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Noise need not
be Gaussian
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Two-agent system with
partial output feedback

Linear-Quadratic Centralized System

Linear-Quadratic Decentralized System

Certainty equivalence:
u(t) = −L(t)𝔼[x(t)|y(1 : t)] even for non-Gaussian noise

Separation of estimation and control:
The gains are: L(t) = [R + BTS(t + 1)B]−1BTS(t + 1)A

where S(1 : T) = Riccati(A, B,Q, R).

The estimates are: 𝔼[x(t)|y(1 : t)] = xc(t) + 𝔼[xs(t)|ys(1 : t)]
For Gaussian noise, the estimate is a linear function of the data.
Hence, optimal control law is linear.

Even for Gaussian noise, linear control laws are
not optimal.

Partially nested LQG teams: linear control laws
are optimal. How to find sufficient statistics?

Restrict to linear control laws:
How to find sufficient statistics?

What about separation principle?

What about certainty equivalence?

Why Non-Gaussian Noise?

Information Structure

Common-Information based
decomposition

Control splitting

Static Reduction

I1(t) = {x1(1 : t), u1(1 : t − 1)}

I2(t) = {x1(1 : t), u1(1 : t − 1),
y2(1 : t), u2(1 : t − 1)}

Common Information:
Ic(t) = I1(t) ∩ I2(t) = I1(t)

Local Information:
Iℓ,1(t) = ∅
Iℓ,2(t) = {y2(1 : t), u2(1 : t − 1)}

Common Ctrl: uc(t) = 𝔼[u(t)|Ic(t)]
Local Ctrl: uℓ(t) = u(t) − uc(t)

I1,s(t) = {xs1(1 : t)}, I2,s(t) = {ys2(1 : t)}

Key steps of the proof

State Splitting

x(t) = xc(t) + xℓ(t) + xs(t)

Cost splitting

zc(t) = xc(t) + xs(t)
zℓ2(t) = xℓ2(t) + xs2(t)

Completion of squares
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Δc(t) = R + BTSc(t + 1)B, Δℓ(t) = R22 + BT
22Sℓ(t + 1)B22.

Commonly
controlled part

xc(1) = 0, xc(t + 1) = Axc(t) + Buc(t)

Locally
controlled part

xℓ(1) = 0, xℓ(t + 1) = Axℓ(t) + Buℓ(t)

Stochastic part xs(1) = x(1), xs(t + 1) = Axs(t) + w(t)

𝔼[‖u(t)‖2R] = 𝔼[‖uc(t)‖2R] + 𝔼[‖uℓ
2(t)‖2R22]

𝔼[‖x(t)‖2Q] = 𝔼[‖zc(t)‖2Q] + 𝔼[‖zℓ2(t)‖2Q22] − 𝔼[‖xs(t)‖2Q]

Certainty Equivalent
Controllers are Optimal

Separation of Estimation and Control

uc(t) = −Lc(t)𝔼[x(t)|Ic(t)],

uℓ
2(t) = −Lℓ(t) (𝔼[x2(t)|I2(t)] − 𝔼[x2(t)|Ic(t)])

The gains are:

Lc(t) = [R + BTSc(t + 1)B]−1BTSc(t + 1)A,

Lℓ(t) = [R22 + BT
22Sℓ(t + 1)B22]−1BT

22Sℓ(t + 1)A22

where Sc(1 : T) = Riccati(A, B,Q, R)
Sℓ(1 : T) = Riccati(A22, B22, Q22, R22)

The estimators are:

𝔼[x(t)|Ic(t)] = xc(t) + 𝔼[xs(t)|I1,s(t)]
𝔼[x(t)|I2(t)] = xℓ(t) + xc(t) + 𝔼[xs(t)|I2,s(t)]

Salient Features

The optimal control strategy is a linear function of the
estimates even though the optimal estimates may
not be a linear function of the data!

Proof technique combines ideas of linear systems
(state splitting and completion of squares), estimation
theory (orthogonality of estimate and the estimation
error), and stochastic systems (static reduction).


