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Motivation

What do we mean by team control problem? Any setup in which agents (decision
makers) need to collaborate with each other to achieve a common task.

Team optimal control of decentralized stochastic systems arises in applications in:

Networked control systems

Robotics

Communication networks

Transportation networks

Sensor networks

Smart grids

Economics

Etc.

No solution approach exists for general infinite-horizon decentralized control systems.

In general, these problems belong to NEXP complexity class.
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Brief Literature Review

Classical information structure: All agents have identical information.

Non-classical information structure: Agents have different information sets.

Examples of non-classical information structure:

Static team (Radner 1962, Marschack and Radner 1972)

Dynamic team (Witsenhausen 1971, Witsenhausen 1973)

Specific information structure

Partially nested (Ho and Chu 1972)

One-step delayed sharing (Witsenhausen 1971, Yoshikawa 1978)

n-step delayed sharing (Witsenhausen 1971, Varaiya 1978, Nayyar 2011)

Common past sharing (Aicardi 1978)

Periodic sharing (Ooi 1997)

Belief sharing (Yuksel 2009)

Partial history sharing (Nayyar 2013)

This work introduces a new information structure : Mean-field sharing
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Problem Formulation

Notation:

N : Number of homogeneous subsystems (not necessarily large).

X i
t 2 X : State of subsystem i 2 {1, . . . ,N} at time t.

U i
t 2 U : Action of subsystem i 2 {1, . . . ,N} at time t.

Mean-Field:

Zt(x) =
1

N

N
X

i=1

(X i
t = x), x 2 X or Zt =

1

N

N
X

i=1

δX i
t
.

All system variables are finite-valued.
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Problem Formulation

Problem statement:

Dynamics of subsystem i : X i
t+1 = ft(X

i
t ,U

i
t ,W

i
t ,Zt), i 2 {1, . . . ,N}.

Mean-field sharing Information structure: U i
t = g i

t (Z1:t ,X
i
t ), where g i

t is called con-
trol law of subsystem i at time t.

Control strategy: The collection gi = (g i
1, . . . , g

i
T ) of control laws of subsystem i over

time is control strategy of subsystem i . The collection g = (g1, . . . , gN) of control
strategies is control strategy of the system.

Optimization problem: Let Xt = (X i
t )

N
i=1 and Ut = (U i

t)
N
i=1. We are interested in

finding a strategy g that minimizes

J(g) = g

"

T
X

t=1

`t(Xt ,Ut)

#

.
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Problem Formulation

Assumptions:

(A1) Initial states (X i
1)

N
i=1 are i.i.d. random variables.

(A2) Disturbances at time t, (W i
t )

N
i=1, are i.i.d. random variables.

(A3) Let Xt := (X i
t )

N
i=1 and Wt := (W i

t )
N
i=1; then, {X1, {Wt}

T
t=1} are mutually independent.

(A4) All controllers use identical control laws.

Note that:

(A1), (A2), and (A3) are standard assumptions in Markov decision problems.

In general,(A4) leads to a loss in performance. However, it is a standard assump-
tion in the literature on large scale systems for reasons of simplicity, fairness, and
robustness.
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Main Results

We identify a dynamic program to compute an optimal strategy. In particular,

Theorem 2:

Let  ∗

t be a solution to the following dynamic program: at time t for every zt

Vt(zt) = min
γt

( [`t(Xt ,Ut) + Vt+1(Zt+1)|Zt = zt , Γt = γt ])

where γt : X ! U and γt =  t(zt). Define g∗

t (z , x) :=  ∗

t (z)(x), 8x 2 X , 8z . Then,
g∗ = (g∗

1 , . . . , g
∗

T ) is an optimal strategy.

Salient feature of the model:

Very few assumptions on the model.

Allow for mean-field coupled dynamics.

Allow for arbitrary coupled cost. (We do not assume cost to be weakly coupled.)
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Main Results

Salient feature of the results:

Computing globally optimal solution.

Solution approach works for arbitrary number of controllers.

State space of dynamic program increases polynomially (rather than exponentially)
w.r.t. the number of controllers.

Action space of dynamic program does not depend on the number of controllers.

The size of information state does not increase with time; hence, the results naturally
extend to infinite horizon under standard assumptions.

The results extend naturally to randomized strategies by considering ∆(U) as the
action space.

Since the dynamic program is based on common information, each agent can in-
dependently solve the dynamic program and compute the optimal strategy in a

decentralized manner.
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Proof Approach

Step 1: We follow common information approach [Nayyar, Mahajan, and Teneket-
zis 2013], and convert the decentralized control problem into a centralized control
problem.

Step 2: We exploit the symmetry of the problem (with respect to the controllers)
to show that the mean-field Zt is an information state for the centralized problem
identified in Step 1. We then use this information state Zt to obtain a dynamic
programming decomposition.
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Step 1: An Equivalent Centralized System

We define Γt and  t as follows:

Γt(·) := gt(Z1:t , ·), Γt : X 7! U , Γt =  t(Z1:t) := gt(Z1:t , ·).

Symmetric control laws assumption g i
t =: gt , 8i , implies that Γi

t =: Γt , 8i .

Equivalent Centralized Control Problem

The objective is to minimize

Ĵ(ψ) = ψ

"

T
X

t=1

`t(Xt , Γt(X
1
t ), . . . , Γt(X

N
t ))

#

.
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Step 2: Identifying an Information State

Lemma 2:

For any choice γ1:t of Γ1:t , any realization z1:t of Z1:t , and any x 2 XN ,

(Xt = x |Z1:t = z1:t , Γ1:t = γ1:t) = (Xt = x |Zt = zt) =
(x 2 H(zt))

|H(zt)|

where H(z):={x 2XN: 1
N

PN

i=1 δx i = z}.

Proof Outline:

By induction, it is shown above conditional probability is indifferent to permutation

of x ; hence, mean-field is sufficient to characterize it.

The latter property is proved using the symmetry of the model and the control laws.
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Step 2: Identifying an Information State

Lemma 3:

The expected per-step cost may be written as a function of Zt and Γt . In particular,
there exists a function ˆ̀

t (that does not depend on strategy ψ) s.t.

[`t(Xt , Γt(X
1
t ), . . . , Γt(X

N
t ))|Z1:t , Γ1:t ] =: ˆ̀t(Zt , Γt).

Proof Outline: Consider

[`t(Xt , Γt(X
1
t ), . . . , Γt(X

N
t ))|Z1:t = z1:t , Γ1:t = γ1:t ]

=
X

x

`t(x , γt(x
1), . . . , γt(x

N)) (Xt = x |Z1:t = z1:t , Γ1:t = γ1:t) =: ˆ̀t(Zt , Γt).

Substituting the result of Lemma 2, and simplifying gives the result.
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Step 2: Identifying an Information State

Lemma 4:

For any choice γ1:t of Γ1:t , any realization z1:t of Z1:t , and any z ,

(Zt+1 = z |Z1:t = z1:t , Γ1:t = γ1:t) = (Zt+1 = z |Zt = zt , Γt = γt).

Also, the above conditional probability does not depend on strategy ψ.

Proof Outline: The result relies on the independence of the noise processes across

subsystems and Lemma 2.
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Dynamic Program

Theorem 1:

In the equivalent centralized problem, there is no loss of optimality in restricting
attention to Markov strategy i.e. Γt =  t(Zt). Furthermore, optimal policy ψ∗ is
obtained by solving the following dynamic program

Vt(zt) = min
γt

(ˆ̀t(zt , γt) + [Vt+1(Zt+1)|Zt = zt , Γt = γt ])

where γt : X ! U .

Proof Outline: Zt is an information state for the equivalent centralized problem because:

As shown in Lemma 3, the per-step cost can be written as a function of Zt and Γt .

As shown in Lemma 4, {Zt}
T
t=1 a controlled Markov process with control action Γt .

Thus, the result follows from standard results in Markov decision theory.
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Dynamic Program

Theorem 2:

Let  ∗

t be a solution to the following dynamic program: at time t for every zt

Vt(zt) = min
γt

( [`t(Xt ,Ut) + Vt+1(Zt+1)|Zt = zt , Γt = γt ])

where γt : X ! U and γt =  t(zt). Define g∗

t (z , x) :=  ∗

t (z)(x), 8x 2 X , 8z . Then,
g∗ = (g∗

1 , . . . , g
∗

T ) is an optimal strategy.

Proof Outline:

In step 1, we converted the decentralized control problem to an equivalent centralized
control problem. Now, we translate the answer of the equivalent centralized control
problem back to that of the original decentralized control problem and obtain Theorem 2
from Theorem 1.
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Example: Demand Response in Smart Grids

Power Grid

X i
t 2 X = {OFF ,ON}

Zt =
1
N

PN

i=1 (X i
t = OFF )

Dynamics: (X i
t+1|X

i
t ,U

i
t) =: [P(ui

t)]x it x it+1

Actions: U i
t 2 U = {DoNothing ,TurnOFF ,TurnON}

Cost of action: C(U i
t)

Objective: Keep the demand distribution Zt close to a desired distribution ⇣t with
minimum intervention such that following cost is minimized.

g

"

∞
X

t=1

β
t−1

 

1

N

N
X

i=1

C(U i
t) + D(Zt k ⇣t)

!#
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Numerical Result of the Example

Parameters:

N = 100
β = 0.9

, ⇣t =



0.7
0.3

]

,

u Do Nothing Turn OFF Turn ON

c(u) 0 0.1 0.2

P(u)



0.25 0.75
0.375 0.625

] 

0.85 0.15
0.875 0.125

] 

0.05 0.95
0.075 0.925

]

Optimal solution:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Do Nothing

Turn OFF

Turn ON

A: Optimal control action for subsystems with state x=OFF 

z

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Do Nothing

Turn OFF

Turn ON

B: Optimal control action for subsystems with state x=ON

z

u

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.7

0.8

1

C: Sample path of empirical distrubution Z

t

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

D: Value function

z

V
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Generalization 1: Noisy Observation of Mean-Field

The solution methodology and dynamic programming decomposition extend to the scenario
where all controllers observe a noisy version of the mean-field.

Yt = ht(Zt ,Vt): Noisy observation of the mean-field.

U i
t = gt(Y1:t ,X

i
t ): Agents observe a noisy version of the mean-field.

Πt = (Zt |Y1:t , Γ1:t): Information state for the coordinated system.

A dynamic program is derived to obtain an optimal strategy. In particular,

Theorem 3:

Let  ∗

t be a solution to the following dynamic program: at time t for every ⇡t

Vt(⇡t) = min
γt

( [`t(Xt ,Ut) + Vt+1(Πt+1)|Πt = ⇡t , Γt = γt ])

where γt : X ! U and γt =  t(⇡t). Define g∗

t (⇡, x) :=  ∗

t (⇡)(x), 8x 2 X , 8⇡. Then,
g∗ = (g∗

1 , . . . , g
∗

T ) is an optimal strategy.
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Generalization 2: Multiple type of Subsystems

So far, we have assumed homogeneous subsystems. Our results generalize to multiple
types where subsystem i has a type k 2 {1, . . . ,K}.

Dynamics of subsystem i depends on its type k: X i
t+1 = f kt (X

i
t ,U

i
t ,W

i
t ,Zt).

Mean-field:Zt = (Z 1
t , . . . ,Z

K
t ), where Z k

t is the mean-field of subsystems with type k.

Control law of subsystem i depends on its type k: U i
t = g k

t (Z1:t ,X
i
t ).

Empirical distribution of number of types is common knowledge between subsystems.

Subsystems are arbitrarily coupled in the cost.

Theorem 4:

Let  ∗

t be a solution to the following dynamic program: at time t for every zt

Vt(zt) = min
γt

( [`t(Xt ,Ut) + Vt+1(Zt+1)|Zt = zt , Γt = γt ])

where γt = (γ1
t , . . . , γ

K
t ) and γ

k
t : X k ! Uk . Define

g
∗,k
t (z , x) :=  

∗,k
t (z)(x), 8x 2 X k

, 8z .

Then, g∗ = (g∗,1, . . . , g∗,K ) is an optimal strategy, where g∗,k = (g∗,k
1 , . . . , g

∗,k

T ).
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Generalization 3: Major Minor Setup

Consider one major subsystem distinguished by index 0 and N minor subsystems.

Dynamics : X 0
t+1 = f 0t (X

0
t ,U

0
t ,W

0
t ,Zt) and X i

t+1 = ft(X
i
t ,U

i
t ,W

i
t ,Zt ,X

0
t ) .

Mean-field:Zt is the mean-field of minor subsystems.

Control laws: U0
t = g 0

t (Z1:t ,X
0
1:t) and U i

t = gt(Z1:t ,X
0
1:t ,X

i
t ) .

Subsystems are arbitrarily coupled in the cost.

Theorem 5:

Let  ∗

t be a solution to the following dynamic program: at time t for every zt

Vt(zt , x
0
t ) = min

u0t ,γt

( [`t(X
0
t ,Xt ,U

0
t ,Ut)+Vt+1(Zt+1,X

0
t+1)|,Zt = zt , Γt=γt ,X

0
t =x

0
t ,U

0
t=u

0
t ])

where γt : X ! U . Define

g
∗,0
t (z, x0) := ψ

∗,1
t (z, x0), ∀x ∈ X 0, ∀z.

g∗

t (z, x
0, x) := ψ

∗,2
t (z, x0)(x), ∀x ∈ X , ∀x ∈ X 0, ∀z.

Then, (g∗,0, g∗) is an optimal strategy, where g∗,0 = (g∗,0
1 , . . . , g

∗,0
T ) and g∗ =

(g∗

1 , . . . , g
∗

T ).
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Summary

We identified a dynamic program that obtains a global optimal strategy for arbitrary
number of controllers.

The state space of dynamic program increases polynomially (rather than exponen-
tially) w.r.t. the number of controllers.

We illustrated our approach by an example in smart grids with N = 100 subsystems.

The results naturally extend to infinite horizon and randomized strategies.

We showed that the results generalize to noisy mean-field, multiple types, and
major-minor setup.

The proposed setup is practical, because it is:

Realistic: There are very few assumptions imposed on the model. In many real-world ap-
plications such as smart grids, social networks, etc., the assumed symmetry is reasonable
(even desirable) for reasons of fairness, robustness, and simplicity.

Implementable: Mean-field sharing information structure is physically and economically
efficient.

Solvable: The solution approach is computationally efficient.
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Thank You
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