Optimal decentralized control of coupled subsystems with control sharing

> Aditya Mahajan McGill University

IEEE Conference on Decision and Control, 2011

Notation

(6) Random variables: *X*, realizations: *x*, state spaces: \mathcal{X} .

Image of the set o

$$a_{1:t} = (a_1, a_2, ..., a_t)$$

(a)
$$\mathbf{a} = (a^1, a^2, ..., a^n).$$

System Model

Control-coupled subsystems $x_{t+1}^{i} = f_{t}^{i}(x_{t}^{i}, \mathbf{u}_{t}, w_{t}^{i})$ Controller with control sharing $u_t^i = g_t^i(x_{1:t}^i, \mathbf{u}_{1:t-1})$

Objective

$$\min_{\text{all policies } \mathbf{g}} \mathbb{E} \Big[\sum_{t=1}^{T} c_t(\mathbf{x}_t, \mathbf{u}_t) \Big]$$

Control sharing info struc

Some applications

Feedback communication systems (physical layer)

Point-to-point real-time source coding, multi-terminal source coding with feedback, some classes of multiple access channel with feedback

Queueing networks (media access layer)

Multi-access broadcast, some classes of decentralized scheduling and routing.

Cellular networks

Paging and registration in cellular networks

Conceptual difficulties

The system has non-classical information structure

Solution of the second seco

$$u_t^i = g_t^i(x_{1:t}^i, \mathbf{u}_{1:t-1})$$

► Is part of this data redundant?

Can part of this data be compressed to a sufficient statistic?

Multi-stage decision making

- ► How does current control action affect future estimation?
- What information does controller *i* communicate to controller *j* via its control action?

Literature Overview

- Scontrol sharing info-structure (Bismut, 1972, Sandell and Athans, 1974)
 - Considered the LQG version of the problem
 - Exploit the fact that the action space is continuous and compact to embed the observations in control
 - Reduces to one-step delayed sharing pattern

Other non-classical info-structures with sharing

- Delayed state sharing: Aicadri, Davoli, and Minciardi, 1987
- Delayed (observation) sharing: Witsenhausen 1971, Varaiya and Walrand, 1979, Nayyar, Mahajan, and Teneketzis, 2011
- Periodic sharing: Ooi, Verbout, Ludwig, Wornell, 1997
- Belief sharing: Yüksel, 2009
- Partial history sharing: Mahajan, Nayyar, Teneketzis, 2008

Outline of the results

Sirst structural result (based on person-by-person opt.)

 $x_{1:t-1}^i$ is redundant for optimal performance.

wlo,
$$u_t^i = g_t^i(\mathbf{x}_t^i, \mathbf{u}_{1:t-1})$$

Second structural result (based on common info approach of MNT 2008)

Define
$$\Pi_t^i(x) = \mathbb{P}(X_t^i = x \mid \mathbf{U}_{1:t-1})$$
 and $\Pi_t = (\Pi_t^1, ..., \Pi_t^n)$.

 $\boldsymbol{\pi}_t$ is a sufficient statistic of $\mathbf{u}_{1:t-1}$ for optimal performance.

wlo,
$$u_t^i = g_t^i(x_t^i, \boldsymbol{\pi}_t)$$

© Dynamic programming decomposition

Structural result based on person-by-person optimality

Main lemma

The states processes are conditionally independent given the past control actions.

$$\mathbb{P}(\mathbf{X}_{1:t} = \mathbf{x}_{1:t} \mid \mathbf{U}_{1:t}) = \prod_{i=1}^{n} \mathbb{P}(X_{1:t}^{i} = x_{1:t}^{i} \mid \mathbf{U}_{1:t})$$

Implications

Fix g^{-i} and consider optimal design of g^i . Let $R_t^i = (X_t^i, \mathbf{U}_{1:t-1})$. Then $\{R_t^i, t = 1, ...\}$ is a controlled MDP with control action U_t^i .

$$\blacktriangleright \mathbb{P}(r_{t+1}^{i} \mid r_{1:t}^{i}, u_{1:t}^{i}) = \mathbb{P}(r_{t+1}^{i} \mid r_{t}^{i}, u_{t}^{i})$$

$$\blacktriangleright \mathbb{E}[c_t(\mathbf{x}_t, \mathbf{u}_t) \mid r_{1:t}^i, u_{1:t}^i] = \mathbb{E}[c_t(\mathbf{x}_t, \mathbf{u}_t) \mid r_t^i, u_t^i]$$

Structural result ... (cont.)

Original model

$$u_t^i = g_t^i(x_{1:t}^i, \mathbf{u}_{1:t-1})$$

Implication of person-by-person optimality argument

$$u_t^i = g_t^i(r_t^i) = g_t^i(x_t^i, \mathbf{u}_{1:t-1})$$

Design difficulty

Data at the controller is still increasing with time

A coordinator based on common information

General idea proposed in (Mahajan, Nayyar, and Teneketzis 2008)

$$g_t^1 \qquad X_t^1, \mathbf{U}_{1:t-1} \qquad u_t^1 \qquad g_t^2 \qquad X_t^2, \mathbf{U}_{1:t-1} \qquad u_t^2$$

A coordinator based on common information (cont.)

$$\begin{aligned} d_t^1 & X_t^1 & u_t^1 & d_t^2 & X_t^2 & u_t^2 \\ & & h_t & \mathbf{U}_{1:t-1} & (d_t^1, d_t^2) \\ \end{aligned} \\ \end{aligned} \\ \text{where } d_t^i(\cdot) = g_t^i(\cdot, \mathbf{u}_{1:t-1}) \end{aligned}$$

A coordinator based on common information (cont.)

Solution approach

- ► The coordinated system is a POMDP
- Identify the structure of optimal coordination strategies for the coordinated system
- Show that the coordinated system is equivalent to the original model
- Translate the structure of optimal coordination strategies to the original model

The coordinated system

State:
$$\mathbf{x}_t = (x_t^1, ..., x_t^n)$$
Observations: $\mathbf{u}_{t-1} = (u_{t-1}^1, ..., u_{t-1}^n)$
Control actions: $\mathbf{d}_t = (d_t^1, ..., d_t^n),$
Coordination rule: $h_t : (\prod_{i=1}^n \mathcal{U}^i)^{t-1} : \prod_{i=1}^n (\mathcal{X}^i \to \mathcal{U}_t^i)$
 $\mathbf{d}_t = h_t(\mathbf{u}_{1:t-1})$

Structure of optimal coordination strategy

Define $\Xi_t = \mathbb{P}(\text{state} \mid \text{history of observations}) = \mathbb{P}(\mathbf{x} \mid \mathbf{U}_{1:t-1})$. Then,

wlo,
$$\mathbf{d}_t = h_t(\xi_t)$$

The coordinated system (cont.)

Dynamic programming decomposition

$$V_t(\xi) = \min_{\mathbf{d}} \mathbb{E} \left[c_t(\mathbf{X}_t, \mathbf{U}_t) + V_{t+1}(\Xi_{t+1}) \mid \Xi_t = \xi \right]$$

- Salient features
 - ► The optimization at each step is a functional optimization problem.
 - (In our opinion) functional optimization at each step is the only way to circumvent the issue of signaling.

Translation of results back to the original system

Solve the DP for coordinated system.

► Choose $g_t^i(x_t^i, \xi_t) = h_t^i(\xi_t)(x_t^i)$

Further simplification of structural result

Recall main lemma:

The states processes are conditionally independent given the past control actions.

$$\mathbb{P}(\mathbf{X}_{1:t} = \mathbf{x}_{1:t} \mid \mathbf{U}_{1:t}) = \prod_{i=1}^{n} \mathbb{P}(X_{1:t}^{i} = x_{1:t}^{i} \mid \mathbf{U}_{1:t})$$

Implication

$$\xi_t(\mathbf{x}) = \mathbb{P}(\mathbf{X}_t = \mathbf{x} \mid \mathbf{U}_{1:t-1}) = \prod_{i=1}^n \pi_t^i(x_t^i)$$

Further simplification of structural result (cont.)

Simplified structural result

wlo,
$$u_t^i = g_t^i(x_t^i, \boldsymbol{\xi}_t) = g_t^i(x_t^i, \boldsymbol{\pi}_t)$$

Significant reduction is size.

 $\xi_t \in \Delta(\mathcal{X}^1 \times \dots \times \mathcal{X}^n) \quad \text{while} \quad \boldsymbol{\pi}_t \in \Delta(\mathcal{X}^1) \times \dots \times \Delta(\mathcal{X}^n)$

Simplified dynamic programming decomposition

$$V_t(\boldsymbol{\pi}) = \min_{\mathbf{d}} \mathbb{E} \left[c_t(\mathbf{X}_t, \mathbf{U}_t) + V_{t+1}(\boldsymbol{\Pi}_{t+1}) \mid \boldsymbol{\Pi}_t = \boldsymbol{\pi} \right]$$

Recap of structural results

Original:

$$u_t^i = g_t^i(x_{1:t}^i, \mathbf{u}_{1:t-1})$$

Using person-by-person approach

$$u_t^i = g_t^i(x_t^i, \mathbf{u}_{1:t-1})$$

Solution Using the common information approach of (NMT 2008, 2011)

$$u_t^i = g_t^i(x_t^i, \xi_t), \quad \xi_t = \mathbb{P}(\mathbf{X}_t \mid \mathbf{u}_{1:t-1})$$

Substant Security Security

$$u_t^i = g_t^i(x_t^i, \boldsymbol{\pi}_t), \quad \pi_t^i = \mathbb{P}(X_t^i \mid \mathbf{u}_{1:t-1})$$

- Two-user with single slot buffer
 - ▶ $x_t^i \in \{0, 1\}$: # of packets in queue
 - ▶ $w_t^i \in \{0, 1\}$: # of arrivals ~ Ber (p_i)
 - ▶ $u_t^i \in \{0, 1\}$: # of transmitted packets
- Multiple-access channel
 - ► Throughput: $r_t = u_t^1(1 u_t^2) + (1 u_t^1)u_t^2$
 - \triangleright r_t available to both users after one-step delay
 - State update: $x_{t+1}^i = \max\left((x_t^i u_t^i r_t) + w_t^i, 1\right)$

Literature overview

- Symmeric arrivals: Hlyuchj and Gallager, 1981 feasible lower bound
- Symmeric arrivals: Ooi and Wornell, 1996 genie aided upper bound that numerically matched lower bound.
- Asymmetric arrivals: Used as benchmark problem in AI community (Hansen et al, 2004, Bernstein et al, 2005, Shez Charpillet, 2006) for numerical algorithms for DEC-POMDPs.

Structure of optimal control policy

►
$$\pi_t^i$$
 is equivalent to $\pi_t^i(1) =: q_t^i \in \{0, 1\}$

►
$$d_t^i$$
 is equivalent to $d_t^i(1) =: s_t^i \in \{0, 1\}$

Structure of optimal policy

$$u_t^i = x_t^i \cdot s_t^i$$
, where $(s_t^1, s_t^2) = h_t^i(q_t^1, q_t^2)$

Optimal policy for symmetric arrivals

▶ Notation: for any $q \in [0, 1]$, let Aq = 1 - (1 - p)(1 - q)

► Characteristic polynomial: $\varphi_n(x) = 1 + (1-x)^2 - (3+x)(1-x)^{n+1}$.

▶ Let α_n be the root of φ_n in [0, 1] and τ be the root of $x = (1 - x)^2$

> Optimal performance:

$$J^* = \begin{cases} 1 - (1-p)^2, & \text{if } p \ge \alpha_1 \\ p(1 - (2p^2 - 1)) / (1 + p^2 + p^3), & \text{otherwise} \end{cases}$$

Optimal policy

▶ When $p > \tau$

$$h^{*}(q^{1},q^{2}) = \begin{cases} (1,0) & \text{if } q^{1} > q^{2} \\ (0,1) & \text{if } q^{1} < q^{2} \\ (1,0) \text{ or } (0,1) & \text{if } q^{1} = q^{2} \end{cases}$$

▶ When $p < \tau$, let $n \in \mathbb{N}$ be such that $\alpha_{n+1} .$

$$h^{*}(q^{1},q^{2}) = \begin{cases} (1,1) & \text{if } q^{1} \leq A^{n} \text{ and } q^{2} \leq A^{n}p \\ (1,0) & \text{if } q^{1} > \max(A^{n}p,q^{2}) \\ (0,1) & \text{if } q^{2} > \max(A^{n}p,q^{1}) \\ (1,0) \text{ or } (0,1) & \text{if } q^{1} = q^{2} = 1 \end{cases}$$

Analytic proof of optimality of the policy proposed by Hlyuchj and Gallager, 1981.

Conclusion

Coupled subsystems with control-sharing

- Non-classical information structure
- Use properties of the system dynamics and the common information approach of (Mahajan, Nayyar, Teneketzis 2008) to find structure of optimal controller and a dynamic programming decomposition.
- Allows using standard tools from stochastic control to analyze specific applications.

Sey take-home points

- Subclasses of decentralized control problems with signaling are solvable!
- **>** Each step of the DP is a functional optimization problem.

