An explicit solution of a two user dynamic team

Aditya Mahajan

Dept of ECE
McGill University

September 30, 2010
Allerton

/36



Is dynamic team theory useful?



Is dynamic team theory useful?

Hlyuchj and Gallager, 1981

Although the notion of a dynamic team problem has been around
for over 25 years, the class of problems is of sufficient complexity
that little progress has been made toward a general solution
technique or even in finding general properties of optimal solutions.
Hence its value to the multi-access problem does not go much
beyond a conceptual level.



Is dynamic team theory useful?

Hlyuchj and Gallager, 1981
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for over 25 years, the class of problems is of sufficient complexity
that little progress has been made toward a general solution
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What is the state of the art after 30 years?

Have we made any progress toward a general solution technique to
be of any value to the problem that Hlyuchj and Gallager were
interested in?
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Two-users with single slot buffer

e x;¢+ €{0,1} : # packets in buffer
@ aj; €{0,1} : # new packet arrivals

ajt ~ Ber(p;)
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o ui; €{0,1} : # transmitted packets A A

Multiple access channel

Indicator of successful decoding: z: = v+ @ uo ¢

Xit41 = (Xit — Ujrzt) V aj ¢

Broadcast channel

z; is available to the users after unit delay



Problem Setup: Two user multiple access broadcast

Problem (P1)

o Given: arrival rates p; and p; D»
e Choose: Transmission policies (g1,82) where
g = (81,828 T1) and

)

&)
)

)

Uit = 8it(Xi1it, Ui 161, Z1:¢—1)

e Objective: Maximize

T T
1
Eg17g2{ Z U1,t®U2,t} or Tlinoo ?Egl,gz{ Z ulyt@UZt}

t=1 t=1



Literature Overview

Simplest canonical problem in multi-access networks.

o Slotted ALOHA and variants: Provide approximately optimal
performance when the number of users is large. Huge
literature ...

@ Collision incurs a cost but does not affect the dynamics
Schoute, 76, Walrand Varaiya, 79,

@ We are interested in the two-user problem in which collision
affects the dynamics
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Literature overview for Problem (P1)

Symmetric arrival rates Asymmetric arrival rates

@ Hlyuchj Gallager 81: o Lot of Al literature . ..

@ Hansen et. al. 04

e Numerical algorithm to
find optimal soln
e Out of memory for T=5

e Analytic
o lower bound

@ Ooi Wornell 96: @ Bernstein et. al. 05

o Heuristic algorithm
o Nurrefes o Controller for size=8

e upper bound @ Szer Charpillet 06

e Approx. algorithm

Out of for T=5
lower and upper bounds match e Yut of memory for



Literature overview for Problem (P1)

Symmetric arrival rates Asymmetric arrival rates

@ Hlyuchj Gallager 81: o Lot of Al literature . ..

e Analytic Approx algorithms . ..
0 loier oume but can only solve the system
@ Ooi Wornell 96: until T =4

e Numerical
@ upper bound

lower and upper bounds match
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@ The proof is numerical
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Symmetric arrival rates

e Optimal soln is known

@ The proof is numerical

@ Can we provide an analytic proof?

Asymmetric arrival rates

@ Approx algorithms only work for small horizon

@ Can we find algorithms that can solve large or infinite horizon
problem?



Contributions of this paper

@ Provide a dynamic programming decomposition

@ The DP has countable state space and finite action space.

Easy to use existing algorithms to find numerical solution for
large or infinite horizon setups

@ For symmetric arrival rates, find an analytic soln to the DP.



Problem Setup: Two user multiple access broadcast

Problem (P1)

o Given: arrival rates p; and p; D»
o Choose: Transmission policies (g1,82) where
g = (&1,82 - --,8,71) and

)

) )
)
B

B

Uie = 8it(Xitit, Ui 161, Z1:¢—1)

o Objective: Maximize

T 1 v
818 E U1 +®ua ¢ or lim —IE8-82 E uy,tDuo ¢
T—oo T —1

t=1
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Solution Outline (cont)

Dynamic Program

Vrii(my,m) =0

and fort=T,T —1,...,1
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Solution Outline (cont)

Dynamic Program

Vrii(my,m) =0

andfort=T,T7T —1,....,1
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Reachability Analysis

The reachable set of (71, m2) is countable.
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Solution Outline

Transmission policy X; 1:+—1 IS redundant

Uit = &ie(Xi 1o, Ui 1:6—1, Z1:6-1) Uir = &it(Xies U1,1:6—1, U2, 1:¢—1)

Feedback = control sharing Suff statistic for common info

Uj+ = gi,t(Xi,lzty Ui i:t—1, U2,1:t—1) Uj+ = gi,t(xi,ta T1,t5 71'2:t)
where
Tit = Pr(Xi,t = 1|U1,1:t—1, U2,1;t—1)

12 /36



Feedback = control sharing

@zt =u1: DUy
@ Thus,

U =2zDuy and =27z Duyys

13/36



Feedback = control sharing

@zt =u1: DUy
@ Thus,

U =2zt DUy and Uy =2z DUy
@ Hence,

Uit = &ie(Xit:t, U1, 1:6—1, U2 1:¢—1, Z1:¢—1)

13/36



rol sharing

@zt =u1: DUy
@ Thus,

U =2zt DUy and Uy =2z DUy
@ Hence,

Uit = &ie(Xit:t, U1, 1:6—1, U2 1:¢—1, Z1:¢—1)
@ Since zx = u1+ D o g,

Uit = &it(Xi1ie, U1, 1:6—1, U2 1:6—1)

13/36



Solution Outline
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Sufficient statistic for common information

Uir = git(Xits U11:6—1, U2 1:¢—1)

e Common information: (u1,1:t—1, U2.1:¢1)

@ Private information: x; ;

A special case of Mahajan, Nayyar, Teneketzis, 2008

Same solution approach (using the notion of a coordinator) applies

17 /36



Sufficient statistic for common information (cont)

Coordinator of the two users

@ Observation of coordinator;: common information

(u11:6-1, 2.1:6-1)

@ Action of the coordinator: partial functions (y1,¢,72,¢) .t

Uit = ’Yi,t(Xi,t)
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Sufficient statistic for common information (cont)

Coordinator of the two users

@ Observation of coordinator;: common information

(u11:6-1, 2.1:6-1)

@ Action of the coordinator: partial functions (y1,¢,72,¢) .t

Uit = ’Yi,t(Xi,t)

@ For ease of notation, let ¢ = 7 +(1). Then

Ujt = @i tXit

@ Think of (¢1.¢,¢2,¢) as the control action of the coordinator.
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Optimization problem at the coordinator

Problem (P2)
@ Given: arrival rates p; and po

e Choose: Coordination policy h = (hy, ha, ..., hT) where

(P1,6,02,6) = he(U1,1:6-1, U2,1:6—1, P1,1:6-1, P2,1:6-1)

e Objective: Maximize

T
Eh{;ULt@UZt} or Tlinoo?Eh{ZU]_t@UQ t}

19/36



Sufficient statistic for common information (cont)

Problem (P1) and (P2) are equivalent.

@ Any transmission policy (g1, 82) for (P1) can be implemented in
(P2) by choosing

it = &it(1,U1,1:6-1, Up1:6—1)

resulting in identical realization of all system variables.

@ Any coordination policy h for (P2) can be implemented in (P1) by
choosing
gi,t(Xi,ta u11:t+—-1, U2,1:t—1) = Qi tXit

where ; ¢ is recursively chosen according to
(p1,60902.¢) = he(Un 161, U2 1:6—1, P1.1:6—1, P2,1:6—1)

DZO 36



Sufficient statistic for common information (cont)

Uy 1:t—1,U21:t—1
7Ti,t = Pr Xl',l' =1 il it
P1,1:t—1,P2,1:t—1

Proposition

In (P2), restricting attention to coordination policies of the form

(S01,ta SOZ,t) = ht(ﬂ'l,t,ﬂ'z,t)

is without loss. Therefore, in (P1) restricting attention to
transmission policies of the form

Uit = gi,t(Xi,ta T1,t, T2t
is without loss.

21/36



Sufficient statistic for common information (cont)

@ (m1,¢,m2,¢) is a controlled Markov process with control action
(901,7:7 <P2,t)-
@ Expected conditional reward

Eluy: ® uot|ur,1:6-1, U2,1:6—, P1.1:¢, P2,1:¢)
= 7Tl,t901,t(1 - 7T2,t902,t) + (1 - 7Tl,t§01,t)7r2,t902,t

= Elu1,t ® uz,¢|m1,e, m2,t, P18, P2,1]

22 /36



Solution Outline (cont)

Dynamic Program

Vrii(my,m) =0

andfort=T,T7T —1,....,1

Vi(m1, m2) = max{ Who ¢(71, m2), Wor (1, m2), Wi1,¢(m1, m2)}

Reachability Analysis

The reachable set of (71, m2) is countable.

(0,0)

(p1,1)
T

(171:172) o

(1,1)

- (Lp2)
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Dynamic Program

o DP follows immediately from the fact that (71 ¢, 72 ¢) is a
controlled Markov process.

@ By the same argument, the DP naturally extends to infinite
horizon setup.
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Reachability Analysis

e Let A; be an operator from [0, 1] to [0, 1] such that for any
m € [0,1]
A,‘ﬂ' =1- (]_ —p,')(]_ —7’[')

Evolution of info state

@ When (¢1,¢,92,t) = (0,0), (m1,t41,m2,¢41) = (A171e, AoTot).
@ When (¢1+,92,t) = (1,0), (71,t41, m2,¢41) = (p1, A2T2,t).

© When (01,1, 92.t) = (0,1), (71,t41, T2,641) = (A171,e, P2).

© When (91,1, ¢2,¢) = (1,1),

(1, 1) if X1,t = X2t = 1

s ™ =
(71,641, T2,641) (p1,p2) otherwise
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Reachability Analysis (cont)

Reachable Set

Suppose the system starts in state
(m1,m2) = (p1,p2). Then the reachable set

of (71'1,71'2) is

S ={(1,1),(p1,1), (1, p2), (P1, P2)}
(J{(Alp1, p2), (p1, ASp2),: n € IN}

(0,0)

(p1,1)
T

(1,1)

(plzpz) '

<o (p2)
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Reachability Analysis (cont)

@ The reachable set of (71, 7m2,¢) is countable.

@ Thus, the inifnite horizon DP has countable state space and
finite action space

@ Stanard techniques to numerically solve such DP (e.g.
Sennot, 97 , Leizarowitz Schwartz, 07)

@ Contrast this with earlier attempt to obtain a numerical
solution for this problem.

27 /36



Symmetric arrivals

e Optimal coordination policy is symmetric h(my, m2) = h(mp, 1)

Some definitions

o Let 7~ 0.38196 be the root of x = (1 — x)? that lies in [0, 1].
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Symmetric arrivals

e Optimal coordination policy is symmetric h(my, m2) = h(mp, 1)

Some definitions

o Let 7~ 0.38196 be the root of x = (1 — x)? that lies in [0, 1].
o Let fo(x) =1+ (1—x)?>—(3+x)(1 —x)"*!

Vn 1

and s, denote the root of f,(x) that is between [0, 1].
@Ssg>T>5>5>---0
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Symmetric arrivals

An optimal policy of the infinite horizon variant of (P2) is:

@ round-robin policy for p > 7

(1,0) if mp > 7o,
h*(7T1,7T2): (0,1) if m < o,
(1,0) or (0,1) if m = 7.

@ transmit if you have a packet policy for p < 7

(17 1) if m < Ampa T < Ampa
1,0 if My > mp,m > A™
h* (71, m2) = EO 13 !f e mp
, if mp < mo,m > A"p
(1,0) or (0,1) if 7T1:7T2:1.

where mis s.t. smi1 < p < sp,.
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Symmetric arrivals

Theorem
The average reward per unit time for the infinite horizon variant of
(P2) is
o )P =(2p* =1)/D(p)] if p < s,
(1-5% if s1 < p;

where p =1 — p and D(p) =1 + p? + p3.

30/36



Symmetric arrivals

Guess the form of the value function and verify!

1. When p > s,
v(p, A"p) = v(A"p, p) = (1 p"t), n>1
v(p,1) =v(1,p) =
v(L,1) = (1 +p%),
v(p,p) =

31/36



Symmetric arrivals

Proof (cont)

Guess the form of the value function and verify!
2. When spi1 < p < sm meN

v(p,1) = v(1,p) = p[1 — fo(p)/D(p)],
v(1,1) =1,
v(p,p) = f(p)/D(p),

c(n) ifn<m,
A" — A'p) =
v(A"p, p) = v(p,A"p) {C*(n) o

where
B, _ _
G(n) =0 =P"S + p" ™t — B+ v(p,p);

c¢*(n) = (1= p") + (1) = v(L. p)
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Symmetric arrivals

Guess the form of the value function and verify!

@ Rest is just a matter of elementary (but tedious) algebra.

@ The important point is that once we have a dynamic program,
optimality of a particular policy can be checked systematically.
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Symmetric arrivals

Guess the form of the value function and verify!

@ Rest is just a matter of elementary (but tedious) algebra.
@ The important point is that once we have a dynamic program,
optimality of a particular policy can be checked systematically.

@ We also need to guess the differential reward functions for the
non-optimal actions. In general, this can be difficult. But, we
exploit the symmetry and the fact that state space is
countable.
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Conclusion

Contributions

@ An interesting example of two-user dynamic team that can be
solved explicitly.

@ For symmetric arrivals, identified the optimal policy
analytically. The previous proof of optimality involved
numerically solving a genie aided upper bound.

@ For asymmetric arrivals, identified a DP with countable state
space and finite action space. Earlier attempts for a numerical
solution could only solve finite horizon problems with T = 4.
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Conclusion

@ We are missing a structural result:
Each user gets a transmission opportunity ¢; ; = 1, at least
once in two consecutive time slots

@ The optimal policy satisfies this property.

@ If we can prove this upfront, the DP will be much simpler
(finite state and finite action spaces).
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Thank You



