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Motivation

Smart Grids

Robotics

Communication Networks

Sensor Networks

Optimal multi-agent control:
Multiple controllers with a common

optimization objective

Key feature: information decentralization

Investigated using team theory
Long literature on solution for speciic

information structures

. . . Witsenhausen, Ho, Varaiya, and others.

But no generic solution approach

Analyze and solve a stylized model for large-scale systems
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Motivating setup: System with major and minor subsystems

Service-

Provider

Major-subsystem (e.g., a service provider)
Controls operating conditions of the system e.g., price, capacity, etc.

The dynamics of the major-subsystem’s state depend on the minor-

subsystem’s state through their mean-ield (or empirical distribution).

Minor homogeneous subsystems
Dynamics are afected by the state of the major-subsystem.

Inluence each other only though their mean-ield (equivalent to a

interacting particle model).
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(MF-MM) Model and Problem Formulation

Major subsystem State X ∈ � Indexed by 0.

Action U ∈ �

Minor subsystems State Xi ∈ � Indexed by i ∈ {1, . . . , n}
Action Ui ∈ �

Mean-ield of minor subsystems

Z (x) = 1
n�

i=

�{Xi = x} or Z = 1
n�

i=

δXi
t

Major subsystem Minor subsystems

Dynamics X = f (Z , X ,U ,W ) Xi = f (Z , X , Xi , Ui ,Wi)
Control U = g (Z : , X : ) Ui = g (Z : , X : , Xi)
Objective min � [

T

�
=

ℓ (X , X ,U ,U )] Arbitrary cost coupling



Team optimal control of major-minor subsystems– (Arabneydi and Mahajan)
4

Assumptions on the model

Assumption (A1) The primitive random variables:

initial state X of the major subsystem

initial states (X , . . . , X ) of the minor subsystems

process noises {(W , . . . ,W )}T=
are indepedent

Furthermore the initial states (X , . . . , X ) and the process noise

(W , . . . ,W ) of the minor subsystem are identically distributed
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Assumptions on the model

Assumption (A1) The primitive random variables:

initial state X of the major subsystem

initial states (X , . . . , X ) of the minor subsystems

process noises {(W , . . . ,W )}T=
are indepedent

Furthermore the initial states (X , . . . , X ) and the process noise

(W , . . . ,W ) of the minor subsystem are identically distributed

Assumption (A2) All minor subsystems use identical control laws

Standard assumption to ensure simplicity, fairness, and robustness.

Leads to loss in performance
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Salient features and main results

Features of the model
Decentralized control system with non-classical information structure

Mean-ield coupled dynamics and arbitrarily coupled cost.

Seek globally optimal solution for arbitrary # of minor controllers

Main results Indetify the structure of optimal control strategies.

Obtain a dynamic program that determines optimal control strategies

at all controllers.

Features of the solution
State space of the DP increases polynomially (rather than exponentially)

with the number of minor subsystems.

Action space of DP does not depend on the # of minor subsystems.

State and action spaces do not depend on time; hence, the results

extend naturally to ininite horizon
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First analyze basic MF model [Arabneydi Mahajan, CDC 2014]
Multiple types of minor subsystems but no major subsystem.

Step 1 Follow the common information approach [NMT13] to convert the

decentralized control problem into a centralized control problem

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A

common information approach, IEEE TAC 2013.

Step 2 Exploit symmetry of the system (with respect to the controllers) to

show that the mean-ield is an information state.

Note that MF-MM model is a special case of basic MF model
The major-minor model corresponds to a basic MF system with

1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model
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Basic MF-model [Arabneydi Mahajan, CDC 2014]

Minor subsystems Type k ∈ {1, . . . ,m}. �k = { subsystems of type-k}. |�k| = nk.

State Xi ∈ �k Indexed by i ∈ �k

Action Ui ∈ �k

Mean-ield of minor subsystems

Zk(x) = 1
nk �

i∈�k

�{Xi = x} and Z = (Z , . . . , Z )

Dynamics Xi = fk(Z , Xi , Ui ,Wi), i ∈ �k.

Controls Ui = gk(Z : , Xi), i ∈ �k.

Equiv. to (A2) All subsystems of the same type use identical control laws

Objective min � [
T

�
=

ℓ (X ,U )], where X = (X , . . . , X ); U = (U , . . . , U )
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From decentralized to centralized control:
the common information approach

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A common information

approach, IEEE TAC 2013.
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From decentralized to centralized control:
the common information approach

X ,Z :

Xi , Z :

X ,Z :

(X , . . . , X )f

gk

gki

gk

U

Ui

U

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A common information

approach, IEEE TAC 2013.
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From decentralized to centralized control:
the common information approach

X

Xi

X

(X , . . . , X ) Z :f

γk

γki

γk

U

Ui

U

ψ (γ , . . . , γ )

Coordinator

Extended system

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A common information

approach, IEEE TAC 2013.
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From decentralized to centralized control:
the common information approach

X

Xi

X

(X , . . . , X ) Z :f

γk

γki

γk

U

Ui

U

ψ (γ , . . . , γ )

Coordinator

Extended system
γk(⋅) = gk(⋅, Z : )

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A common information

approach, IEEE TAC 2013.
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Equivalent centralized problem

Dynamical
system

State : (X , . . . , X )
Observations : Z
Control actions: (γ , . . . , γ ), where γk : �k ↦ �k.

Control law :

(γ , . . . , γ ) = ψ (Z : )
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Equivalent centralized problem

Dynamical
system

State : (X , . . . , X )
Observations : Z
Control actions: (γ , . . . , γ ), where γk : �k ↦ �k.

Control law :

(γ , . . . , γ ) = ψ (Z : )

Information state
Belief state: ℙ(state | observations) = ℙ(X , . . . , X | Z : )

Because of the symmetry in the problem, Z is also an information state.

Standard centralized POMDP
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Identifying the information state

Controlled Markov property

ℙ(Z = z | Z : = z : , Γ : = γ : ) = ℙ(Z = z | Z = z )

Sufficient for performance evaluation

�[ℓ (X ,U ) | Z : , Γ : ] = ℓ̂ (Z , Γ ).
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Follows from Lemma and (A1)

Sufficient for performance evaluation
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Key Lemma
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= �{x ∈ H(z )}
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Basic MF model: Main results

Theorem 1 In the equivalent centralized system, there is no loss of optimality in

restricting attention to coordination strategies of the form

(γ , . . . , γ ) = ψ (z ).

Equivalently, in the original decentralized system, there is no loss of

optimality in restricting attention to control strategies of the form

Ui = gk(Xi , Z ), i ∈ �k.
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Basic MF model: Main results

Theorem 1 In the equivalent centralized system, there is no loss of optimality in

restricting attention to coordination strategies of the form

(γ , . . . , γ ) = ψ (z ).

Equivalently, in the original decentralized system, there is no loss of

optimality in restricting attention to control strategies of the form

Ui = gk(Xi , Z ), i ∈ �k.

Theorem 2 Let (V ,ψ∗), where V : � → ℝ, ψ∗ : � ↦ (γ , . . . , γ ), and γk : �k →
�k, be the solution to the following dynamic program:

V (z) = min
γ ... γ

�[ℓ (X ,U ) + V (Z ) | Z = z, Γ = γ]

Then, g∗ k(z, x) = ψ∗ k(z)(x), is an optimal strategy for controller of type k.
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1-subsystem of type 0 and n-subsystems of type 1.
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Note that MF-MM model is a special case of basic MF model
The major-minor model corresponds to a basic MF system with

1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Theorem 1a There is no loss of optimality in restricting attention to control laws of

the form

U = g (X , Z ) and Ui = gk(Xi , X , Z ), ∀i ∈ �k.

Theorem 2a Let (V ,ψ∗) be the solution to the following dynamic program:

V (z, x ) = min
γ

�[ℓ (X , X ,U ,U ) + V (Z , X ) | Z = z, X = x ,

Γ = γ,U = u ]

Then, g∗ (z, x ) = ψ∗ (z, x ), and g∗(z, x , x) = ψ∗ (z, x )(x) is an optimal strategy.
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Proof outline

First analyze basic MF model [Arabneydi Mahajan, CDC 2014]
Multiple types of minor subsystems but no major subsystem.

Step 1 Follow the common information approach [NMT13] to convert the

decentralized control problem into a centralized control problem

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A

common information approach, IEEE TAC 2013.

Step 2 Exploit symmetry of the system (with respect to the controllers) to

show that the mean-ield is an information state.

Note that MF-MM model is a special case of basic MF model
The major-minor model corresponds to a basic MF system with

1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model
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Identifying the information state

Controlled Markov property

ℙ(Z = z | Z : = z : , Γ : = γ : ) = ℙ(Z = z | Z = z )
Follows from Lemma and (A1)

Sufficient for performance evaluation

�[ℓ (X ,U ) | Z : , Γ : ] = ℓ̂ (Z , Γ ).
Follows from Lemma and the coordinated system: U = γ (X )

Key Lemma

ℙ(X = x | Z : = z : , Γ : = γ : ) = ℙ(X = x | Z = z , Γ = γ )

= �{x ∈ H(z )}
|H(z )|

where H(z) = {(x , . . . , x ) ∈ � : emperical dist(x , . . . , x ) = z}
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Basic MF model: Main results

Theorem 1 In the equivalent centralized system, there is no loss of optimality in

restricting attention to coordination strategies of the form

(γ , . . . , γ ) = ψ (z ).

Equivalently, in the original decentralized system, there is no loss of

optimality in restricting attention to control strategies of the form

Ui = gk(Xi , Z ), i ∈ �k.

Theorem 2 Let (V ,ψ∗), where V : � → ℝ, ψ∗ : � ↦ (γ , . . . , γ ), and γk : �k →
�k, be the solution to the following dynamic program:

V (z) = min
γ ... γ

�[ℓ (X ,U ) + V (Z ) | Z = z, Γ = γ]

Then, g∗ k(z, x) = ψ∗ k(z)(x), is an optimal strategy for controller of type k.
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Back to the MF-MM Model: Main results

Note that MF-MM model is a special case of basic MF model
The major-minor model corresponds to a basic MF system with

1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Theorem 1a There is no loss of optimality in restricting attention to control laws of

the form

U = g (X , Z ) and Ui = gk(Xi , X , Z ), ∀i ∈ �k.

Theorem 2a Let (V ,ψ∗) be the solution to the following dynamic program:

V (z, x ) = min
γ

�[ℓ (X , X ,U ,U ) + V (Z , X ) | Z = z, X = x ,

Γ = γ,U = u ]

Then, g∗ (z, x ) = ψ∗ (z, x ), and g∗(z, x , x) = ψ∗ (z, x )(x) is an optimal strategy.
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Conclusion

Features of the solution
State space of the DP increases polynomially (rather than exponentially)

with the number of minor subsystems.

Action space of DP does not depend on the # of minor subsystems.

State and action spaces do not depend on time; hence, the results

extend naturally to ininite horizon

V (z, x ) = min
γ

�[ℓ (X , X ,U ,U ) + V (Z , X ) | Z = z, X = x ,

Γ = γ,U = u ]
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Appropriateness of the model
Assume that the mean-ield is observed by all users.

Happens naturally in some applications (e.g., EV charging, comm. nets)

Can be computed in a distributed manner using consensus protocols.
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Future directions
Simpliication for LQG setups.

Comparsion with results in mean-ield games.

Asymptotic properties as n → ∞.


