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Although the notion of a dynamic team problem has been around
for over 25 years, the class of problems is of sufficient complexity
that little progress has been made toward a general solution
technique or even in finding general properties of optimal solutions.
Hence its value to the multi-access problem does not go much
beyond a conceptual level.

What is the state of the art after 30 years?

Have we made any progress toward a general solution technique to
be of any value to the problem that Hlyuchj and Gallager were
interested in?
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Problem Setup: Two-user multiple access broadcast

Two-users with single slot buffer

xi ,t ∈ {0, 1} : # packets in buffer

ai ,t ∈ {0, 1} : # new packet arrivals

ai ,t ∼ Ber(pi )

ui ,t ∈ {0, 1} : # transmitted packets
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Multiple access channel

Indicator of successful decoding: zt = u1,t ⊕ u2,t

xi ,t+1 = (xi ,t − ui ,tzt) ∨ ai ,t

Broadcast channel

zt is available to the users after unit delay
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Problem Setup: Two user multiple access broadcast

Problem (P1)

Given: arrival rates p1 and p2

Choose: Transmission policies (g1, g2) where
gi = (gi ,1, gi ,2, . . . , gi ,T ) and

ui ,t = gi ,t(xi ,1:t , ui ,1:t−1, z1:t−1)

Objective: Maximize

E
g1,g2

{ T
∑

t=1

u1,t⊕u2,t

}

or lim
T→∞

1

T
E

g1,g2

{ T
∑

t=1

u1,t⊕u2,t

}
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Literature Overview

Simplest canonical problem in multi-access networks.

Slotted ALOHA and variants: Provide approximately optimal
performance when the number of users is large. Huge
literature . . .

Collision incurs a cost but does not affect the dynamics
Schoute, 76, Walrand Varaiya, 79,

We are interested in the two-user problem in which collision
affects the dynamics
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Literature overview for Problem (P1)

Symmetric arrival rates Asymmetric arrival rates
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Hlyuchj Gallager 81:

Analytic
lower bound

Ooi Wornell 96:

Numerical
upper bound

lower and upper bounds match!

Asymmetric arrival rates

Lot of AI literature . . .

Hansen et. al. 04

Numerical algorithm to
find optimal soln
Out of memory for T=5

Bernstein et. al. 05

Heuristic algorithm
Controller for size=8

Szer Charpillet 06

Approx. algorithm
Out of memory for T=5
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Literature overview for Problem (P1)

Symmetric arrival rates

Hlyuchj Gallager 81:

Analytic
lower bound

Ooi Wornell 96:

Numerical
upper bound

lower and upper bounds match!

Asymmetric arrival rates

Lot of AI literature . . .

Approx algorithms . . .
but can only solve the system
until T = 4
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Questions?

Symmetric arrival rates

Optimal soln is known

The proof is numerical

Can we provide an analytic proof?

Asymmetric arrival rates

Approx algorithms only work for small horizon

Can we find algorithms that can solve large or infinite horizon
problem?
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Contributions of this paper

Provide a dynamic programming decomposition

The DP has countable state space and finite action space.
Easy to use existing algorithms to find numerical solution for
large or infinite horizon setups

For symmetric arrival rates, find an analytic soln to the DP.
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Problem Setup: Two user multiple access broadcast

Problem (P1)

Given: arrival rates p1 and p2

Choose: Transmission policies (g1, g2) where
gi = (gi ,1, gi ,2, . . . , gi ,T ) and

ui ,t = gi ,t(xi ,1:t , ui ,1:t−1, z1:t−1)

Objective: Maximize

E
g1,g2

{ T
∑

t=1

u1,t⊕u2,t

}

or lim
T→∞

1

T
E

g1,g2

{ T
∑

t=1

u1,t⊕u2,t

}
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Solution Outline

Transmission policy

ui,t = gi,t(xi,1:t , ui,1:t−1, z1:t−1)
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Solution Outline (cont)

Dynamic Program

VT+1(π1, π2) = 0

and for t = T ,T − 1, . . . , 1

Vt(π1, π2) = max{W10,t(π1, π2),W01,t(π1, π2),W11,t(π1, π2)}
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and for t = T ,T − 1, . . . , 1
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Reachability Analysis

The reachable set of (π1, π2) is countable.
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Feedback ≡ control sharing

zt = u1,t ⊕ u2,t

Thus,

u1,t = zt ⊕ u2,t and u2,t = zt ⊕ u1,t
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xi ,1:t−1 is redundant

Arbitrarily fix the transmission policy of user 2

(x1,t , u1,1:t−1, u2,1:t−1) is a controlled Markov chain with
control action u1,t
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Sufficient statistic for common information

ui ,t = gi ,t(xi ,t , u1,1:t−1, u2,1:t−1)

Common information: (u1,1:t−1, u2,1:t−1)

Private information: xi ,t

A special case of Mahajan, Nayyar, Teneketzis, 2008

Same solution approach (using the notion of a coordinator) applies
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Sufficient statistic for common information (cont)

Coordinator of the two users

Observation of coordinator: common information

(u1,1:t−1, u2,1:t−1)

Action of the coordinator: partial functions (γ1,t , γ2,t) s.t.

ui ,t = γi ,t(xi ,t)
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Sufficient statistic for common information (cont)

Coordinator of the two users

Observation of coordinator: common information

(u1,1:t−1, u2,1:t−1)

Action of the coordinator: partial functions (γ1,t , γ2,t) s.t.

ui ,t = γi ,t(xi ,t)

For ease of notation, let ϕi ,t = γi ,t(1). Then

ui ,t = ϕi ,txi ,t

Think of (ϕ1,t , ϕ2,t) as the control action of the coordinator.
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Optimization problem at the coordinator

Problem (P2)

Given: arrival rates p1 and p2

Choose: Coordination policy h = (h1, h2, . . . , hT ) where

(ϕ1,t , ϕ2,t) = ht(u1,1:t−1, u2,1:t−1, ϕ1,1:t−1, ϕ2,1:t−1)

Objective: Maximize

E
h

{ T
∑

t=1

u1,t ⊕ u2,t

}

or lim
T→∞

1

T
E

h

{ T
∑

t=1

u1,t ⊕ u2,t

}
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Sufficient statistic for common information (cont)

Proposition

Problem (P1) and (P2) are equivalent.

Proof.

Any transmission policy (g1, g2) for (P1) can be implemented in
(P2) by choosing

ϕi,t = gi,t(1, u1,1:t−1, u2,1:t−1)

resulting in identical realization of all system variables.

Any coordination policy h for (P2) can be implemented in (P1) by
choosing

gi,t(xi,t , u1,1:t−1, u2,1:t−1) = ϕi,txi,t

where ϕi,t is recursively chosen according to

(ϕ1,t , ϕ2,t) = ht(u1,1:t−1, u2,1:t−1, ϕ1,1:t−1, ϕ2,1:t−1)
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Sufficient statistic for common information (cont)

Definition

πi ,t = Pr

(

xi ,t = 1

∣

∣

∣

∣

u1,1:t−1, u2,1:t−1

ϕ1,1:t−1, ϕ2,1:t−1

)

Proposition

In (P2), restricting attention to coordination policies of the form

(ϕ1,t , ϕ2,t) = ht(π1,t , π2,t)

is without loss. Therefore, in (P1) restricting attention to
transmission policies of the form

ui ,t = gi ,t(xi ,t , π1,t , π2,t

is without loss.
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Sufficient statistic for common information (cont)

Proof.

(π1,t , π2,t) is a controlled Markov process with control action
(ϕ1,t , ϕ2,t).

Expected conditional reward

E[u1,t ⊕ u2,t |u1,1:t−1, u2,1:t−, ϕ1,1:t , ϕ2,1:t ]

= π1,tϕ1,t(1− π2,tϕ2,t) + (1− π1,tϕ1,t)π2,tϕ2,t

= E[u1,t ⊕ u2,t |π1,t , π2,t , ϕ1,t , ϕ2,t ]
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Solution Outline (cont)

Dynamic Program

VT+1(π1, π2) = 0

and for t = T ,T − 1, . . . , 1

Vt(π1, π2) = max{W10,t(π1, π2),W01,t(π1, π2),W11,t(π1, π2)}

Reachability Analysis

The reachable set of (π1, π2) is countable.

(0, 0)

(p1, p2)

(1, 1)

(1, p2)

(p1, 1)
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Dynamic Program

DP follows immediately from the fact that (π1,t , π2,t) is a
controlled Markov process.

By the same argument, the DP naturally extends to infinite
horizon setup.
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Reachability Analysis

Let Ai be an operator from [0, 1] to [0, 1] such that for any
π ∈ [0, 1]

Aiπ = 1− (1− pi )(1− π)

Evolution of info state

1 When (ϕ1,t , ϕ2,t) = (0, 0), (π1,t+1, π2,t+1) = (A1π1,t ,A2π2,t).

2 When (ϕ1,t , ϕ2,t) = (1, 0), (π1,t+1, π2,t+1) = (p1,A2π2,t).

3 When (ϕ1,t , ϕ2,t) = (0, 1), (π1,t+1, π2,t+1) = (A1π1,t , p2).

4 When (ϕ1,t , ϕ2,t) = (1, 1),

(π1,t+1, π2,t+1) =

{

(1, 1) if x1,t = x2,t = 1

(p1, p2) otherwise
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Reachability Analysis (cont)

Reachable Set

Suppose the system starts in state
(π1, π2) = (p1, p2). Then the reachable set
of (π1, π2) is

S = {(1, 1), (p1, 1), (1, p2), (p1, p2)}
⋃

{(An

1p1, p2), (p1,A
n

2p2), : n ∈ N}
(0, 0)

(p1, p2)

(1, 1)

(1, p2)

(p1, 1)
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Reachability Analysis (cont)

The reachable set of (π1,t , π2,t) is countable.

Thus, the inifnite horizon DP has countable state space and
finite action space

Stanard techniques to numerically solve such DP (e.g.
Sennot, 97 , Leizarowitz Schwartz, 07)

Contrast this with earlier attempt to obtain a numerical
solution for this problem.
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Symmetric arrivals

Optimal coordination policy is symmetric h(π1, π2) = h(π2, π1)

Some definitions

Let τ ≈ 0.38196 be the root of x = (1− x)2 that lies in [0, 1].

1

( )
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Symmetric arrivals

Optimal coordination policy is symmetric h(π1, π2) = h(π2, π1)

Some definitions

Let τ ≈ 0.38196 be the root of x = (1− x)2 that lies in [0, 1].

Let fn(x) = 1 + (1− x)2 − (3 + x)(1− x)n+1

sn 1

fn(x)

and sn denote the root of fn(x) that is between [0, 1].

s0 > τ > s1 > s2 > · · · 0
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Symmetric arrivals

Theorem

An optimal policy of the infinite horizon variant of (P2) is:

round-robin policy for p ≥ τ

h∗(π1, π2) =







(1, 0) if π1 > π2,

(0, 1) if π1 < π2,

(1, 0) or (0, 1) if π1 = π2.

transmit if you have a packet policy for p < τ

h∗(π1, π2) =



















(1, 1) if π1 ≤ Amp, π2 ≤ Amp,

(1, 0) if π1 > π2, π1 > Amp

(0, 1) if π1 < π2, π2 > Amp

(1, 0) or (0, 1) if π1 = π2 = 1.

where m is s.t. sm+1 ≤ p ≤ sm.
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Symmetric arrivals

Theorem

The average reward per unit time for the infinite horizon variant of
(P2) is

J∗ =

{

p[1− (2p2 − 1)/D(p)] if p ≤ s1,

(1− p̄2) if s1 ≤ p;

where p̄ = 1− p and D(p) = 1 + p2 + p3.
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Symmetric arrivals

Proof

Guess the form of the value function and verify!

1. When p ≥ s1,

v(p,Anp) = v(Anp, p) = (1− p̄n+1), n > 1

v(p, 1) = v(1, p) = 1,

v(1, 1) = (1 + p̄2),

v(p, p) = p
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Symmetric arrivals

Proof (cont)

Guess the form of the value function and verify!

2. When sm+1 ≤ p < sm, m ∈ N

v(p, 1) = v(1, p) = p[1− f0(p)/D(p)],

v(1, 1) = 1,

v(p, p) = f1(p)/D(p),

v(Anp, p) = v(p,Anp) =

{

c∗(n) if n ≤ m,

c∗(n) if n > m

where

c∗(n) =
p̄

p
(1− p̄n)J∗ + p̄n+1 − p̄ + v(p, p),

c∗(n) = (1− p̄n+1) + c∗(1)− v(1, p)
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Symmetric arrivals

Proof

Guess the form of the value function and verify!

Rest is just a matter of elementary (but tedious) algebra.

The important point is that once we have a dynamic program,
optimality of a particular policy can be checked systematically.
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Symmetric arrivals

Proof

Guess the form of the value function and verify!

Rest is just a matter of elementary (but tedious) algebra.

The important point is that once we have a dynamic program,
optimality of a particular policy can be checked systematically.

We also need to guess the differential reward functions for the
non-optimal actions. In general, this can be difficult. But, we
exploit the symmetry and the fact that state space is
countable.
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Conclusion

Contributions

An interesting example of two-user dynamic team that can be
solved explicitly.

For symmetric arrivals, identified the optimal policy
analytically. The previous proof of optimality involved
numerically solving a genie aided upper bound.

For asymmetric arrivals, identified a DP with countable state
space and finite action space. Earlier attempts for a numerical
solution could only solve finite horizon problems with T = 4.
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Conclusion

Future work

We are missing a structural result:
Each user gets a transmission opportunity ϕi ,t = 1, at least
once in two consecutive time slots

The optimal policy satisfies this property.

If we can prove this upfront, the DP will be much simpler
(finite state and finite action spaces).
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Thank You
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