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Let’s revisit separation of estimation
and control in centralized systems
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STANDARD LQG MODEL

x(t + 1) = Ax(t) + Bu(t) + w(t),

y(t) = Cx(t) + v(t).

Choose u(t) = gt(y(1 : t), u(1 : t − 1)) to

min𝔼[
T

∑
t=1

[x(t)⊺Qx(t) + u(t)⊺Ru(t)]]
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Does the same happen in decentralized control?

In decentralized estimation, is
L𝔼[x(t) | I(t)] the best estimate?

There is a long history of duality between estimation
and control.

Decentralized control is interesting. Ergo, decentralized
estimation is interesting.

Decentralized estimation is
interesting in it’s own right in
certain applications.
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OPTIMAL ESTIMATE: ẑ = LKy,
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Choose ẑ = g(y) to
minimize 𝔼[(Lx − ẑ)⊺S(Lx − ẑ)].
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⎤
⎦
.

x
ẑ1

ẑ2
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Choose ẑ = g(y) to
minimize 𝔼[(Lx − ẑ)⊺S(Lx − ẑ)].
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Ii(t) =
d∗

∪
k=0

∪
j∈Nki

{yj(1 : t − k)}.

System model



Decentralized estimation–(Afshari and Mahajan)
5

ESTIMATES Each agent generates an estimate
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Fusion
Center

Conensus based methods

TEAM OPTIMAL DECENTRALIZED ESTIMATION

Barta, PhD Thesis (1978)
Castanon, LIDS Tech Report (1981)
Andersland and Teneketzis, JOTA (1996)

Literature Overview
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c(x(t), ẑ(t))]
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OPTIMAL STRATEGY: ẑi(t) = Fi(t)Ii(t)

{Fi(t)}i∈N given by the solution of a system of
matrix equations.
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Local Innovation Ĩloci (t) = Ii(t) − 𝔼[Iloci (t) | Icom(t)].

Let Σ̂ij(t) = cov(Ĩi(t), Ĩj(t)).
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Local Innovation Ĩloci (t) = Ii(t) − 𝔼[Iloci (t) | Icom(t)].

Let Σ̂ij(t) = cov(Ĩi(t), Ĩj(t)).

and Θ̂i(t) = cov(x(t), Ĩi(t))
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ẑi(t) = Li x̂com(t) + Fi(t) Ĩloci (t)
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STRUCTURE OF OPTIMAL ESTIMATORS
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WHAT ELSE IS NEEDED?
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SYSTEM IN TERMS OF DELAYED STATE

Define w(k)(ℓ, t) =
t−ℓ−1

∑
τ=t−k

At−ℓ−τ−1w(τ)

Iterative update of estimates and covariances
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ASSUMPTIONS (A,√Q) is stabilizable and (A,C) is detectable

OBJECTIVE min lim sup
T→∞

1
T

T

∑
t=1

c(x(t), ẑ(t))

Extension to infinite horizon setup
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T

∑
t=1

c(x(t), ẑ(t))

STRUCTURE OF OPTIMAL ESTIMATORS

ẑi(t) = Li x̂com(t) + Fi Ĩloci (t)
Note: Fi, Σij and Θi are time-homogeneous

COMPUTING OPTIMAL GAINS

System of matrix equations: for all i ∈ N,

∑
j∈N
[SijFjΣ̂ji − SijLjΘ̂j] = 0.

Extension to infinite horizon setup
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x(t) ∈ ℝ4, n = 4 and agent i observes xi(t).

Per-step cost: ∑
i∈N
‖xi(t) − ẑi(t)‖2 + λ‖x̄(t) − z̄(t)‖2

2-step delay sharing information structure

Example
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‖xi(t) − ẑi(t)‖2 + λ‖x̄(t) − z̄(t)‖2

2-step delay sharing information structure

Example



Decentralized estimation–(Afshari and Mahajan)
12

x(t) ∈ ℝ4, n = 4 and agent i observes xi(t).

Per-step cost: ∑
i∈N
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‖xi(t) − ẑi(t)‖2 + λ‖x̄(t) − z̄(t)‖2

2-step delay sharing information structure

BASELINE STRATEGY ẑi(t) = Li 𝔼[x(t) | Ii(t)] 17.67

OPTIMAL STRATEGY ẑi(t) = Lixcom(t) + Fi(t) Ĩloci (t) 14.54
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dij

DYNAMICS x(t + 1) = Ax(t) + w(t), w(t) ∼ 𝒩(0,Q).

OBSERVATIONS The system consists of n agents.
yi(t) = Cix(t) + vi(t), vi(t) ∼ 𝒩(0, Ri).

INFO STRUCTURE Agents communicate over a strongly
connected weighted directed graph.
Edge weight dij corresponds to link delay.

Ii(t) = {yi(1 : t)} ∪ ( ∪
j∈N−i

Ij(t − dji)

System model
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ESTIMATES Each agent generates an estimate
ẑi(t) = gi,t(Ii(t))

PER-STEP ERROR Let ẑ(t) = vec(ẑ1(t), … , ẑn(t)). Then,
c(x(t), ẑ(t)) = (Lx(t) − ẑ(t))

⊺S(Lx(t) − ẑ(t)).
where

S = ⎡⎢
⎣

S11 ⋅ ⋅ ⋅ S1n
⋮ ⋱ ⋮
Sn1 ⋅ ⋅ ⋅ Snn

⎤⎥
⎦

and L = ⎡⎢
⎣

L1
⋮
Ln

⎤⎥
⎦

OBJECTIVE Choose a team estimation problem g to

min𝔼g
[

T

∑
t=1

c(x(t), ẑ(t))
]

∑
i∈N
‖xi(t)−ẑi(t)‖2

+λ‖x̄(t) − z̄(t)‖2

∑
i∈N
‖xi(t)−ẑi(t)‖2

+
n−1

∑
i=1

λ‖di(t) − d̂i(t)‖2

System model (continued)
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]

∑
i∈N
‖xi(t)−ẑi(t)‖2
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ẑi(t) = gi,t(Ii(t))
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⊺S(Lx(t) − ẑ(t)).
where

S = ⎡⎢
⎣

S11 ⋅ ⋅ ⋅ S1n
⋮ ⋱ ⋮
Sn1 ⋅ ⋅ ⋅ Snn

⎤⎥
⎦

and L = ⎡⎢
⎣

L1
⋮
Ln

⎤⎥
⎦

OBJECTIVE Choose a team estimation problem g to

min𝔼g
[

T

∑
t=1

c(x(t), ẑ(t))
]

∑
i∈N
‖xi(t)−ẑi(t)‖2

+λ‖x̄(t) − z̄(t)‖2

∑
i∈N
‖xi(t)−ẑi(t)‖2

+
n−1

∑
i=1

λ‖di(t) − d̂i(t)‖2

System model (continued)
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Common Information Icom(t) = ∩
i∈N

Ii(t),

Local Information Iloci (t) = Ii(t) ∖ Icom(t),

State estimate x̂com(t) = 𝔼[x(t) | Icom(t)].

Local Innovation Ĩloci (t) = Ii(t) − 𝔼[Iloci (t) | Icom(t)].

Let Σ̂ij(t) = cov(Ĩi(t), Ĩj(t)).

and Θ̂i(t) = cov(x(t), Ĩi(t))

STRUCTURE OF OPTIMAL ESTIMATORS

ẑi(t) = Li x̂com(t) + Fi(t) Ĩloci (t)
1st term: Common info based estimate
2nd term: Local innovation based
correction (depends on weight matrix)

Alternative idea: Common information approach
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x(t) ∈ ℝ4, n = 4 and agent i observes xi(t).

Per-step cost: ∑
i∈N
‖xi(t) − ẑi(t)‖2 + λ‖x̄(t) − z̄(t)‖2

2-step delay sharing information structure

BASELINE STRATEGY ẑi(t) = Li 𝔼[x(t) | Ii(t)] 17.67

OPTIMAL STRATEGY ẑi(t) = Lixcom(t) + Fi(t) Ĩloci (t) 14.54
17% better

Example
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Separation centralized stochastic control, the
optimal control action depends on the solution of an
estimation problem:

𝔼[
T

∑
t=1
(L(t)x̃(t) + ẑ(t))⊺S(t)(L(t)x̃(t) + ẑ(t))]

Does the same happen in decentralized control?

In decentralized estimation, is
L𝔼[x(t) | I(t)] the best estimate?

There is a long history of duality between estimation
and control.

Decentralized control is interesting. Ergo, decentralized
estimation is interesting.

Decentralized estimation is
interesting in it’s own right in
certain applications.

Motivation for current work


