMs
except DM ; and 2) use centralized stochastic control to de-
rive structural properties for the optimal best-response strategy
of DM . If such a structural property does not depend on the
choice of the strategy of other DMs, then it also holds for glob-
ally optimal strategy of DM . By cyclically using this approach
for all DMs, we can identify the structure of globally optimal
strategies for all DMs.
A variation of this approach may be used to identify

person-by-person optimal strategies. The variation proceeds
iteratively as follows. Start with an initial guess for the strate-
gies of all DMs. At each iteration, select one DM (say DM
), and change its strategy to the best response strategy given
the strategy of all other DMs. Repeat the process until a fixed
point is reached, i.e., when no DM can improve performance
by unilaterally changing its strategy. The resulting strategies
are person-by-person optimal [2], and in general, not globally
optimal.
In summary, the person-by-person approach identifies struc-

tural properties of globally optimal strategies and provides an
iterative method to obtain person-by-person optimal strategies.
This method has been successfully used to identify structural
properties of globally optimal strategies for various applications
including real-time communication [3]–[7], decentralized hy-
pothesis testing and quickest change detection [8]–[16], and net-
worked control systems [17]–[19]. Under certain conditions, the
person-by-person optimal strategies found by this approach are
globally optimal [2], [20], [21].
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The designer’s approach, which is developed in [22], [23],
investigates the decentralized control problem from the view-
point of the collective team of DMs or, equivalently, from the
viewpoint of a system designer who knows the system model
and probability distribution of the primitive random variables
and chooses control strategies for all DMs. Effectively, the de-
signer is solving a centralized planning problem. The designer’s
approach proceeds by: 1) modeling this centralized planning
problem as a multi-stage, open-loop stochastic control problem
in which the designer’s decision at each time is the control law
for that time for all DMs; and 2) using centralized stochastic
control to obtain a dynamic programming decomposition. Each
step of the resulting dynamic program is a functional optimiza-
tion problem (in contrast to centralized dynamic programming
where each step is a parameter optimization problem).
The designer approach is often used in tandem with

the person-by-person approach as follows. First, the
person-by-person approach is used to identify structural
properties of globally optimal strategies. Then, restricting
attention to strategies with the identified structural property, the
designer’s approach is used to obtain a dynamic programming
decomposition for selecting the globally optimal strategy. Such
a tandem approach has been used in various applications in-
cluding real-time communication [4], [24], [25], decentralized
hypothesis testing [13], and networked control systems [17],
[18].
In addition to the above general approaches, other specialized

approaches have been developed to address specific problems
in decentralized systems. Decentralized problems with partially
nested information structure were defined and studied in [26].
Decentralized linear quadratic Gaussian (LQG) control prob-
lems with two controllers and partially nested information struc-
ture were studied in [27] and [28]. Partially nested decentral-
ized LQG problems with controllers connected via a graph were
studied in [29] and [30]. A generalization of partial nestedness
called stochastic nestedness was defined and studied in [31].
An important property of LQG control problems with partially
nested information structure is that there exists an affine control
strategy which is globally optimal. In general, the problem of
finding the best affine control strategies may not be a convex
optimization problem. Conditions under which the problem of
determining optimal control strategies within the class of affine
control strategies becomes a convex optimization problem were
identified in [32] and [33].
Decentralized stochastic control problems with specific

models of information sharing among controllers have also
been studied in the literature. Examples include systems with
delayed sharing information structures [34]–[36], systems with
periodic sharing information structure [37], control sharing
information structure [38], [39], systems with broadcast infor-
mation structure [19], and systems with common and private
observations [1].
In this paper, we present a new general model of decentral-

ized stochastic control called partial history sharing informa-
tion structure. In this model, we assume that: 1) controllers se-
quentially share part of their past data (past observations and
control) with each other by means of a shared memory; and 2)
all controllers have perfect recall of commonly available data

(common information). This model subsumes a large class of
decentralized control models in which information is shared
among the controllers.
For this model, we present a general solution methodology

that reformulates the original decentralized problem into an
equivalent centralized problem from the perspective of a coor-
dinator. The coordinator knows the common information and
selects prescriptions that map each controller’s local informa-
tion to its control actions. The optimal control problem at the
coordinator is shown to be a partially observable Markov deci-
sion process (POMDP) which is solved using techniques from
Markov decision theory. This approach provides a) structural
results for optimal strategies, and b) a dynamic program for
obtaining optimal strategies for all controllers in the original
decentralized problem. Thus, this approach unifies the various
ad-hoc approaches taken in the literature.
A similar solution approach is used in [36] for a model that is

a special case of the model presented in this paper. We present
an information state (51) for the model of [36] that is simpler
than that presented in [36, Th. 2]. A preliminary version of the
general solution approach presented here was presented in [1]
for a model that had features (e.g., direct but noisy communica-
tion links between controllers) that are not necessary for partial
history sharing. However, it can be shown that by suitable redef-
inition of variables, the model in [1] can be recast as an instance
of the model in this paper and vice versa (see Appendix C). The
information state for partial history sharing that is presented in
this paper (see Thereom 4) is simpler than that presented in [1,
Eq. (39)].

A. Common Information Approach for a Static Team Problem

We first illustrate how common information can be used in
a static team problem with two controllers. Let denote the
state of nature and be three correlated random vari-
ables that depend on . Assume that the joint distribution of

is given.
Controller , observes and chooses a

control action . The system incurs a cost
. The control objective is to choose to

minimize

If all the system variables are finite valued, we can solve the
above optimization problem by a brute force search over all con-
trol strategies . For example, if all variables are binary
valued, we need to compute the performance of
control strategies and choose the one with the best performance.
In this example, both controllers have a common observation
. One of the main ideas of this paper is to use such common

information among the controllers to simplify the search process
as follows. Instead of specifying the control strategies
directly, we consider a coordinated system in which a coordi-
nator observes the common information and chooses pre-
scriptions where is a mapping from to ,
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. Hence, , where is called the coordi-
nation strategy. The coordinator then communicates these pre-
scriptions to the controllers who simply use them to choose

, .
It is easy to verify (see Proposition 3 for a formal proof) that

choosing the control strategies in the original system
is equivalent to choosing a coordination strategy in the coor-
dinated system. The problem of choosing the best coordination
strategy, however, is a centralized problem in which the coordi-
nator is the only decision-maker.
For example, consider the case when all system variables are

binary valued. For any coordination strategy , let
and . Then, the cost associated with this

coordination strategy is given as

To minimize the above cost, we can minimize the two terms
separately. Therefore, to find the best coordination strategy ,
we can search for optimal prescriptions for the cases
and separately. Searching for the best prescriptions for
each of these cases involves computing the performance of

prescription pairs and choosing the one with the best
performance. Thus, to find the best coordination strategy, we
need to evaluate the performance of prescription
pairs. Contrast this with the 256 strategies whose costs we need
to evaluate to solve the original problem by brute force.
The above example described a static system and illustrates

that common information can be exploited to convert the
decentralized optimization problem into a centralized optimiza-
tion problem involving a coordinator. In this paper, we build
upon this basic idea and present a solution approach based
on common information that works for dynamical decentral-
ized systems as well. Our approach converts the decentralized
problem into a centralized stochastic control problem (in partic-
ular, a partially observable Markov decision process), identifies
structure of optimal control strategies, and provides a dynamic
program like decomposition for the decentralized problem.

B. Contributions of the Paper

We introduce a general model of decentralized stochastic
control problem in which multiple controllers share part of
their information with each other. We call this model the partial
history sharing information structure. This model subsumes
several existing models of information sharing in decentralized
stochastic control as special cases (see Section II-B). We estab-
lish two results for our model. First, we establish a structural
property of optimal control strategies. Second, we provide
a dynamic programming decomposition of the problem of
finding optimal control strategies. As in [1] and [36], our results
are derived using a common information based approach (see
Section III). This approach differs from the person-by-person
approach and the designer’s approach mentioned earlier. In
particular, the structural properties found in this paper cannot
be found by the person-by-person approach described earlier.

Moreover, the dynamic programming decomposition found in
this paper is distinct from—and simpler than—the dynamic
programming decomposition based on the designer’s approach.
For a general framework for using common information in
sequential decision making problems, see [40].

C. Notation

Random variables are denoted by upper case letters; their
realization by the corresponding lower case letter. For inte-
gers and , is a short hand for the vector

while is a short hand for the vector
. When , equals the empty set.

The combined notation is a short hand for the vector ( :
, ). In general, subscripts

are used as time index while superscripts are used to index
controllers. Bold letters are used as a short hand for the
vector . is the probability of an event, is the
expectation of a random variable. For a collection of functions
, we use and to denote that the probability mea-
sure/expectation depends on the choice of functions in .
is the indicator function of a set . For singleton sets , we
also denote by .
For a singleton and a set , denotes the set .

For two sets and , denotes the set . For two
finite sets , is the set of all functions from to
. Also, if , . For a finite set ,
is the set of all probability mass functions over . For the ease
of exposition, we assume that all state, observation and control
variables take values in finite sets.
For two random variables (or random vectors) and

taking values in and , denotes the condi-
tional probability of the event given and
denotes the conditional PMF (probability mass function) of
given , that is, it denotes the collection of conditional

probabilities , . Finally, all equalities
involving random variables are to be interpreted as almost sure
equalities (that is, they hold with probability one).

D. Organization

The rest of this paper is organized as follows. We present
our model of a decentralized stochastic control problem in
Section II. We also present several special cases of our model
in this section. We prove our main results in Section III. We
apply our result to some special cases in Section III-B. We
present a simplification of our result and a generalization of
our model in Section IV. We consider the infinite time-horizon
discounted cost analogue of our problem in Section V. Finally,
we conclude in Section VI.

II. PROBLEM FORMULATION

A. Basic Model: Partial History Sharing Information Structure

1) The Dynamic System: Consider a dynamic system with
controllers. The system operates in discrete time for a horizon
. Let denote the state of the system at time ,
denote the control action of controller , at time ,
and denote the vector .
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The initial state has a probability distribution and
evolves according to

(1)

where is a sequence of independent and identically
distributed (i.i.d.) random variables with probability distribution

.
2) Data Available at the Controller: At any time , each con-

troller has access to three types of data: current observation,
local memory, and shared memory.
i) Current local observation: Each controller makes a local
observation on the state of the system at time

(2)

where is a sequence of i.i.d. random vari-
ables with probability distribution . We as-
sume that the random variables in the collection

, called primi-
tive random variables, are mutually independent.

ii) Local memory: Each controller stores a subset of
its past local observations and its past actions in a local
memory

(3)

At , the local memory is empty, .
iii) Shared memory: In addition to its local memory, each

controller has access to a shared memory. The contents
of the shared memory at time are a subset of the past

local observations and control actions of all controllers:

(4)

where and denote the vectors and
respectively. At , the shared memory

is empty, .
Controller chooses action as a function of the total data

available to it. Specifically, for every controller ,
,

(5)

where is called the control law of controller . The collec-
tion is called the control strategy of con-
troller . The collection is called the con-
trol strategy of the system.
3) Update of Local and Shared Memories:
i) Shared memory update: After taking the control action
at time , the local information at controller consists of
the contents of its local memory, its local observation
and its control action . Controller sends a subset
of this local information to the shared

memory. The subset is chosen according to a pre-spec-
ified protocol. The contents of shared memory are nested
in time, that is, the contents of the shared memory
at time are the contents at time augmented with

Fig. 1. Time ordering of observations, actions and memory updates.

the new data sent by all the con-
trollers at time :

(6)

ii) Local memory update: After taking the control action and
sending data to the shared memory at time , controller
updates its local memory according to a pre-specified
protocol. The content of the local memory can at
most equal the total local information at the
controller. However, to ensure that the local and shared
memories at time don’t overlap, we assume that

(7)

Fig. 1 shows the time order of observations, actions and
memory updates. We refer to the above model as the partial
history sharing information structure.
4) Optimization Problem: At time , the system incurs a cost

. The performance of the control strategy of the
system is measured by the expected total cost

(8)

where the expectation is with respect to the joint probability
measure on induced by the choice of .
We are interested in the following optimization problem.
Problem 1: For the model described above, given the state

evolution functions , the observation functions , the proto-
cols for updating local and share memory, the cost function ,
the distributions , , , and the horizon ,
find a control strategy for the system that minimizes the
expected total cost given by (8).

B. Special Cases: The Models

In the above model, although we have not specified the exact
protocols bywhich controllers update the local and sharedmem-
ories, we assume that pre-specified protocols are being used.
Different choices of this protocol result in different information
structures for the system. In this section, we describe several
models of decentralized control systems that can be viewed as
special cases of our model by assuming a particular choice of
protocol for local and shared memory updates.



1648 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 7, JULY 2013

1) Delayed Sharing Information Structure: Consider the fol-
lowing special case of the model of Section II-A.
i) The shared memory at the beginning of time is

, where is a fixed
number. The local memory at the beginning of time is

.
ii) At each time , after taking the action , controller

sends to the shared
memory and the shared memory at becomes

.
iii) After sending to the shared

memory, controller updates the local memory to
.

In this special case, the observations and control actions of
each controller are shared with every other controller after a
delay of time steps. Hence, the above special case corresponds
to the delayed sharing information structure considered in [34],
[36], [41].
2) Delayed State Sharing Information Structure: A special

case of the delayed sharing information structure (which itself
is a special case of our basic model) is the delayed state sharing
information structure [35]. This information structure can be
obtained from the delayed sharing information structure by
making the following assumptions:
i) The state of the system at time is a -dimensional vector

.
ii) At each time , the current local observation of controller

is , for .
In this special case, the complete state vector is available to
all controllers after a delay of time steps.
3) Periodic Sharing Information Structure: Consider the

following special case of the model of Section II-A where
controllers update the shared memory periodically with period

:
i) For time , where ,
the shared memory at the beginning of time is

. The local memory at the beginning of
time is .

ii) At each time , , after
taking the action , controller sends

to the shared memory.
At other times, each controller does not send anything
(thus ).

iii) After sending to the shared memory, controller up-
dates the local memory to .

In this special case, the entire history of observations and control
actions are shared periodically between controllers with period
. Hence, the above special case corresponds to the periodic
sharing information structure considered in [37].
4) Control Sharing Information Structure: Consider the fol-

lowing special case of the model of Section II-A.
i) The shared memory at the beginning of time is

. The local memory at the beginning of time is
.

ii) At each time , after taking the action , controller
sends to the shared memory.

iii) After sending to the shared memory, controller
updates the local memory to .

In this special case, the control actions of each controller are
shared with every other controller after a delay of 1 time step.
Hence, the above special case corresponds to the control sharing
information structure considered in [38].
5) No Shared Memory With or Without Finite Local

Memory: Consider the following special case of the model of
Section II-A.
i) The shared memory at each time is empty, and
the local memory at the beginning of time is

, where is a fixed number.
ii) Controllers do not send any data to shared memory,

.
iii) At the end of time , controllers update their local memo-

ries to .
In this special case, the controllers don’t share any data. The
above model is related to the finite-memory controller model
of [42]. A related special case is the situation where the local
memory at each controller consists of all of its past local obser-
vations and its past actions, that is, .
Remark 1: All the special cases considered above are exam-

ples of symmetric sharing. That is, different controllers update
their local memories according to identical protocols and the
data sent by a controller to the shared memory is selected
according to identical protocols. However, this symmetry is
not required for our model. Consider for example, the de-
layed sharing information structure where at the end of time
, controller sends to the shared memory, with
, , being fixed, but not necessarily identical,

numbers. This kind of asymmetric sharing is also a special case
of our model.

III. MAIN RESULTS

For centralized systems, stochastic control theory provides
two important analytical results. First, it provides a structural
result. This result states that there is an optimal control strategy
which selects control actions as a function only of the con-
troller’s posterior belief on the state of the system conditioned
on all its observations and actions till the current time. The con-
troller’s posterior belief is called its information state. Second,
stochastic control theory provides a dynamic programming de-
composition of the problem of finding optimal control strategies
in centralized systems. This dynamic programming decomposi-
tion allows one to evaluate the optimal action for each realiza-
tion of the controller’s information state in a backward inductive
manner.
In this section, we provide a structural result and a dynamic

programming decomposition for the decentralized stochastic
control problem with partial information sharing formulated
above (Problem 1). The main idea of the proof is to formulate
an equivalent centralized stochastic control problem; solve
the equivalent problem using classical stochastic-control tech-
niques; and translate the results back to the basic model. For
that matter, we proceed as follows:
1) Formulate a centralized coordinated system from the point
of view of a coordinator that observes only the common
information among the controllers in the basic model, i.e.,
the coordinator observes the shared memory but not the
local memories ( , ) or local observations
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( , ). The coordinator chooses prescriptions
, where is a mapping from

to , .
2) Show that the coordinated system is a POMDP (partially
observable Markov decision process).

3) For the coordinated system, determine the structure of an
optimal coordination strategy and a dynamic program to
find an optimal coordination strategy.

4) Show that any strategy of the coordinated system is imple-
mentable in the basic model with the same value of the total
expected cost. Conversely, any strategy of the basic model
is implementable in the coordinated system with the same
value of the total expected cost. Hence, the two systems
are equivalent.

5) Translate the structural results and dynamic programming
decomposition of the coordinated system (obtained in
stage 3) to the basic model.

Stage 1: Coordinated System: Consider a coordinated system
that consists of a coordinator and passive controllers. The co-
ordinator knows the shared memory at time , but not the
local memories ( , ) or local observations ( ,

). At each time , the coordinator chooses mappings
, , according to

(9)

where . The function is called the
coordination rule at time and the collection of functions

is called the coordination strategy. The selected
is communicated to controller at time .
The function tells controller how to process its current

local observation and its local memory at time ; for that reason,
we call the coordinator’s prescription to controller . Con-
troller generates an action using its prescription as follows:

(10)

For this coordinated system, the system dynamics, the ob-
servation model and the cost are the same as the basic model
of Section II-A: the system dynamics are given by (1), each
controller’s current observation is given by (2) and the instanta-
neous cost at time is . As before, the performance of
a coordination strategy is measured by the expected total cost

(11)

where the expectation is with respect to a joint measure on
induced by the choice of .

In this coordinated system, we are interested in the following
optimization problem:
Problem 2: For the model of the coordinated system de-

scribed above, find a coordination strategy that minimizes the
total expected cost given by (11).
Stage 2: Coordinated System as a POMDP: We will now

show that the coordinated system is a partially observedMarkov
decision process. For that matter, we first describe the model of
POMDPs [43].
POMDP Model: A partially observable Markov decision

process consists of a state process , an observation

process , an action process , ,
and a single decision-maker where:
1) The action at time is chosen by the decision-maker as a
function of observation and action history, that is

(12)

is the decision rule at time .
2) After the action at time is taken, the new state and new
observation are generated according to the transition prob-
ability rule

(13)
3) At each time, an instantaneous cost is incurred.
4) The optimization problem for the decision-maker is to
choose a decision strategy to minimize
a total cost given as

(14)

The following well-known results provides the structure of
optimal strategies and a dynamic program for POMDPs. For
details, see [43].
Theorem 1(POMDP Result): Let be the conditional prob-

ability distribution of the state at time given the observa-
tions and actions

Then:
1) , where is the standard non-
linear filter: If are the realizations of
and , and denotes

, then the realization of element of
the vector is

(15)

and is the vector .
2) There exists an optimal decision strategy of the form

Further, such a strategy can be found by the following dy-
namic program:

(16)

and for ,

(17)
We will now show that the coordinated system can be viewed

as an instance of the above POMDP model by defining the state
process as , the observation process as

, and the action process .
Lemma 1: For the coordinated system of Problem 2,
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1) There exist functions and , , such that

(18)

and

(19)

In particular, we have that

(20)

2) Furthermore, there exists a function such that

(21)

Thus, the objective of minimizing (11) is same as
minimizing

(22)

Proof: The existence of follows from (1), (2), (10), (7)
and the definition of . The existence of follows from the
fact that is a fixed subset of , (10) and the def-
inition of . Equation (20) follows from (18) and the indepen-
dence of from all random variables in the condi-
tioning in the left-hand side of (20). The existence of follows
from the definition of and (10).
Recall that the coordinator is choosing its actions according

to a coordination strategy of the form

(23)

Equation (23) and Lemma 1 imply that the coordinated system
is an instance of the POMDP model described above.
Stage 3: Structural Result and Dynamic Program for the Co-

ordinated System: Since the coordinated system is a POMDP,
Theorem 1 gives the structure of the optimal coordination strate-
gies. For that matter, define coordinator’s information state

(24)

Then, we have the following:
Proposition 1: For Problem 2, there is no loss of optimality

in restricting attention to coordination rules of the form

(25)

Furthermore, an optimal coordination strategy of the above
form can be found using a dynamic program. For that matter,
observe that we can write

(26)

where is the standard nonlinear filtering update function (see
Appendix A).We denote by the space of possible realizations
of . Thus,

(27)

Recall that is the set of all functions from
to (see Section I-C). Then, we have the following

result.
Proposition 2: For and for all in ,

define

(28)
where , and

(29)

where , . Then the arg inf at
each time step gives the coordinator’s optimal prescriptions for
the controllers when the coordinator’s information state is .
Proposition 2 gives a dynamic program for the coordi-

nator’s problem (Problem 2). Since the coordinated system is a
POMDP, it implies that computational algorithms for POMDPs
can be used to solve the dynamic program for the coordinator’s
problem as well. We refer the reader to [44] and references
therein for a review of algorithms to solve POMDPs.
Stage 4: Equivalence Between the Two Models: We first ob-

serve that since , for all , under any given co-
ordination strategy , we can use to evaluate the past pre-
scriptions by recursive substitution. For example, for
the past prescriptions can be evaluated as functions of ,
as follows:

We can now state the following result.
Proposition 3: The basic model of Section II-A and the co-

ordinated system are equivalent. More precisely:
a) Given any control strategy for the basic model,
choose a coordination strategy for the coordinated
system of stage 1 as

Then .
b) Conversely, for any coordination strategy for the coordi-
nated system, choose a control strategy for the basic
model as

and

where , and
is the th component of (that is, gives

the coordinator’s prescription for the th controller). Then,
.
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Proof: See Appendix B.
Stage 5: Structural Result and Dynamic Program for the

Basic Model: Combining Proposition 1 with Proposition 3, we
get the following structural result for Problem 1.
Theorem 2 (Structural Result): In Problem 1, there exist op-

timal control strategies of the form

(30)

where is the conditional distribution on given
, defined as

(31)
for all possible realizations of .
We call the common information state. Recall that

takes values in the set defined in (27).
Consider a control strategy for controller of the form

specified in Theorem 2. The control law at time is a function
from the space to the space of decisions . Equiv-
alently, the control law can be represented as a collection of
functions , where each element of this collec-
tion is a function from to . An element
of this collection specifies a control action for each possible
realization of and a fixed realization of . We call

the partial control law of controller at time for the
given realization of the common information state .
We now use Proposition 2 to describe a dynamic program-

ming decomposition of the problem of finding optimal control
strategies. This dynamic programming decomposition allows us
to evaluate optimal partial control laws for each realization of
the common information state in a backward inductive manner.
Recall that is the space of all possible realizations of
[see (27)] and is the set of all functions from

to (see Section I-C).
Theorem 3 (Dynamic Programming Decomposition): Define

the functions , for as follows:

(32)

where ; for

(33)

where and is a
-valued function defined in (26) and Appendix A.

For and for each , an optimal partial
control law for controller is the minimizing choice of in the
definition of . Let denote the arg inf of the right-
hand side of , and denote its th component. Then, an
optimal control stategy is given by

(34)

A. Comparison With Person by Person and Designer
Approaches

The common information based approach adopted above dif-
fers from the person-by-person approach and the designer’s ap-
proach mentioned in the introduction. In particular, the struc-
tural result of Theorem 2 cannot be found by the person-by-
person approach. If we fix strategies of all but the th controller
to an arbitrary choice, then it is not necessarily optimal for con-
troller to use a strategy of the form in Theorem 2. This is
because if controller ’s strategy uses the entire common in-
formation , then controller , in general, would need to con-
sider the entire common information to better predict controller
’s actions and hence controller ’s optimal choice of action
may also depend on the entire common information. The use of
common information based approach allowed us to prove that
all controllers can jointly use strategies of the form in Theorem
2 without loss of optimality.
The dynamic programming decomposition of Theorem 3

is simpler than any dynamic programming decomposition
obtained using the designer’s approach. As described earlier,
the designer’s approach models the decentralized control
problem as an open-loop centralized planning problem in
which a designer at each stage chooses control laws that
map to , . On the other hand,
the common-information approach developed in this paper
models the decentralized control problem as a closed-loop
centralized planning problem in which a coordinator at each
stage chooses the partial control laws that map to
, . The space of partial control laws is always

smaller than the space of full control laws; if the common in-
formation is non-empty, then they are strictly smaller. Thus, the
dynamic programming decomposition of Theorem 3 is simpler
than that obtained by the designer’s approach. This simplifica-
tion is best illustrated by the example of Section IV-C-1 where
all controllers receive a common observation . For this
example, we show that our information state (and hence our
dynamic program) reduce to , which is identical
to the information state of centralized stochastic control. In
contrast, the information state obtained by the
designer’s approach is much more complicated.

B. Special Cases: The Results

In Section II-B, we described several models of decentralized
control problems that are special cases of the model described
in Section II-A. In this section, we state the results of Theorems
2 and 3 for these models.
1) Delayed Sharing Information Structure:
Corollary 1: In the delayed sharing information structure of

Section II-B-1, there exist optimal control strategies of the form

(35)

where

(36)
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Moreover, optimal control strategies can be obtained by a dy-
namic program similar to that of Theorem 3.
The above result is analogous to the result in [36].
2) Delayed State Sharing Information Structure:
Corollary 2: In the delayed state sharing information struc-

ture of Section II-B2, there exist optimal control strategies of
the form

(37)

where

(38)

Moreover, optimal control strategies can be obtained by a dy-
namic program similar to that of Theorem 3.
The above result is analogous to the result in [36].
3) Periodic Sharing Information Structure:
Corollary 3: In the periodic sharing information structure of

Section II-B3, there exist optimal control strategies of the form

(39)

where

(40)
Moreover, optimal control strategies can be obtained by a dy-
namic program similar to that of Theorem 3.
The above result gives a finer dynamic programming decom-

position than [37]. In [37], the dynamic programming decom-
position is only carried out at the times of information sharing,

, ; and at each step the partial control
laws until the next sharing instant are chosen. In contrast, in the
above dynamic program, the partial control laws of each step
are chosen sequentially.
4) Control Sharing Information Structure:
Corollary 4: In the control sharing information structure of

Section II-B-4, there exist optimal control strategies of the form

(41)

where

(42)

Moreover, optimal control strategies can be obtained by a dy-
namic program similar to that of Theorem 3.
5) No Shared Memory With or Without Finite Local

Memory:
Corollary 5: In the information structure of Section II-B5,

there exist optimal control strategies of the form

(43)

where

(44)

Moreover, optimal control strategies can be obtained by a dy-
namic program similar to that of Theorem 3.
Note that, since the common information is empty, the

common information state is now an unconditional proba-
bility. In particular, is a constant random variable and takes
a fixed value that depends only on the choice of past control
laws. Therefore, we can define an appropriate control law
such that , with probability 1.
Hence, the structural result of (43) may be simplified to

This result is redundant since all control laws are of the above
form. Nonetheless, Corollary 5 gives a procedure of finding
such control laws using the dynamic program of Theorem 3.
The above result is similar to the results in [42] for the case

of one controller with finite memory and to those in [23] for the
case of two controllers with finite memories.

IV. SIMPLIFICATIONS AND GENERALIZATIONS

A. Simplification of the Common Information State

Theorems 2 and 3 identify the conditional probability distri-
bution on given as the common information
state for our problem. In the following lemma, we make the
simple observation that in our model the conditional distribu-
tion on given is completely determined by the
conditional distribution on given .
Lemma 2: For any choice of control laws , define the

conditional distribution on given as

for all possible realizations of . Also define
. Then,

(45)

Therefore, , where each component of the
-valued function is determined by the right-hand side

of (45). Also,

(46)

where the second term on the right-hand side of (46) is de-
termined by the fixed distribution of the observations noises.
Therefore, , where each component of the
-valued function is determined by the right-hand side of

(46).
Lemma 2 implies that the results of Theorems 2 and 3 can be

written in terms of .
Theorem 4 (Alternative Common Information State): In

Problem 1, there exist optimal control strategies of the form

(47)

where

(48)
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Further, define the functions , for
as follows:

(49)

where ; for

(50)

where , are defined in
Lemma 2, and is defined in (26) and Appendix A.
For and for each , an optimal partial control

law for controller is the minimizing choice of in the defini-
tion of .

Proof: For any and any , it is straight-
forward to establish using a backward induction argument that

and ,
where is the value function from the dynamic program
in Theorem 3. The optimality of the new dynamic program
then follows from the optimality of the dynamic program in
Theorem 3.
The result of Theorem 4 is conceptually the same as the re-

sults in Theorems 2 and 3. Theorem 4 implies that the Corol-
laries of Section III-B can be restated in terms of new informa-
tion states by simply removing from the definition of orig-
inal information states. For example, the result of Corollary 1
for delayed sharing information structure is also true when
is replaced by

(51)

This result is simpler than that of [36, Th. 2].

B. Generalization of the Model

The methodology described in Section III relies on the fact
that the shared memory is common information among all con-
trollers. Since the coordinator in the coordinated system knows
only the common information, any coordination strategy can be
mapped to an equivalent control strategy in the basic model (see
Stage 4 of Section III). In some cases, in addition to the shared
memory, the current observation (or if the current observation is
a vector, some components of it) may also be commonly avail-
able to all controllers. The general methodology of Section II
can be easily modified to include such cases as well.
Consider the model of Section II-A with the following

modifications:
1) In addition to their current local observation, all controllers
have a common observation at time :

(52)

where is a sequence of i.i.d.
random variables with probability distribution
which is independent of all other primitive random
variables.

2) The shared memory at time is a subset of
.

3) Each controller selects its action using a control law of the
form

(53)

4) After taking the control action at time , controller sends a
subset of that necessarily includes

. That is

This implies that the history of common observations is
necessarily a part of the shared memory, that is,
.

The rest of the model is same as in Section II-A. In particular,
the local memory update satisfies (7), so the local memory and
shared memory at time do not overlap. The instantaneous
cost is given by and the objective is to minimize an
expected total cost given by (8).
The arguments of Section III are also valid for this model.

The observation process in Lemma 1 is now defined as
. The analysis of Section III leads to structural re-

sults and dynamic programming decompositions analogous to
Theorems 2 and 3 with now defined as

(54)

Using an argument similar to Lemma 2, we can show that the
result of Theorem 4 is true for the above model with de-
fined as

(55)

C. Examples of the Generalized Model

1) Controllers With Identical Information: Consider the fol-
lowing special case of the above generalized model.
1) All controllers only make the common observation ;
controllers have no local observation or local memory.

2) The shared memory at time is . Thus, at
time , all controllers have identical information given as

.
3) After taking the action at time , each controller sends

to the shared memory.
Recall that the coordinator’s prescription in Section III are

chosen from the set of functions from to . Since,
in this case , we interpret the coordinator’s pre-
scription as prescribed actions. That is, . With this in-
terpretation, the common information state becomes

(56)
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and the dynamic program of Theorem 3 becomes

(57)
and for ,

(58)

Since all the controllers have identical information, the above
results correspond to the centralized dynamic program of The-
orem 1 with a single controller choosing all the actions.
2) Coupled Subsystems With Control Sharing Information

Structure: Consider the following special case of the above gen-
eralized model.
1) The state of the system at time is a -dimen-
sional vector , where ,

corresponds to the local state of subsystem
, and is a global state of the system.

2) The state update function is such that the global state
evolves according to

while the local state of subsystem evolves according to

where are mu-
tually independent i.i.d noise processes that are indepen-
dent of the initial state, .

3) At time , the common observation of all controllers is
given by .

4) At time , the local observation of controller is given by
, .

5) The shared memory at time is .
At each time , after taking the action , controller sends

to the shared memory.
The above special case corresponds to the model of coupled

subsystems with control sharing considered in [39], where sev-
eral applications of this model are also presented. It is shown in
[39] that there is no loss of optimality in restricting attention to
controllers with no local memory, i.e., . With this addi-
tional restriction, the result of Theorems 1 and 2 apply for this
model with defined as

Note that can be evaluated from and
. It is shown in

[39] that are conditionally indepen-
dent given , hence the joint distribution

is a product of its marginal
distributions.
3) Broadcast Information Structure: Consider the following

special case of the above generalized model.

1) The state of the system at time is a -dimensional vector
, where , corre-

sponds to the local state of subsystem . The first compo-
nent is special and called the central node. Other
components, , are called peripheral nodes.

2) The state update function is such that the state of the central
node evolves according to

while the state of the peripheral nodes evolves according
to

where are noise processes
that are independent across time and independent of each
other.

3) At time , the common observation of all controllers is
given by .

4) At time , the local observation of controller , , is
given by . Controller 1 does not have any local
observations.

5) No controller sends any additional data to the shared
memory. Thus, the shared memory consists of just the his-
tory of common observations, i.e., .

The above special case corresponds to the model of decen-
tralized systems with broadcast structure considered in [19]. It
is shown in [19] that there is no loss of optimality in restricting
attention to controllers with no local memory, i.e., .With
this additional restriction, the result of Theorems 1 and 2 apply
for this model with defined as

Note that can be evaluated from and
. It is shown in [19] that

are conditionally independent given , hence
the joint distribution is a product
of its marginal distributions.

V. EXTENSION TO INFINITE HORIZON

In this section, we consider the basic model of Section II-A
with an infinite time horizon. Assume that
i) The state of the system, the observations and the con-
trol actions take value in time-invariant sets ,
respectively.

ii) The local memories and the updates to the shared
memory take values in time-invariant sets and
respectively.

iii) The dynamics of the system (1) and the observationmodel
(2) are time-homogeneous. That is, the functions and
in (1) and (2) do not vary with time.

Let the cost of using a strategy be defined as

(59)
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where is a discount factor. We can follow the argu-
ments of Section III to formulate the problem of the coordinated
system with an infinite time horizon. As in Section III, the co-
ordinated system is equivalent to a POMDP. The time-homoge-
neous nature of the coordinated system and its equivalence to
a POMDP allows us to use known POMDP results (see [43])
to conclude the following theorem for the infinite time horizon
problem.
Theorem 5: Consider Problem 1 with infinite time horizon

and the objective of minimizing the expected cost given by (59).
Then, there exists an optimal time-invariant control strategy of
the form

(60)

Furthermore, consider the fixed point equation

(61)

where . Then, for any real-
ization of , the optimal partial control laws are the choices
of that achieve the infimum in the right-hand side of (61).
All the special cases of our information structure considered

in Sections II-B and IV-C can be extended to infinite horizon
problems if the state, observation and actions spaces are time-
invariant and the systems dynamics and observation equations
are time homogeneous. The only exception is the control sharing
information structure of Section II-B4 where the local memory
takes values in sets that are increasing with time.
The Case of No Shared Memory: As discussed in

Section III-B, if the shared memory is always empty then
the common information state defined in Theorem 2 is the
unconditional probability . In
particular, is a random variable that takes a fixed (constant)
value which depends only on the choice of past control laws.
Therefore, for any function of , there exists a
function of such that
with probability 1. While Theorem 5 establishes optimality of
a time-invariant , such time-invariance may not hold for the
corresponding . Similar observations were reported in [25].

VI. DISCUSSION AND CONCLUSIONS

In centralized stochastic control, the controller’s belief on the
current state of the system plays a fundamental role for pre-
dicting future costs. If the control strategy for the future is fixed
as a function of future beliefs, then the current belief is a suffi-
cient statistic for future costs under any choice of current action.
Hence, the optimal action at the current time is only a func-
tion of current belief on the state. In decentralized problems
where different controllers have different information, using a
controller’s belief on the state of the system presents two main
difficulties: 1) Since the costs depend both on system state as
well as other controllers’ actions any prediction of future costs
must involve a belief on system state as well as some means
of predicting other controllers’ actions. 2) Second, since dif-
ferent controllers have different information, the beliefs formed

by each controller and their predictions of future costs cannot
be expected to be consistent.
The approach we adopted in this paper tries to address these

difficulties by using the fact that sharing of data among con-
trollers creates common knowledge among the controllers. Be-
liefs based on this common knowledge are necessarily consis-
tent among all controllers and can serve as a consistent sufficient
statistic. Moreover, while controllers cannot accurately predict
each other’s control actions, they can know, for the observed
realization of common information, the exact mapping used by
each controller to map its local information to control action.
These considerations suggest that common information based
beliefs and partial control laws should play an important role in a
general theory of decentralized stochastic control problems. The
use of a fictitious coordinator allows us to make these consid-
erations mathematically precise. Indeed, the coordinator’s be-
liefs are based on common information and the coordinator’s
decision are the partial control laws. The results of the paper
then follow by observing that the coordinator’s problem can be
viewed as a POMDP by identifying a new state that includes
both the state of the dynamic system as well as the local infor-
mation of the controllers.
The specific model of shared and local memory update that

we assumed is crucial for connecting the coordinator’s problem
to POMDPs and centralized stochastic control. A key assump-
tion in centralized stochastic control is perfect recall, that is,
the information obtained at any time is remembered at all future
times. This is essential for the update of the beliefs in POMDPs.
Our assumption that the sharedmemory is increasing in time en-
sures that the perfect recall property is true for the coordinator’s
problem. If the shared memory did not have perfect recall (that
is, if some past contents were lost over time), then the update
of common information state in (26) would not hold and the re-
sults of Theorems 2 and 3 would not be true.
Another key factor in our result is that

serves as a state for the coordinator’s problem. If the system
state, observations and local memories take value in a time-in-
variant space, we have a state for the coordinator’s problem
which takes value in a time-invariant space. Hence, the common
information state is a belief on a time-invariant space. The local
memory update in (7) ensures that is a state. If local memory
update depended on shared memory as well, that is, if (7) were
replaced by

then would no longer suffice as a state for the coordinator.
In particular, the state update equations in Lemma 1 would no
longer hold. The only recourse then would be to include
as a part of the state which would necessarily mean that the
state space keeps increasing with time. This is undesirable not
only because large state spaces imply increased complexity, but
the increasing size of state spaces also makes extensions of fi-
nite horizon results to infinite horizon problems conceptually
difficult.
The connection between the coordinator’s problem and

POMDPs can be used for computational purposes as well.
The dynamic program of Theorem 3 is essentially a POMDP
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dynamic program. In particular, just as in POMDP, the
value-functions are piecewise linear and concave in . This
characterization of value functions is utilized to find compu-
tationally efficient algorithms for POMDPs. Such algorithmic
solutions to general POMDPs are well-studied and can be
employed here. We refer the reader to [44] and references
therein for a review of algorithms to solve POMDPs.
While our results apply to a broad class of models, it would

be worthwhile to identify special cases where the specific model
features can be exploited to simplify our structural result. Exam-
ples of such simplification appear in [19] and [39]. A common
theme in many centralized dynamic programming solutions is
to identify a key property of the value functions and use it to
characterize the optimal decisions. Since our results also pro-
vide a dynamic program, an important avenue for future work
would be to identify cases where properties of value functions
can be analyzed to deduce a solution or to reduce the computa-
tional burden of finding the solution.
Our approach in this paper illustrates that common informa-

tion provides a common conceptual framework for several de-
centralized stochastic control problems. In our model, we ex-
plicitly included a shared memory which naturally served the
purpose of common information among the controllers. More
generally, we can define common information for any sequential
decision-making problem and then address the problem from
the perspective of a coordinator who knows the common infor-
mation. Such a common information based approach for general
sequential decision-making problems is presented in [40].

APPENDIX A
UPDATE FUNCTION OF THE COORDINATOR’S

INFORMATION STATE

Consider a realization of the shared memory at
time . Let be the corresponding realization of the co-
ordinator’s prescriptions until time . We assume the realization

to be of nonzero probability. Then, the realiza-
tion of is given by

(62)

Use Lemma 1 to simplify the above expression as

(63)

Since , write the last term of (63) as

(64)
Use Lemma 1 and the sequential order in which the system

variables are generated to write the numerator as

(65)

(66)

where we dropped from conditioning in (65) since under the
given coordinator’s strategy, it is a function of the rest of the

terms in the conditioning. Substitute (66), (64), and (63) into
(62), to get

where is given by (62), (63), (64), and (66). is the
vector .

APPENDIX B
PROOF OF PROPOSITION 3

a) For any given control strategy in the basic model,
define a coordinated strategy for the coordinated system
as

(67)

Consider Problems 1 and 2. Use control strategy
in Problem 1 and coordination strategy given by (67)
in Problem 2. Fix a specific realization of the prim-
itive random variables

in the two problems. Equation (2) implies
that the realization of will be the same in the two prob-
lems. Then, the choice of according to (67) implies that
the realization of the control actions will be the same
in the two problems. This implies that the realization of
the next state and the memories , will be the
same in the two problems. Proceeding in a similar manner,
it is clear that the choice of according to (67) implies
that the realization of the state ,
the observations , the con-
trol actions and the memories

and are all iden-
tical in Problem 1 and 2. Thus, the total expected cost
under in Problem 1 is same as the total expected cost
under the coordination strategy given by (67) in Problem
2. That is, .

b) The second part of Proposition 3 follows from similar
arguments as above.

APPENDIX C
EQUIVALENCE BETWEEN THE MODEL OF THIS

PAPER AND THE MODEL OF [1]

First, we describe the model of [1] and then show that our
model of Section II-A and the model of [1] are equivalent by
showing that either model can be viewed as a special case of
the other.
Model of [1]: The following model was presented in [1]; we

use a slightly different notation so that the notation matches with
that of our paper.
Consider a system with controllers. Let denote the state

of the system, denote the common observation of all con-
trollers, denote the private observation of controller ,
the contents of the memory of controller , and the control
action of controller , .
The system dynamics and observation equations are given by

(68)

(69)

(70)
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where are indepen-
dent random variables.
At time , controller generates a control action and updates

its memory as follows:

(71)

(72)

At each time an instantaneous cost is incurred.
The system objective is to choose a control strategy and a
memory update strategy to minimize a total expected cost.
Our Model is a Special Case of the Model in [1]: Consider

the model described in Section II-A of the paper and define

Define the cost function

It is easy to verify that the model
defined above is a special case of the model in [1].
The Model of [1] is a Special Case of Our Model: In the

model of [1], the local observations of controller depends
on the control action . This feature is not present in our
model. Nonetheless, we can show that model of [1] is a special
case of our model by splitting time and assuming that in our
model only one controller acts at each time.
Define the following system variables for . For

ease of notation, when , we will write as
. Thus, the system variables are defined for

and as follows:

if
if
otherwise

if
otherwise

Define the cost function as

if
otherwise.

It is easy to verify that the model
defined above is a special case of our model.
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