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Optimal design of decentralized systems
with non-classical information structures

◦ Difficulties: Conceptual and computational

◦ Results of this paper: Consider two general models of decentralized systems and
obtain a sequential decomposition for their finite and infinite horizon cases.

◦ Our models encompass
. Standard form (Witsenhausen, 1973)
. k-step delay sharing pattern (Walrand and Varaiya, 1978)
. Generic team model of Witsenhausen (1988)

◦ Main idea: viewed appropriately, these models are equivalent to POMDPs with
functions as control actions

◦ Numerical solution can be obtained using existing techiques for POMDPs
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Model A for two agents

◦ Plant: Xt+1 = ft(Xt, U
1
t , U

2
t , Wt)

◦ Observations
. Common message:

Yt = ct(Xt, U
1
t−1, U

2
t−1, Qt)

. Private message: Z1
t = h1

t(Xt, N
1
t)

Z2
t = h2

t(Xt, U
1
t , N

2
t)

◦ Agent k

. Control: Uk
t = gk

t (Y
t, Zk

t , M
k
t−1)

. Memory update: Mk
t = lkt (Y

t, Zk
t , M

k
t−1)

◦ Design ≡ all control and memory update functions of both agents

◦ Cost at time t: ρt(Xt, U
1
t , U

2
t). Cost of a design: E

{
T∑

t=1

ρt(Xt, U
1
t , U

2
t)

∣∣∣∣∣Design
}

◦ Objective: Determine an optimal design



Model A for two agents
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◦ Salient features

. Non-classical information structures

. Sequential system
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Consider the model from
the point of view of a

fictitious common agent



Common Agent

Common agent observes all common messages

◦ Think of control and memory update functions in two steps

Uk
t = gk

t (Y
t, Zk

t , M
k
t−1)

= ĝk
t (Z

k
t , M

k
t−1), where ĝk

t = γk
t (Y

t)

Similarly,

Mk
t = lkt (Y

t, Zk
t , M

k
t−1)

= l̂kt (Z
k
t , M

k
t−1), where l̂kt = λk

t (Y
t)



Common Agent's viewpoint

Plant

Agent 1

Agent 2

×

×

×

Xt

Z1
t

Z2
t

Yt

U1
t

U2
t



Common Agent's viewpoint
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(ĝ1
t , l̂

1
t)

(ĝ2
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Common Agent's viewpoint
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◦ Consider three time steps t0, t1, and t2 in time interval t

S0
t = (Xt, M

1
t−1, M

2
t−1, U

1
t−1, U

2
t−1), O0

t = Yt

S1
t = (Xt, M

1
t−1, M

2
t−1), O1

t = −

S2
t = (Xt, M

1
t , M

2
t−1, U

1
t), O2

t = −

◦ POMDP with: . State: Si
t, . Obs: Oi

t, . Control actions: (ĝk
t , l̂

k
t )

From the common agent's viewpoint {S0
t , S

1
t , S

2
t , t = 1, . . . , T } is

a POMDP (partially observable Markov decision process)



Sequential decomposition

◦ Information states
π0

t = Pr
(
S0

t
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◦ Optimality equations
V0

T+1(π
0
T+1) ≡ 0,

for t = 1, . . . , T

V0
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Models considered in the paper

◦ Model A

. n-agent version of what was presented here

◦ Model B

. Model A with no common messages

◦ Also consider infinite horizon problems



Example — multiaccess broadcast

Tx 1 Tx 2

Broadcast medium

◦ MAB Channel

. Single user transmits =⇒ successful transmission

. Both users transmit =⇒ packet collision

◦ Transmitters

. Queues with buffer size 1

. Packet held in queue until successful transmission

. Packet arrival is independent Bernoulli process



Example — multiaccess broadcast

◦ Channel feedback

Both transmitters know if there was no transmission, successful transmission, or a
collision

◦ Policy of transmitters

If packet is available, decide whether or not to transmit based on all past channel
feedback

◦ Objective: Maximize throughput

. Avoid collisions

. Avoid idle



History of multiaccess broadcast

◦ Hluchyj and Gallager,
“Multiaccess of a slotted channel by finitely many users”, NTC 81.

. Considered symmetric arrival rates

. Restricted attention to “window protocols”

◦ Ooi and Wornell,
“Decentralized control of multiple access broadcast channels”, CDC 96.

. Considered a relaxation of the problem

. Numerically find optimal performance of the relaxed problem

. Hluchyj and Gallager's scheme meets this upper bound

◦ AI Literature
. Consider the case of asymmetric arrival rates
. Approximate heuristic solutions for small horizons



Multi-access broadcast is equivalent to Model A

Tx 1 Tx 2

Broadcast medium

Tx 1 ≡ Agent 1
Tx 2 ≡ Agent 2

Channel feedback ≡ Common message
Number of packets in each buffer ≡ Private messages

◦ Information state: πt = Pr
(
Z1

t , Z
2
t

∣∣ feedback), Zk
t = {0, 1}

◦ Action Space: ĝk
t : {0, 1}→ {Tx, Don't Tx}

Equivalent to a POMDP with finite state and action spaces



Tractability

◦ Finite horizon problem

. All system variables are finite valued

◦ Infinite horizon

. All system variables take values in a time-invariant space

. The system is time-homogeneous

Conclusions

◦ Sequential decomposition of two general models of decentralized systems

◦ Equivalent to POMDPs (sometimes to POMDPs with finite state and action spaces)

◦ Harder to solve than POMDPs due to expansion of state and action spaces.
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