Team optimal control of coupled majorminor subsystems with mean-field sharing

Jalal Arabneydi and Aditya Mahajan

McGill University

Indian Control Conference 6 Jan, 2015

Motivation

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
- ► Key feature: information decentralization

Smart Grids

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Robotics

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Communication Networks

Sensor Networks

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Investigated using team theory

- Long literature on solution for specific information structures
- . . . Witsenhausen, Ho, Varaiya, and others.
- But no generic solution approach

Sensor Networks

Co

Optimal multi-agent control:

- Multiple controllers with a common optimization objective
 - Key feature: information decentralization

Investigated using team theory

- Long literature on solution for specific information structures
- . . . Witsenhausen, Ho, Varaiya, and others.
- But no generic solution approach

Analyze and solve a stylized model for large-scale systems

Motivating setup: System with major and minor subsystems

Major-subsystem (e.g., a service provider)

- Controls operating conditions of the system e.g., price, capacity, etc.
- The dynamics of the major-subsystem's state depend on the minorsubsystem's state through their mean-field (or empirical distribution).

Minor homogeneous subsystems

- > Dynamics are affected by the state of the major-subsystem.
- Influence each other only though their mean-field (equivalent to a interacting particle model).

Major subsystem \blacktriangleright State $X_t^0 \in \mathfrak{X}^0$

Indexed by O.

 \blacktriangleright Action $U^0_t \in \mathcal{U}^0$

Major subsystemState $X^{0}_{t} \in \mathcal{X}^{0}$ Action $U^{0}_{t} \in \mathcal{U}^{0}$

Indexed by O.

 $\begin{array}{l} \text{Minor subsystems} \blacktriangleright \text{State } X^i_t \in \mathcal{X} \\ \blacktriangleright \text{Action } U^i_t \in \mathcal{U} \end{array}$

Indexed by $i\in\{1,\ldots,n\}$

• Action $U_t^i \in \mathcal{U}$

Major subsystemState $X^{0}_{t} \in \mathfrak{X}^{0}$ Action $U^{0}_{t} \in \mathfrak{U}^{0}$

Indexed by O.

Minor subsystems \blacktriangleright State $X^i_t \in \mathfrak{X}$

Indexed by $i \in \{1, \ldots, n\}$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbbm{1}\{X^i_t = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X^i_t}$$

Major subsystem \blacktriangleright State $X_t^0 \in \mathcal{X}^0$ \blacktriangleright Action $U_t^0 \in \mathcal{U}^0$ Indexed by O.

Minor subsystems \blacktriangleright State $X^i_t \in \mathcal{X}$

Indexed by
$$i \in \{1, \ldots, n\}$$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbb{1}\{X_t^i = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X_t^i}$$

Major subsystem

• Action $U_t^i \in \mathcal{U}$

Dynamics $X_{t+1}^0 = f_t^0(Z_t, X_t^0, U_t^0, W_t^0)$

Major subsystem \blacktriangleright State $X_t^0 \in \mathcal{X}^0$ \blacktriangleright Action $U_t^0 \in \mathcal{U}^0$ Indexed by O.

Minor subsystems \blacktriangleright State $X^i_t \in \mathcal{X}$

Action
$$U^{ extsf{i}}_{ extsf{t}} \in \mathcal{U}$$

Indexed by $i \in \{1, \ldots, n\}$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbbm{1}\{X^i_t = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X^i_t}$$

Major subsystem

Minor subsystems

Dynamics $X_{t+1}^{0} = f_{t}^{0}(Z_{t}, X_{t}^{0}, U_{t}^{0}, W_{t}^{0})$

 $X_{t+1}^i = f_t(\boldsymbol{Z}_t, \boldsymbol{X}_t^0, X_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i)$

Major subsystem \blacktriangleright State $X_t^0 \in \mathcal{X}^0$ \blacktriangleright Action $U_t^0 \in \mathcal{U}^0$ Indexed by O.

 $\begin{array}{ll} \mbox{Minor subsystems} \blacktriangleright \mbox{State } X^i_t \in \mathcal{X} & \mbox{Indexed} \end{array}$

Action
$$U_t^i \in \mathcal{U}$$

Indexed by $i \in \{1, \ldots, n\}$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbbm{1}\{X^i_t = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X^i_t}$$

Major subsystemMinor subsystemsDynamics $X_{t+1}^0 = f_t^0(Z_t, X_t^0, U_t^0, W_t^0)$ $X_{t+1}^i = f_t(Z_t, X_t^0, X_t^i, U_t^i, W_t^i)$ Control $U_t^0 = g_t^0(Z_{1:t}, X_{1:t}^0)$

Major subsystem \blacktriangleright State $X_t^0 \in \mathcal{X}^0$ \blacktriangleright Action $U_t^0 \in \mathcal{U}^0$

Indexed by O.

 $\begin{array}{ll} \mbox{Minor subsystems} \blacktriangleright \mbox{State } X^i_t \in \mathcal{X} & \mbox{Indexed} \end{array}$

Action
$$U_t^i \in \mathcal{U}$$

Indexed by $i \in \{1, \ldots, n\}$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbbm{1}\{X^i_t = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X^i_t}$$

Major subsystemState $X^0_t \in \mathcal{X}^0$ Action $U^0_t \in \mathcal{U}^0$

Indexed by O.

Minor subsystems \blacktriangleright State $X_t^i \in \mathcal{X}$

Indexed by
$$i \in \{1, \ldots, n\}$$

Mean-field of minor subsystems

$$Z_t(x) = \frac{1}{n}\sum_{i=1}^n \mathbb{1}\{X_t^i = x\} \quad \text{or} \quad Z_t = \frac{1}{n}\sum_{i=1}^n \delta_{X_t^i}$$

Major subsystemDynamics $X_{t+1}^{0} = f_{t}^{0}(Z_{t}, X_{t}^{0}, U_{t}^{0}, W_{t}^{0})$ Control $U_{t}^{0} = g_{t}^{0}(Z_{1:t}, X_{1:t}^{0})$ Objective $\min \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(X_{t}^{0}, X_{t}, U_{t}^{0}, U_{t})\right]$

• Action $U_t^i \in \mathcal{U}$

Minor subsystems

 $X_{t+1}^i = f_t(\boldsymbol{Z}_t, \boldsymbol{X}_t^0, X_t^i, \boldsymbol{U}_t^i, W_t^i)$

$$U_t^i = g_t(\mathsf{Z}_{1:t}, \mathsf{X}_{1:t}^0, X_t^i)$$

Arbitrary cost coupling

Assumptions on the model

Assumption (A1) The primitive random variables:

- initial state X_1^0 of the major subsystem
- \blacktriangleright initial states (X_1^1,\ldots,X_1^n) of the minor subsystems
- process noises $\{(W^0_t,\ldots,W^n_t)\}_{t=1}^T$

are indepedent

Furthermore the initial states (X_1^1,\ldots,X_1^n) and the process noise (W_t^1,\ldots,W_t^n) of the minor subsystem are identically distributed

Assumptions on the model

Assumption (A1) The primitive random variables:

- initial state X_1^0 of the major subsystem
- ▶ initial states (X_1^1, \ldots, X_1^n) of the minor subsystems
- process noises $\{(W^0_t, \dots, W^n_t)\}_{t=1}^T$

are indepedent

Furthermore the initial states (X_1^1, \ldots, X_1^n) and the process noise (W_t^1, \ldots, W_t^n) of the minor subsystem are identically distributed

Assumption (A2) All minor subsystems use identical control laws

- > Standard assumption to ensure simplicity, fairness, and robustness.
- Leads to loss in performance

Salient features and main results

Features of the model

- > Decentralized control system with **non-classical information structure**
- Mean-field coupled dynamics and arbitrarily coupled cost.
- Seek globally optimal solution for arbitrary # of minor controllers

Salient features and main results

Features of the model

- Decentralized control system with non-classical information structure
- Mean-field coupled dynamics and arbitrarily coupled cost.
- Seek globally optimal solution for arbitrary # of minor controllers

Main results > Indetify the structure of optimal control strategies.

Obtain a dynamic program that determines optimal control strategies at all controllers.

Salient features and main results

Features of the model

- > Decentralized control system with **non-classical information structure**
- Mean-field coupled dynamics and arbitrarily coupled cost.
- Seek globally optimal solution for arbitrary # of minor controllers

Main results > Indetify the structure of optimal control strategies.

Obtain a dynamic program that determines optimal control strategies at all controllers.

Features of the solution

- State space of the DP increases polynomially (rather than exponentially) with the number of minor subsystems.
- Action space of DP does not depend on the # of minor subsystems.
- State and action spaces do not depend on time; hence, the results extend naturally to infinite horizon

First analyze basic MF model [Arabneydi Mahajan, CDC 2014]

Multiple types of minor subsystems but no major subsystem.

Proof outline

First analyze basic MF model [Arabneydi Mahajan, CDC 2014]

Multiple types of minor subsystems but no major subsystem.

Step 1 Follow the common information approach [NMT13] to convert the decentralized control problem into a centralized control problem

▶ Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Step 2 Exploit symmetry of the system (with respect to the controllers) to show that the mean-field is an information state.

Proof outline

First analyze basic MF model [Arabneydi Mahajan, CDC 2014]

Multiple types of minor subsystems but no major subsystem.

Step 1 Follow the common information approach [NMT13] to convert the decentralized control problem into a centralized control problem

▶ Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Step 2 Exploit symmetry of the system (with respect to the controllers) to show that the mean-field is an information state.

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Proof outline

First analyze basic MF model [Arabneydi Mahajan, CDC 2014]

Multiple types of minor subsystems but no major subsystem.

Step 1 Follow the common information approach [NMT13] to convert the decentralized control problem into a centralized control problem

▶ Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Step 2 Exploit symmetry of the system (with respect to the controllers) to show that the mean-field is an information state.

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Minor subsystems \blacktriangleright Type $k \in \{1, ..., m\}$. $\mathcal{N}^k = \{$ subsystems of type- $k\}$. $|\mathcal{N}^k| = n^k$.

 $\label{eq:minor subsystems} \ensuremath{\mathsf{Minor subsystems}} \ensuremath{\mathsf{Fype-k}}\ensuremath{\mathsf{k}} \in \{1,\ldots,m\}. \qquad \ensuremath{\mathcal{N}}^k = \{\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{of}}\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{subsytems}}\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{subsystems}$

 \blacktriangleright State $X^i_t \in \mathfrak{X}^k$

Indexed by $i\in \mathfrak{N}^k$

 \blacktriangleright Action $\boldsymbol{U}_t^i \in \boldsymbol{\mathcal{U}}^k$

 $\label{eq:minor subsystems} \ensuremath{\mathsf{Minor subsystems}} \ensuremath{\mathsf{k}} \in \{1,\ldots,m\}. \qquad \ensuremath{\mathcal{N}}^k = \{ \ensuremath{\,\mathsf{subsystems}} \ensuremath{\,\mathsf{of type-k}}\}. \qquad |\ensuremath{\mathcal{N}}^k| = n^k.$

- \blacktriangleright State $X^i_t \in \mathfrak{X}^k$ \qquad Indexed by $i \in \mathfrak{N}^k$
- \blacktriangleright Action $\boldsymbol{U}_t^i \in \boldsymbol{\mathcal{U}}^k$
- Mean-field of minor subsystems

$$Z_t^{\mathbf{k}}(x) = \frac{1}{n^{\mathbf{k}}} \sum_{i \in \mathbb{N}^{\mathbf{k}}} \mathbb{1}\{X_t^i = x\} \text{ and } Z_t = (Z_t^1, \dots, Z_t^m)$$

 $\label{eq:minor subsystems} \ensuremath{\mathsf{Minor subsystems}} \ensuremath{\mathsf{Fype-k}}\ensuremath{\mathsf{k}} \in \{1,\ldots,m\}. \qquad \ensuremath{\mathcal{N}}^k = \{\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{of}}\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{subsytems}}\ensuremath{\,\mathsf{subsystems}}\ensuremath{\,\mathsf{subsystems}$

- \blacktriangleright State $X^i_t \in \mathfrak{X}^k$ \qquad Indexed by $i \in \mathfrak{N}^k$
- \blacktriangleright Action $\boldsymbol{U}_t^i \in \boldsymbol{\mathcal{U}}^k$
- Mean-field of minor subsystems

$$Z_t^{\mathbf{k}}(x) = \frac{1}{n^{\mathbf{k}}} \sum_{i \in \mathbb{N}^{\mathbf{k}}} \mathbb{1}\{X_t^i = x\} \text{ and } Z_t = (Z_t^1, \dots, Z_t^m)$$

 $\label{eq:Dynamics} \begin{array}{ll} \text{Dynamics} \quad X_{t+1}^{i} = f_{t}^{k}(Z_{t},X_{t}^{i},U_{t}^{i},W_{t}^{i}), \quad i \in \mathcal{N}^{k}. \end{array}$

- \blacktriangleright State $X^i_t \in \mathfrak{X}^k$ \qquad Indexed by $i \in \mathfrak{N}^k$
- \blacktriangleright Action $\boldsymbol{U}_t^i \in \boldsymbol{\mathcal{U}}^k$
- Mean-field of minor subsystems

$$Z_t^{\mathbf{k}}(x) = \frac{1}{n^{\mathbf{k}}} \sum_{i \in \mathbb{N}^{\mathbf{k}}} \mathbb{1}\{X_t^i = x\} \text{ and } Z_t = (Z_t^1, \dots, Z_t^m)$$

$$\begin{array}{lll} \mbox{Dynamics} \quad X^{i}_{t+1} = f^{k}_{t}(Z_{t}, X^{i}_{t}, U^{i}_{t}, W^{i}_{t}), \quad i \in \mathcal{N}^{k}. \end{array}$$

$$\begin{array}{lll} \mbox{Controls} & U^i_t = g^k_t(Z_{1:t}, X^i_t), \quad i \in \mathcal{N}^k. \end{array}$$

Equiv. to (A2) All subsystems of the same type use identical control laws

- \blacktriangleright State $X^i_t \in \mathfrak{X}^k$ \qquad Indexed by $i \in \mathfrak{N}^k$
- \blacktriangleright Action $\boldsymbol{U}_t^i \in \boldsymbol{\mathcal{U}}^k$
- Mean-field of minor subsystems

$$Z_t^{\mathbf{k}}(x) = \frac{1}{n^{\mathbf{k}}} \sum_{i \in \mathbb{N}^{\mathbf{k}}} \mathbb{1}\{X_t^i = x\} \text{ and } Z_t = (Z_t^1, \dots, Z_t^m)$$

$$\begin{array}{lll} \mbox{Dynamics} \quad X^{i}_{t+1} = f^{k}_{t}(Z_{t}, X^{i}_{t}, U^{i}_{t}, W^{i}_{t}), \quad i \in \mathcal{N}^{k}. \end{array}$$

$$\begin{array}{lll} \mbox{Controls} & U^i_t = g^k_t(Z_{1:t}, X^i_t), \quad i \in \mathcal{N}^k. \end{array}$$

Equiv. to (A2) All subsystems of the same type use identical control laws

Objective min
$$\mathbb{E}\left[\sum_{t=1}^{T} \ell_t(X_t, U_t)\right]$$
, where $X_t = (X_t^1, \dots, X_t^n)$; $U_t = (U_t^1, \dots, U_t^n)$

From decentralized to centralized control: the common information approach

[▶] Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

From decentralized to centralized control: the common information approach

$$f_{t} (X_{t}^{1}, \dots, X_{t}^{n}) g_{t}^{k^{1}} X_{t}^{1}, Z_{1:t} U_{t}^{1}$$

$$g_{t}^{k^{i}} X_{t}^{i}, Z_{1:t} U_{t}^{i}$$

$$g_{t}^{k^{n}} X_{t}^{n}, Z_{1:t} U_{t}^{n}$$

[▶] Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

[▶] Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

[▶] Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Team optimal control of major-minor subsystems- (Arabneydi and Mahajan)

 $(\gamma_t^1,\ldots,\gamma_t^m) = \psi_t(Z_{1:t})$

Dynamical State : (X_t^1, \ldots, X_t^n) system Observations : Z_t Control actions: $(\gamma_t^1, \dots, \gamma_t^m)$, where $\gamma_t^k : \mathfrak{X}^k \mapsto \mathfrak{U}^k$. Control law :

 $(\gamma_t^1,\ldots,\gamma_t^m)=\psi_t(Z_{1:t}) \qquad \text{"Standard" centralized POMDP}$

Dynamical State : (X_t^1, \ldots, X_t^n) system Observations : Z_t Control actions: $(\gamma_t^1, \ldots, \gamma_t^m)$, where $\gamma_t^k : \mathfrak{X}^k \mapsto \mathfrak{U}^k$. Control law : $(\gamma_t^1,\ldots,\gamma_t^m)=\psi_t(Z_{1:t}) \qquad \text{"Standard" centralized POMDP}$

Information state

Belief state: $\mathbb{P}(\text{state} \mid \text{observations}) = \mathbb{P}(X_t^1, \dots, X_t^n \mid Z_{1:t})$

Dynamical State : $(X_{t}^{1}, \ldots, X_{t}^{n})$ system Observations : Z_t Control actions: $(\gamma_t^1, \ldots, \gamma_t^m)$, where $\gamma_t^k : \mathfrak{X}^k \mapsto \mathfrak{U}^k$. Control law $(\gamma_t^1, \dots, \gamma_t^m) = \psi_t(Z_{1:t})$ "Standard" centralized POMDP

Information state

Belief state: $\mathbb{P}(\text{state} \mid \text{observations}) = \mathbb{P}(X_t^1, \dots, X_t^n \mid Z_{1:t})$

Because of the symmetry in the problem, Z_t is also an information state.

Controlled Markov property

$$\mathbb{P}(Z_{t+1} = z \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) = \mathbb{P}(Z_{t+1} = z \mid Z_t = z_t)$$

Sufficient for performance evaluation

 $\mathbb{E}[\ell_t(X_t, U_t) \mid Z_{1:t}, \Gamma_{1:t}] = \widehat{\ell}_t(Z_t, \Gamma_t).$

Key Lemma

$$\begin{split} \mathbb{P}(X_t = x \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) &= \mathbb{P}(X_t = x \mid Z_t = z_t, \Gamma_t = \gamma_t) \\ &= \frac{\mathbb{I}\{x \in H(z_t)\}}{|H(z_t)|} \\ \end{split}$$
where $H(z) = \{(x^1, \dots, x^n) \in \mathcal{X}^n : \text{emperical } \text{dist}(x^1, \dots, x^n) = z\}$

Controlled Markov property

$$\mathbb{P}(Z_{t+1} = z \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) = \mathbb{P}(Z_{t+1} = z \mid Z_t = z_t)$$

Sufficient for performance evaluation

 $\mathbb{E}[\ell_t(X_t, U_t) \mid Z_{1:t}, \Gamma_{1:t}] = \widehat{\ell}_t(Z_t, \Gamma_t).$

Key Lemma

$$\begin{split} \mathbb{P}(X_t = x \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) &= \mathbb{P}(X_t = x \mid Z_t = z_t, \Gamma_t = \gamma_t) \\ &= \frac{\mathbb{I}\{x \in H(z_t)\}}{|H(z_t)|} \\ \end{split}$$
where $H(z) = \{(x^1, \dots, x^n) \in \mathcal{X}^n : \text{emperical } \text{dist}(x^1, \dots, x^n) = z\}$

Controlled Markov property

$$\mathbb{P}(Z_{t+1} = z \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) = \mathbb{P}(Z_{t+1} = z \mid Z_t = z_t)$$

Follows from Lemma and (A1)

Sufficient for performance evaluation

 $\mathbb{E}[\ell_t(X_t, U_t) \mid Z_{1:t}, \Gamma_{1:t}] = \widehat{\ell}_t(Z_t, \Gamma_t).$

Key Lemma

$$\begin{split} \mathbb{P}(X_t = x \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) &= \mathbb{P}(X_t = x \mid Z_t = z_t, \Gamma_t = \gamma_t) \\ &= \frac{\mathbb{I}\{x \in H(z_t)\}}{|H(z_t)|} \\ \end{split}$$
where $H(z) = \{(x^1, \dots, x^n) \in \mathcal{X}^n : \text{emperical } \text{dist}(x^1, \dots, x^n) = z\}$

Controlled Markov property

$$\mathbb{P}(Z_{t+1} = z \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) = \mathbb{P}(Z_{t+1} = z \mid Z_t = z_t)$$

Follows from Lemma and (A1)

Sufficient for performance evaluation

 $\mathbb{E}[\ell_t(X_t, U_t) \mid Z_{1:t}, \Gamma_{1:t}] = \widehat{\ell}_t(Z_t, \Gamma_t).$

Follows from Lemma and the coordinated system: $U_t = \gamma_t(X_t)$

Basic MF model: Main results

Theorem 1 In the equivalent centralized system, there is no loss of optimality in restricting attention to coordination strategies of the form

 $(\gamma_t^1,\ldots,\gamma_t^m)=\psi_t(z_t).$

Equivalently, in the original decentralized system, there is no loss of optimality in restricting attention to control strategies of the form

 $U^i_t = g^{\boldsymbol{k}}_t(X^i_t, Z_t), \quad i \in \mathcal{N}^{\boldsymbol{k}}.$

Basic MF model: Main results

Theorem 1 In the equivalent centralized system, there is no loss of optimality in restricting attention to coordination strategies of the form

 $(\gamma_t^1,\ldots,\gamma_t^m)=\psi_t(z_t).$

Equivalently, in the original decentralized system, there is no loss of optimality in restricting attention to control strategies of the form $U^i_t = g^k_t(X^i_t, Z_t), \quad i \in \mathcal{N}^k.$

Theorem 2 Let (V_t, ψ_t^*) , where $V_t : \mathcal{Z} \to \mathbb{R}$, $\psi_t^* : \mathcal{Z} \mapsto (\gamma^1, \dots, \gamma^m)$, and $\gamma^k : \mathcal{X}^k \to \mathcal{U}^k$, be the solution to the following dynamic program: $V_t(z) = \min_{(\gamma^1, \dots, \gamma^m)} \mathbb{E}[\ell_t(X_t, U_t) + V_{t+1}(Z_{t+1}) \mid Z_t = z, \Gamma_t = \gamma]$

Then, $g_t^{*,k}(z,x) = \psi^{*,k}(z)(x)$, is an optimal strategy for controller of type k.

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Theorem 1a There is no loss of optimality in restricting attention to control laws of the form

 $U^{\textbf{0}}_t = g^{\textbf{0}}_t(X^{\textbf{0}}_t, \mathsf{Z}_t) \quad \text{and} \quad U^i_t = g^{\textbf{k}}_t(X^i_t, X^{\textbf{0}}_t, \mathsf{Z}_t), \; \forall i \in \mathcal{N}^k.$

Note that MF-MM model is a special case of basic MF model

The major-minor model corresponds to a basic MF system with 1-subsystem of type 0 and n-subsystems of type 1.

Translate the results of basic MF model to the MF-MM model

Theorem 1a There is no loss of optimality in restricting attention to control laws of the form

$$U^{\boldsymbol{0}}_t = g^{\boldsymbol{0}}_t(X^{\boldsymbol{0}}_t, Z_t) \quad \text{and} \quad U^i_t = g^{\boldsymbol{k}}_t(X^i_t, X^{\boldsymbol{0}}_t, Z_t), \; \forall i \in \mathbb{N}^k.$$

Theorem 2a Let (V_t, ψ_t^*) be the solution to the following dynamic program:

$$V_{t}(z, x^{0}) = \min_{u^{0}, \gamma} \mathbb{E}[\ell_{t}(X_{t}^{0}, X_{t}, U_{t}^{0}, U_{t}) + V_{t+1}(Z_{t+1}, X_{t+1}^{0}) \mid Z_{t} = z, X_{t}^{0} = x_{t}^{0},$$
$$\Gamma_{t} = \gamma, U_{t}^{0} = u^{0}]$$

Then, $g_t^{*,0}(z, x^0) = \psi^{*,1}(z, x^0)$, and $g_t^*(z, x^0, x) = \psi^{*,2}(z, x^0)(x)$ is an optimal strategy.

Team optimal control of major-minor subsystems– (Arabneydi and Mahajan)

Identifying the information state

Key Lemma

$$\begin{split} \mathbb{P}(X_t = x \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) &= \mathbb{P}(X_t = x \mid Z_t = z_t, \Gamma_t = \gamma_t) \\ &= \frac{\mathbb{I}\{x \in H(z_t)\}}{|H(z_t)|} \end{split}$$

Controlled Markov property

$$\mathbb{P}(Z_{t+1} = z \mid Z_{1:t} = z_{1:t}, \Gamma_{1:t} = \gamma_{1:t}) = \mathbb{P}(Z_{t+1} = z \mid Z_t = z_t)$$

Follows from Lemma and (A1)

Sufficient for performance evaluation

 $\mathbb{E}[\ell_t(X_t,U_t) \mid Z_{1:t},\Gamma_{1:t}] = \widehat{\ell}_t(Z_t,\Gamma_t).$

Follows from Lemma and the coordinated system: $U_t = \gamma_t(X_t)$

10

Conclusion

Features of the solution

- State space of the DP increases polynomially (rather than exponentially) with the number of minor subsystems.
- Action space of DP does not depend on the # of minor subsystems.
- State and action spaces do not depend on time; hence, the results extend naturally to infinite horizon

$$V_{t}(z, x^{0}) = \min_{u^{0}, \gamma} \mathbb{E}[\ell_{t}(X_{t}^{0}, X_{t}, U_{t}^{0}, U_{t}) + V_{t+1}(Z_{t+1}, X_{t+1}^{0}) \mid Z_{t} = z, X_{t}^{0} = x_{t}^{0},$$
$$\Gamma_{t} = \gamma, U_{t}^{0} = u^{0}]$$

Conclusion

Features of the solution

- State space of the DP increases polynomially (rather than exponentially) with the number of minor subsystems.
- Action space of DP does not depend on the # of minor subsystems.
- State and action spaces do not depend on time; hence, the results extend naturally to infinite horizon

Appropriateness of the model

- Assume that the mean-field is observed by all users.
- Happens naturally in some applications (e.g., EV charging, comm. nets)
- > Can be computed in a distributed manner using consensus protocols.

Conclusion

Features of the solution

- State space of the DP increases polynomially (rather than exponentially) with the number of minor subsystems.
- Action space of DP does not depend on the # of minor subsystems.
- State and action spaces do not depend on time; hence, the results extend naturally to infinite horizon

Appropriateness of the model

- > Assume that the mean-field is observed by all users.
- > Happens naturally in some applications (e.g., EV charging, comm. nets)
- Can be computed in a distributed manner using consensus protocols.

Future directions

- Simplification for LQG setups.
- Comparsion with results in mean-field games.
- \blacktriangleright Asymptotic properties as $n \to \infty$.

