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Abstract— In this paper, we investigate the problem of
determining the structural controllability of leader-follower
systems defined over directed graphs. We identify the notions
of graph structural controllability and strong graph structural
controllability in leader-follower systems on directed graphs. We
show that accessibility is a necessary and sufficient condition
for graph structural controllability over directed graphs. Next,
we identify a sufficient and a necessary condition for strong
graph structural controllability. Finally, we derive a sufficient
condition for controllability when two graphs are cascaded. We
present examples that illustrate the various concepts.

I. INTRODUCTION

A. Motivation and literature overview

Multi-agent systems arise in a variety of applications
including mobile robotics, sensor networks, distributed en-
ergy systems, and social networks. Such systems are often
modeled as a graph, where the vertices correspond to the
agents and the system dynamics depend on the graph Lapla-
cian. In recent years, there has been a lot of interest in
understanding the relationship between the underlying graph
structure and system theoretic properties such as reachability,
controllability, and stabilizability of multi-agent systems [1]–
[3].

Leader-follower dynamics is a commonly used framework
to model multi-agent systems. In this framework, the agents
are partitioned into two sets: (i) leaders, which are directly
influenced by control inputs; and (ii) followers, which are
only indirectly influenced through the system dynamics.
Leader-follower dynamics may be defined over either undi-
rected or directed graphs depending on whether the coupling
between the agents is bidirectional or not. Various necessary
and sufficient conditions for controllability of leader-follower
dynamics over undirected graphs are presented in [4]–[10].
Necessary conditions for controllability of leader-follower
dynamics over directed graphs are presented in [11].

Most of the literature on controllability of leader-follower
dynamics assumes that the edge weights (which determine
the strength of the interaction) are known a priori. The
necessary conditions of [11] for controllability of directed
graphs are in terms of almost equitable partitions (AEPs),
which depend on the edge weights. Identifying AEPs is a
combinatorial optimization problem. Moreover, even a small
change in edge weights drastically changes the AEPs, and
the controllability condition needs to be checked again.

For certain applications it is useful to be able to provide
guarantees similar to structural controllability [12], [13]
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or strong structural controllability [14] for leader-follower
dynamics. Both structural and strong structural controlla-
bility are defined for general linear dynamical systems. In
this paper, we adapt these definitions for leader-follower
dynamics (see Section II-B for precise definitions).

It is worth noting that there is a subtle difference between
the standard definitions of structural (and strong structural)
controllability for general linear dynamic systems and the
definitions presented in this paper for leader-follower dynam-
ics, as explained in Sec. II-B. To avoid any confusion, we
refer to the notions defined in this paper as graph structural
controllability and strong graph structural controllability.

In this paper, we focus on leader-follower dynamics de-
fined over a directed graph. Our main contributions are
as follows. We prove rigorously that accessibility, in the
sense of there existing a directed path connecting every
follower to a leader node, is a necessary and sufficient
condition for graph structural controllability (Sec. II-E). We
show that the existence of a Hamiltonian path, together with
an absence of other forward-pointing (with respect to the
Hamiltonian path) edges, is sufficent for the dynamics to
be strong graph structurally controllable (Sec. II-F). Next,
we derive a necessary condition for strong graph structural
controllability, based on the existence of a local triangular
sub-graph (Sec. II-G). We illustrate the properties derived
above for a number of examples, including the role of strong
graph structural controllability in cascades of graphs.

B. Preliminaries on directed graphs

A directed graph G is a tuple (N , E) where N is the set
of vertices and E ⊂ N ×N is the set of ordered edges. An
edge (i, j) in E is considered to be ordered from i to j and
i is the in-neighbour of j; j is the out-neighbour of i. The
set of in-neighbours of i, called the in-neighbourhood of i,
is denoted by N−i ; the set of out-neighbours of i, called the
out-neighbourhood of i, is denoted by N+

i .
A path is a sequence of distinct vertices such that each

vertex has a directed edge to the next vertex in the sequence,
and no edge is repeated. A path is said to be Hamiltonian
if it visits each vertex of the graph exactly once. A node j
is said to be accessible from i if there exists a directed path
from i to j.

A weighted graph is a graph G with a weight function
w : E → R \ {0}.1 For any node i ∈ N , j ∈ N−i , wji

denotes the weight of the edge from node j to node i.

1To avoid trivialities, we assume that all weights are non-zero (and a zero
weight corresponds to the absence of an edge).



The (weighted) in-Laplacian L−(G) of the graph G with
weight function w : E → R is defined by

L−ij(G) =


−
∑

k∈N−
i

wki, if i = j

wji, if j ∈ N−i
0, otherwise

(1)

II. CONTROLLABILITY OF SYSTEMS WITH
LEADER-FOLLOWER DYNAMICS

A. Model for leader-follower dynamics over a directed graph

We consider a continuous-time multi-agent system with
leader-follower dynamics defined over directed graph G =
(N , E) with a weight function w : E → R\{0}. The nodesN
of the graph correspond to the agents, the edges E correspond
to the dynamical coupling between the agents, and the weight
corresponds to the strength of the coupling. A subset M of
N are leaders, i.e., an external control input can be applied
to these nodes. Control inputs cannot be applied to other
nodes, which are called followers.

For any node i ∈ N , let xi(t) ∈ R denote the state of
agent i at time t. For any leader i ∈ M, let ui(t) ∈ R
denote the control input at leader i at time t. The dynamics
of the system are given as follows: for a leader i, i ∈ M,
we have

ẋi(t) =
∑

j∈N−
i

wji(xj(t)− xi(t)) + biui(t), (2a)

and for any other agent i, i ∈ N \M, we have

ẋi(t) =
∑

j∈N−
i

wji(xj(t)− xi(t)). (2b)

The dynamics (2) may be written in vector form as
follows. Let n = |N | and m = |M|. Define x(t) =
{xi(t)}i∈N ∈ Rn and u(t) = {ui(t)}i∈M ∈ Rm to denote
the state and control input of the system at time t. Then,

ẋ(t) = Ax(t) +Bu(t), (3)

where A ∈ Rn×n is the in-Laplacian of G (defined in (1))
and B ∈ Rn×m. We refer to the above dynamics as system
(G,M, w). We use the short hand notation (G,M) when a
certain property is (almost or entirely) independent of the
choice of weights, and refer to it as a structural property.

B. (Strong) graph structural controllability

The controllability of system (G,M, w) depends on the
graph G as well as the weight w. In certain applications, it is
useful to identify controllability properties that depend on the
graph structure (G,M) but not on the weight function w. In-
spired by structural controllability [13] and strong structural
controllability [14], we define two notions of controllability
for leader-follower dynamics.

Definition 1 (Graph structural controllability) A graph
structure (G,M) is graph structurally controllable if there
exists a weight function w : E → R \ {0} such that the
system (G,M, w) is controllable.

Definition 2 (Strong graph structural controllability)
A graph structure (G,M) is strong graph structurally
controllable if for every weight function w : E → R \ {0},
the system (G,M, w) is controllable.

The notions of structural controllability [12], [13] and
strong structural controllability [14] are different from the
graph structural and strong graph structural controllability
defined above. Structural and strong structural controllability
are defined for any linear dynamical system ẋ(t) = Ax(t) +
Bu(t).

1) A system (A,B) is structurally controllable if there
exist matrices (A′, B′) with the same sparsity pattern
(or structure) as (A,B) such that the system (A′, B′)
is controllable.

2) A system (A,B) is strong structurally controllable if
for all matrices (A′, B′) with the same sparsity pattern
as (A,B), the system (A′, B′) is controllable.

In a system with leader-follower dynamics, the A matrix
in (3) is the in-Laplacian matrix of the graph. Thus, for graph
structural and strong graph structural controllability we have
to check controllability for matrices (A′, B) such that there
exists a weight function w for which A′ is the in-Laplacian
of the weighted graph (G, w). An equivalent representation
is that A′ has the same sparsity pattern as A and A1 = 0,
where 1 ∈ Rn is the vector of all ones. Thus, we have the
following.

Graph structural controllability is a stronger property
than structural controllability. In particular, a system (A,B)
with leader-follower dynamics (3) could be structurally con-
trollable, i.e., there may exist matrices (A′, B′) with the
same structure as (A,B) such that the system (A′, B′) is
controllable. However, A′ need not be a graph in-Laplacian
and B′ need not be same as B. Thus, structural controlla-
bility does not imply graph structural controllability. On the
other hand, graph structural controllability implies structural
controllability.

Strong graph structural controllability is a weaker prop-
erty than strong structural controllability. In particular, a
system (A,B) with leader follower dynamics (3) could be
strong structurally controllable, i.e., for all matrices A′ with
the same sparsity pattern as A such that A′1 = 0, the system
(A′, B) is controllable. However, strong graph structural
controllability does not say anything about controllability of
system (A′, B′) where A′ has the same sparsity pattern as
A but A′1 6= 0. Thus, strong graph structural controllability
does not imply strong structural controllability. On the other
hand, strong structural controllability implies strong graph
structural controllability.

C. Examples

To illustrate the aforementioned concepts, consider the
following two examples.

Example 1 Consider the two agent system with leader fol-
lower dynamics shown in Fig. 1a. Here, node 1 is the leader
and node 2 is a follower. The dynamics corresponding to this
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(a) System for Example 1
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(b) System for Example 2

Fig. 1: Some examples of multi-agent systems with leader-
follower dynamics. The solid circles denote leader nodes and
the hollow circles denote the follower nodes.

graph are[
ẋ1(t)
ẋ2(t)

]
=

[
0 0
w12 −w12

] [
x1(t)
x2(t)

]
+

[
1
0

]
u(t)

The controllability matrix of the system is[
1 0
0 w12

]
which has full rank for every w12 6= 0. Hence, the system is
strong graph structurally controllable and, a fortiori, graph
structurally controllable.

Example 2 Consider the three agent system with leader
follower dynamics shown in Fig. 1b. Here, node 1 is the
leader and nodes 2 and 3 are followers. The dynamics
corresponding to this graph areẋ1(t)

ẋ2(t)
ẋ3(t)

 =

 0 0 0
w12 −w12 0
w13 0 −w13

x1(t)
x2(t)
x3(t)

+

1
0
0

u(t)

The controllability matrix of this system is1 0 0
0 w12 −w2

12

0 w13 −w2
13


which is rank deficient when w12 = w13. Hence, the
system is graph structurally controllable but not strong graph
structurally controllable.

D. Problem Statement

We are interested in understanding properties of the graph
structure (G,M) that characterize whether or not a system
is (strong) graph structurally controllable.
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Fig. 2: Two “butterfly graphs”

For example, consider the multi-agent system defined over
the “butterfly graphs” shown in Fig. 2. Based on the features

of the graph, we want to answer if the system is controllable
by a single leader when the leader is at node i (say for
i = 1 or i = 2). Our results show that irrespective of
the location of the leader, both graphs are always graph
structurally controllable (see Theorem 2). We provide a
sufficient condition for strong graph structural controllability
(see Theorem 3) that is satisfied for the graph of Fig. 2(b)
with leader at node 6 or 8 but not for Fig. 2(a) for any
location of the leader.

E. Main results for graph structural controllability

Similar to [13], we show that a leader-follower system is
graph structurally controllable if and only if it is controllable
for almost all choices of the weight functions.

Theorem 1 The system (G,M) is graph structurally con-
trollable if and only if for any weight function w0 and
any ε ∈ R>0, there exists a weight function w1 satisfying
‖w1 − w0‖ < ε such that the system (G,M, w1) is control-
lable.
As argued earlier, graph structural controllability is a stronger
notion than structural controllability. Therefore, the above
result does not follow from [13]. However, the proof is
similar in spirit. See Appendix I.

Our main result for graph structural controllability is the
following.

Theorem 2 A leader-follower system is graph structurally
controllable if and only if every node is accessible from some
leader node.
See Appendix II for proof.

F. Main result for strong graph structural controllability

Theorem 3 Consider a leader-follower system with a single
leader. Suppose the following condition holds:
(C) There exists a permutation (i1, i2, . . . , in) of (1, . . . , n)

such that
a) i1 is the leader node
b) (i1, i2, . . . , in) is Hamiltonian path
c) For any k, ` ∈ {1, . . . , n} such that k < ` + 1,

the graph G does not have an edge from node ik
to node i`.

Then,
1) The system is strong graph structurally controllable.
2) For any weight function w : E → R \ {0}, the eigen-

values {λk}nk=1 of the controllability matrix of the
system (G,M, w) are given by: λ1 = 1 and for
k ∈ {2, . . . , n}

λk =

k−1∏
`=1

wi`,i`+1
. (4)

See Appendix III for proof. The above result is similar in
spirit to [14, Theorem 1], but is richer for having identified
the eigenvalues of the controllability matrix. This allows us
to measure how far the system is from being uncontrollable.

A system with a Hamiltonian path and no forward-pointing
edges can be thought of as a hierarchical system [12].
General hierarchical systems were shown to be structurally



controllable in [12]. In comparison, the Laplacian structure
allows us to strengthen the result and include all non-zero
edge weights.

Although we haven’t identified a necessary condition for
strong graph structural controllability, we provide an example
to show that of a leader-follower network that does not
satisfy condition (C) of Theorem 3 and is not strong graph
structurally controllable.

1 2 3 4

a b c

d

Fig. 3: An example of a leader-follower system that doesn’t
satisfy condition (C) of Theorem 3 and is not strong graph
structurally controllable.

Consider the four node system shown in Fig. 3. Note that
this system does not satify condition (C) due to the forward
edge (1, 4). For this system

A =


0 0 0 0
a −a 0 0
0 b −b 0
d 0 c −(c+ d)

 and B =


1
0
0
0

 .
The controllability matrix of this system is

C =


1 0 0 0
0 a −a2 a3

0 0 ab −ab(a+ b)
0 d −d(c+ d) d(c+ d)2 + abc


and

det(C) = a2b(c+ d)(ab− ad− bd+ cd+ d2)

which is zero for c = −d. Thus, the system is not strong
graph structurally controllable.

G. Necessary condition for classical controllability

Although we have identified necessary and sufficient con-
ditions for graph structural controllability as well as sufficient
condition for strong graph structural controllability, there
are situations where one is interested in controllability of a
graph with a pre-specified weight function. In [11], necessary
conditions for controllability for leader-follower dynamics
over directed graphs are provided in terms of almost eq-
uitable partitions (AEPs). Here, we present an alternative
and easier to verify necessary condition for controllability
of (G,M, w).

Theorem 4 Consider a leader-follower system with a given
weight function w. Suppose the following condition holds:
(D) There exist nodes i, j, k such that

a) nodes j and k are not leaders;
b) N−j = {i} or N−j = {i, k};
c) N−k = {i, j};
d) wij = wik or wijwik + wikwkj + wijwjk = 0

j

i

k

(a) N−
j = {i}

and N−
k = {i, j}.

j

i

k

(b) N−
j = {i, k}

and N−
k = {i, j}.

Fig. 4: Two possible sub-graphs that satisfy condition (D.b)
and (D.c) of Theorem 4

Then, the system is not controllable.
It can be shown that under condition (D), the partition
consisting of nodes {j, k} in one cell and all other nodes
in their own unique cell is an equitable partition [10]. We
present a more direct proof in Appendix IV.

Remark 1 When conditions (D.a)–(D.c) of Theorem 4 are
satisfied, the system is not strong graph structurally con-
trollable. Thus, the lack of such a sub-graph is a necessary
condition for strong graph structural controllability.

Remark 2 In the special case when all edge weights are 1,
the first part of (D.d) is always satisfied (while the second
part cannot be satisfied).

III. CONTROLLABILITY UNDER GRAPH CASCADES

1 2

3 4 5
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b c
1

(b)

Fig. 5: An example illustrating that the cascade of two
strong graph structurally controllable systems need not be
controllable.

Given two controllable systems (G1,M1, w1) and
(G2,M2, w2) (where |M2| = 1), suppose we connect one of
the nodes in G1 to the leader node in G2 with a weighted edge
and make the leader node of G2 a follower. Is the cascaded
system controllable? Such a question arises when we have a
controllable system (e.g., a UAV network) and we want to
control it as part of a bigger network (e.g., from a network
of mobile ground robots). In general, such a cascade may
not result in a controllable system even if (G1,M1) and
(G2,M2) are strong graph structurally controllable. To see
this, suppose we have the two networks shown in Fig. 5(a)
both of which are strongly controllable and we connect
node 1 to node 3 to obtain the network shown in Fig. 5(b).
It can be shown that the system of Fig. 5 is not strong graph
structurally controllable. Specifically, it loses controllability
if a = b or a = c. Below we identify sufficient conditions
under which the cascade of two graphs is controllable.



Theorem 5 Consider two systems (G1,M1, w1) and
(G2,M2, w2) where |M1| = |M2| = 1. Suppose the
following conditions are satisfied:

1) G1 satisfies condition (C) of Theorem 3.
2) (G2,M2, w2) is controllable.

Then, the cascaded system formed by connecting the terminal
node (i.e., node with label in1

in (C)) of G1 to the leader of
G2 with any weight (and making the leader of G2 a follower)
is controllable.
See Appendix V for proof. The above theorem shows that
the cascaded system formed by connecting node 2 to node 3
in Fig. 5(a) is controllable.

IV. CONCLUSIONS

In this paper, we identified the notions of graph structural
controllability and strong graph structural controllability in
linear leader-follower systems on directed graphs. Their rela-
tion to the prevalent notions of structural controllability and
strong structural controllability were pointed out. We proved
that accessibility is a necessary and sufficient condition
for graph structural controllability. We also proved that the
existence of a Hamiltonian path and an absence of other
forward-pointing edges (with respect to the Hamiltonian
path) is sufficient for strong graph structural controllability.
The effects of adding a forward edge were demonstrated
through a necessary condition for loss of strong graph
structural controllability, involving a triangle subgraph. Fi-
nally, we demonstrated the role played by strong graph
structural controllability in preserving controllability when
two dynamical systems are cascaded.

APPENDIX I
PROOF OF THEOREM 1

To prove sufficiency, note that if the system (G,M, w1)
is controllable, then by definition, (G,M) is structurally
controllable.

To prove necessity, suppose (G,M) is structurally con-
trollable. If the system (G,M, w0) is controllable, then we
are done. If not, then let w2 be a weight function for
which the system (G,M, w2) is controllable. Define, w(λ) =
(1 − λ)w0 + λw2. Note that ‖w(λ) − w0‖ = λ‖w2 − w0‖.
Thus, there exists a λ0 ∈ (0, 1) such that for all λ ∈ (0, λ0),
‖w(λ)− w0‖ < ε.

Let C(λ) denote the controllability matrix of the system
(G,M, w(λ)). By assumption, the system (G,M, w(1)) is
controllable. Thus rankC(1) = n (where n = |N |), which
means that there exists an n×n submatrix D(1) of C(1) such
that det(D(1)) 6= 0. Let D(λ) denote the same submatrix
for a general λ.

Note that each term in C(λ) and thus D(λ) is a polynomial
in λ. Hence, det(D(λ)) is also a polynomial in λ. We know
that det(D(1)) 6= 0, hence the polynomial is not identically
zero and it has only a finite number of real roots. If we
pick a λ ∈ (0, λ0) other than these roots, then det(D(λ)) 6=
0, which implies that rankC(λ) = n. Thus, there exists a
weight function w1 = w(λ) such that ‖w1 − w0‖ < ε and
the system (G,M, w1) is controllable.

APPENDIX II
PROOF OF THEOREM 2

A. Proof of necessity
If there exists a set consisting of nodes that are inaccessible

from the leaders, we can find a permutation of indices so that
the matrix A is of the form

A =

[
A11 A12

0 A22

]
while B = [B1 0]ᵀ. This is the well-known Kalman decom-
position, with the second set of states (corresponding to A22)
being uncontrollable.

B. Preliminaries lemmas for the proof of sufficiency
We first prove two preliminary lemmas that are used as

part of the proof of sufficiency.

Lemma 1 Given a graph G, let G′ denote a graph formed
by adding an additional edge in G. If the system (G,M) is
graph structurally controllable, then so is (G′,M).

Proof: Since (G,M) is graph structurally controllable,
there exists a weight function w such that (G,M, w) is
controllable. Let w′(λ) be a weight function for (G′,M)
which assigns the same weight as w to the edges in G
and assigns a weight λ to the new edge. Let C(λ) denote
the controllability matrices of (G′,M, w′(λ)). Note that the
system (G′,M, w′(0)) is same as the system (G,M, w),
which is controllable. Thus, rankC(0) = n (where n =
|N |), which means that there exists an n×n submatrix D(0)
of C(0) such that det(D(0)) 6= 0. Let D(λ) denote the same
submatrix for general λ.

Note that each term in C(λ) and thus D(λ) is a polynomial
in λ. Hence, det(D(λ)) is also a polynomial in λ. We know
that det(D(0)) 6= 0, hence the polynomial is not identically
zero and it has only a finite number of real roots. If we
pick a λ that is not a root, det(D(λ)) 6= 0, which implies
that rankC(λ) = n. Thus, there exists a weight function
w1 = w′(λ) such that the system (G′,M, w1) is controllable.

Lemma 2 Given a graph G with a single leader (i.e., |M| =
1), let G′ denote a graph formed by adding a new node and
an incoming edge to it from a node in G. If the system (G,M)
is graph structurally controllable, then so is (G′,M).

Proof: Let (A,B) denote the system matrices of the
system (G,M) and let C be the controllability matrix of
(A,B). Let A′, B′, and C ′ denote the corresponding terms
of the system (G′,M). Let the number of nodes in G be
n. Then number of nodes in G′ is (n+ 1). We assume that
the index of the leader node is 1; thus, B and B′ are n
and (n+ 1) dimensional column vectors with only their first
entries being 1 and the rest being 0.

Let e denote a standard n-dimensional unit vector with the
position of 1 corresponding to the node in G which has an
outgoing edge to the new node and let λ denote the weight
of that edge. Then

A′ =

[
A 0
λeᵀ −λ

]
and B′ =

[
B
0

]
.



Furthermore, we have that

C ′ =

[
B AB . . . An−1B AnB
c0 c1 . . . cn−1 cn

]
,

where c0 = 0 and for k ≥ 0, ck+1 = λeᵀAkB − λck. By
recursive substitution, we get that

ck =

k−1∑
j=0

(−1)jλj+1ak−j−1, (5)

where we have used ak = eᵀAkB.
Since (G,M) is graph structurally controllable, C is full

rank and, hence, the columns of C are linearly independent.
Since the columns of C are sub-vectors of the first n columns
of C ′, the latter are also linearly independent. Thus, to show
that C ′ is full rank, we need to verify that there exists
a weight λ such that the n + 1 column of C ′ is linearly
independent of the first n.

We prove the independence by contradiction. Suppose that
is not the case, then there must exist weights {βk}nk=0, βn =
1, such that for all weights λ 6= 0,

n∑
k=0

βkA
kB = 0 and

n∑
k=0

βkck = 0. (6)

Substituting the values of ck from (5) in the second equation
in (6), we get a polynomial in λ, which we denote by p(λ).
The coefficient of λj+1 in p(λ) is given by

(−1)j
[ n∑
k=j+1

βkak−j−1

]
.

Thus, for the second equation in (6) to be satisfied for all
values of λ, p(λ) = 0 for all λ, which means that all the
coefficients of λ must be identically zero. We argue below
that there is a term in p(λ) that is not identically zero.

Note that all {ak}nk=0 cannot be identically zero because
that will imply that there is a row of C that is identically
zero. Let ` denote the smallest k such that ak 6= 0. Then,
the coefficient of λn−` in the second equation of (6) is
(−1)n−`−1βna` which is non-zero. Thus, p(λ) cannot be
identically zero for all λ. Hence (6) cannot be satisfied for
all λ. So, there exists a weight λ such that all columns of
C ′ are linearly independent.

C. Proof of sufficiency

We separately prove the result for single and multiple
leaders.

1) Part 1: The case with single leader: Consider any
system (G,M) where G = (N , E), |M| = 1, and every
node is accessible from the leader node. Let G0 denote the
graph (M, ∅) consisting of just the leader node. Clearly G0 is
structurally controllable. Since all nodes of G are accessible
from the leader node, it follows that we can build G starting
from G0 by applying a sequence of operations, where each
operation falls into one of two categories:

1) Add a node and an edge from the existing graph to
the new node; from Lemma 2, the resulting graph is
graph structurally controllable.

2) Add an edge connecting the existing nodes; from
Lemma 1, the resulting graph is graph structurally
controllable.

After each operation, the system remains graph structurally
controllable. Hence, the final system (G,M) is also graph
structurally controllable. This completes the proof of Theo-
rem 2 for a single leader.

2) Part 2: The case with multiple leaders: Consider any
system (G,M) where G = (N , E), |M| = m > 1, and every
node is accessbile from one of the leader nodes. The set of
nodes can be partitioned into disjoint subsets N1, . . . , Nm

such that (i) each leader node belongs to exactly one Ni; (ii)
no Ni has more than one leader node, and (iii) each node in
Ni is accessible from its leader, with the edges from E .

For every i ∈ {1, . . . ,m}, we define the induced sub-
graph Gi = (Ni, Ei), where Ei = {(i, j) ∈ E : i, j ∈ Ni}. It
follows from Part 1 above that Gi, i ∈ {1, . . . ,m}, is graph
structurally controllable. Thus, the system (G′,M), where

G′ =

m⋃
i=1

Gi =

(
N ,

m⋃
i=1

Ei
)

is also graph structurally controllable. Graph G may ob-
tained from G′ by adding the mising edges one-by-one. By
Lemma 1, (G,M) is graph structurally controllable.
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We use the notation a = • to denote that the variable
a may take any value and use a = ∗ to denote that a is
non-zero.

For ease of exposition, we assume that the agents have
been labeled such that the permutation (i1, i2, . . . , in) is
(1, 2, . . . , n). Since there is no edge of the form (k, `) for
k < `+ 1 in the graph G, the matrix A is of the form:

Aij =


•, if i < j + 1

∗, if i = j + 1

0, if i > j + 1

(7)

where Aj+1,j = wj,j+1.
Using induction, we can show that the form Ak is similar.

In particular, we have the following.

Lemma 3 For any k ∈ {1, . . . , n−1}, Ak is a n×n matrix
of the form

Ak
ij =


•, if i < j + k

∗, if i = j + k

0, if i > j + k

(8)

where

Ak
j+k,j = wj,j+1wj+1,j+2 · · ·wj+k−1,j+k. (9)

Proof: We prove the result by induction. For k = 1,
the form of A given by (7) is the same as (8). This forms
the basis of induction. Now assume that (8) is true for some



k ∈ {1, . . . , n− 2}, and consider Ak+1. Note that

Ak+1
ij =

n∑
`=1

Ak
i`A`j

(a)
=

j+1∑
`=i−k

Ak
i`A`j

=


0, if i− k > j + 1

Ak
j+1+k,j+1Aj+1,j , if i− k = j + 1

•, if i− k < j + 1

(10)

where (a) uses the fact that Ak
i` = 0 for ` < i − k

(Eq. (8), the induction hypothesis) and that A`j = 0 for
` > j + 1 (Eq. (7)). From the induction hypothesis, we also
have Ak

j+1+k,j+1 = ∗. Thus, (10) is of the same form as (8).
Hence, by the principle of induction, Eq. (8) holds for all k.

Furthermore, Eq (10) implies that the Ak
j+k,j elements

satisfy the following recursion: Aj+1,j = wj,j+1, and for
any k ∈ {1, . . . , n− 2},

Ak+1
j+1+k,j = Ak

j+1+k,j+1Aj+1,j .

By recursively expanding this expression, we get

Ak
j+k,j = Aj+k,j+k−1Aj+k−1,j+k−2 · · ·Aj+1,j ,

which is the same as (9).

Lemma 4 Let C = [B AB · · ·An−1B] denote the control-
lability matrix of the system. Then, C is an upper triangular
matrix of the form

Cij =


•, if j < i

Ai−1
i,1 , if j = i

0, if j > i

(11)

where A0
11 = 1 and for i ∈ {1, . . . , n− 1},

Ai−1
i,1 = w12w23 . . . wi−1,i. (12)

Therefore, we have the following:
1) C is full rank.
2) det(C) = wn−1

12 wn−2
23 · · ·w2

n−2,n−1wn−1,n.

3) The eigenvalues of C are given by {Ai−1
i,1 }ni=1.

Proof: Recall that B is a n × 1 matrix of the form
[1 0 · · · 0]ᵀ. Thus, the first column of C is of the form (11)
(observe that A0 = I). Moreover, Ai−1B (which is the i-th
column of C) is equal to the first column of Ai−1; from (8),
we get that the first column of Ai−1 is of the form (11). This
establishes the upper triangular structure of C.

From (9), we get that the form of Ai−1
i1 given in (12).

Thus, C is an upper triangular matrix with non-zero diagonal
terms. Hence, it is full rank.

The determinant of an upper triangular matrix is equal to
the product of its diagonal terms. Thus,

det(C) = A0
11A

1
21A

2
31 · · ·An−1

n1 . (13)

Substituting (12) in (13), we get the determinant of C.
Since C is a square matrix, its eigenvalues are given by the

roots of the characteristic polynomial det(λI −C). λI −C
is also upper triangular, so its determinant is given by the
product of the diagonal terms. Hence, the {Ai−1

i1 }ni=1 are the
roots of det(λI − C).

The proof of Theorem 3 follows immediately from
Lemma 4.
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Without loss of generality, we permute the nodes such that
nodes (i, j, k) are the first three nodes and write the A matrix
as

A =

[
A11 A12

A21 A22

]
, where A11 =

wii wji wki

wij wjj wkj

wik wjk wkk

 .
Conditions (D.b) and (D.c) imply that the corresponding
rows of A12 are zero. Thus, the weights satisfy

wij + wjj + wkj = 0 and wik + wjk + wkk = 0. (14)

Now let a and b be non-zero real numbers such that
wik/a = wij/b and let v =

[
0 a −b 0 · · · 0

]
.

Consider

vA =
[[

0 a −b
]
A11 0 · · · 0

]
(15)

where we have used the fact the rows corresponding to nodes
j and k in A12 are zero. Now consider the first component
of (15).

[
0 a −b

]
A11

=
[
awij − bwik awjj − bwjk awkj − bwkk

]
(a)
=
[
0 −(awij + awkj + bwjk) awkj + bwik + bwjk

]
(16)

where (a) uses (14) and the relation between a and b. Now
suppose

awij + awkj + bwjk

a
=
awkj + bwik + bwjk

b
. (17)

Substituting this in (16), we get that[
0 a −b

]
A11 =

−(awij + awkj + bwjk)

a

[
0 a −b

]
.

Substituting in (15), we get that v is a left eigenvector of A.
Since nodes j and k are not the leader nodes, vB = 0, so v
is a left null vector of B. Hence, by the PBH test, (A,B) is
not controllable.

Now we argue that (17) is equivalent to (D.d). Since
wik/a = wij/b, we can write (17) as

wikwij + wikwkj + wijwjk

wik
=
wikwkj + wijwik + wijwjk

wij
.

which is equivalent to(
1

wik
− 1

wjk

)
(wikwij + wikwkj + wijwjk) = 0,

which, in turn, implies (D.d).
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Let ni denote the number of nodes of graph Gi, i ∈ {1, 2}.
Let (Ai, B.) denote the system matrices for system (Gi,Mi).
We assume that the leaders of both graphs are their first
node and the terminal node in G1 is indexed by n1. Then the
system matrices of the cascaded system are given by

A′ =

[
A1 0
λ∆1 A2 − λ∆2

]
and B′ =

[
B1

0

]
, (18)

where λ 6= 0 is the weight of the connecting edge, while
∆1 ∈ Rn2×n1 and ∆2 ∈ Rn2×n2 are given by

∆1,ij =

{
1, i = 1, j = n1

0 otherwise
, ∆2,ij =

{
1, i = 1, j = 1

0 otherwise
.

It is easy to check that

∆2
2 = ∆2, ∆2∆1 = ∆1, ∆1B1 = 0

∆1x = x(n1)B2, ∆2x = x(1)B2, where x ∈ Rn1 (19)

Lemma 5 If G1 has a Hamiltonian path and no other
forward-pointing edges, we have that

∆1A
i
1B1 =

{
0, i < n1 − 1

αB2, i = n1 − 1
(20)

where α 6= 0 is a constant.
Proof: This lemma is a straight-forward consequence

of Lemma 4.

Lemma 6 Let (A2, B2) be controllable. Then,

A′kB′ =



[
Ak

1B1

0

]
, k < n1

[
Ak

1B1

qk

]
, k ≥ n1

(21)

where qn1+j =
∑j

i=0 αj,iA
j
2B2 for 0 ≤ j ≤ n2 − 1.

Furthermore, αj,j = λα for all j ≤ n2 − 1.
Proof: We start by noting that

A′B′ =

[
A1B1

0

]
, A′2B′ =

[
A2

1B1

λ∆1A1B1

]
=

[
A2

1B1

0

]
from Lemma 5. Continuing along these lines, we get

A′kB′ =

[
Ak

1B1

0

]
, k ≤ n1 − 1

For k = n1, we deduce from Lemma 5 and (21) (where qk
was introduced) that qn1 = ∆1A

n1−1
1 B1 = λαB2. We make

the following induction hypothesis: for some j ∈ (0, n2−2),

qn1+j =

j∑
i=0

αj,iA
i
2B2, αj,j = λα

Note that α0,0 = λα. Then, from (21), we get

qn1+j+1 = λ∆1A
n1+j
1 B1 + (A2 − λ∆2)

j∑
i=0

αj,iA
i
2B2︸ ︷︷ ︸

qk

= γ1B2 +

j+1∑
i=1

αj,iA
i
2B2 =

j+1∑
i=0

αj+1,iA
i
2B2 (22)

where the existence of the constant γ1 follows from (19),
and αj+1,i are also constants. Since Ai

2B2 are independent
for i ≤ n2 − 1, we obtain αj+1,j+1 = αj,j = λα.

To prove Theorem 5, we start by noting, from Lemma 6,
that the controllability matrix of (A′, B′) is of the form

C ′ =

[
C ′1 C ′3

0n2×n1
C ′2

]
where C ′1 = C1 and C ′2 = C2U ; C1 and C2 are the control-
labilty matrices corresponding to (A1, B1) and (A2, B2),
respectively, and U is an upper triangular matrix with each
diagonal entry being λα 6= 0 (from Lemma 6). We recall
that C1 and C2 are full-ranked. Furthermore, det(C2U) =
det(C2) det(U) 6= 0, and C2U is full-ranked as well. Thus,
(A′, B′) is controllable for any λ 6= 0.
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