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Multi-Agent Estimation and Filtering for Minimizing
Team Mean-Squared Error

Mohammad Afshari

Abstract—Motivated by estimation problems arising in au-
tonomous vehicles and decentralized control of unmanned aerial
vehicles, we consider multi-agent estimation and filtering problems
in which multiple agents generate state estimates based on decen-
tralized information and the objective is to minimize a coupled
mean-squared error which we call team mean-square error. We
call the resulting estimates as minimum team mean-squared error
(MTMSE) estimates. We show that MTMSE estimates are different
from minimum mean-squared error (MMSE) estimates. We derive
closed-form expressions for MTMSE estimates, which are linear
function of the observations where the corresponding gain depends
on the weight matrix that couples the estimation error. We then
consider a filtering problem where a linear stochastic process is
monitored by multiple agents which can share their observations
(with delay) over a communication graph. We derive expressions
to recursively compute the MTMSE estimates. To illustrate the
effectiveness of the proposed scheme we consider an example of
estimating the distances between vehicles in a platoon and show
that MTMSE estimates significantly outperform MMSE estimates
and consensus Kalman filtering estimates.

Index Terms—Least mean square error methods, estimation,
multi-agent systems, networked control systems, decentralized
control.

I. INTRODUCTION

MERGING applications in autonomous vehicles and de-
E centralized control of UAVs (unmanned aerial vehicles)
give rise to estimation problems where multiple agents use local
measurements to estimate the state of the shared environment in
which they are operating and then use these estimates to actin the
environment. In the resulting decentralized estimation problems,
the objective is to minimize the weighted mean-square error
between the true state and the decentralized estimates generated
by all agents. We call such a coupled mean-square error as team
mean-squared error and the resulting estimates as minimum
team mean-squared error (MTMSE) estimates.

For example, consider a platoon of self-driving vehicles where
the estimation objective is to ensure that the position estimates
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of each vehicle are close to the true position of the vehicle and,
at the same time, the difference between the position estimates
of adjacent vehicles are close to the true difference between the
positions. Or consider a fleet of UAVs (unmanned aerial vehi-
cles) where the estimation objective is to ensure that the position
estimates of each UAV are close to the true position of the UAV
and, at the same time, the centroid of the estimates of all UAVs
is close to the true centroid of their positions. A salient feature
of these examples is that there are multiple agents who generate
state estimates based on different information and the objective
is to minimize a weighted mean-squared error between the true
state and the decentralized estimates generated by all agents.

We first start with a simple example to illustrate that MTMSE
estimates are different from the standard MMSE (minimum
mean-squared error) estimates. Consider a system with two
agents, indexed by i € {1,2}, which observe the state of nature
x ~ N(0,1) with noise. In particular, the measurement y; € R
of agent ¢ is

yi =z +v;, v ~N(0,0%),
where x, v1, and vy are independent.

Agenti € {1,2} generates anestimate 2; = ¢;(y;) € R based
on its local measurements, where (g1, g2) is any arbitrary esti-
mation strategy. The objective is to ensure that 2; is close to x
and at the same time the average (£; + 22)/2 of the estimates is
close to z. Thus, the estimation error .J (g1, g2) of the estimation
strategy (g1, g2) is given by

El(z — £1)% + (z — 22)°] + AE (x _ 21”2>2

2
2
IR 142 2 Jle-z 0
T — 29 % ]_—|—% l‘—ég’

where A € R~ (. Naively choosing Z; as the MMSE estimate of
x given y;, i.e., choosing

1
2 =g o (y) =1 i = i
Zi = g;"" (i) [z | yil T o2Y
gives an estimation error of
o2 A 1+ 202
Jmmsc — J IIlTIlSC7 mmse — 2( ) (1 - . )
(gl 92 ) 1+ o2 + 4 1+ o2

This naive strategy does not minimize the team mean-squared
error given by (1), even within the class of linear estimation
strategies. To see this, we identify the best linear estimation
strategy. Let

2= g™ (y;) = Fyi,
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Fig. 1. Comparison of the relative improvement of the best linear MTMSE
estimator over the MMSE estimator as a function of o for different values of \.

where F'is same for both agents due to symmetry. The estimation
error for this linear strategy is

. . A
T = (g gh®) = 2+ N1 - F)? +2(1+ 5 ) Foo?,

which is convex in F'. The value of gain F' which minimizes this
estimation error is

_ 1 _ 1
B 14M/4 5 14 ao?’
1+ 1227

where o = (1 4+ X/4)/(1 + X/2). The corresponding estima-
tion error is
2

; ao
JIB = (2 4+ N)——.
(2+2) 1+ ac?
Note that for large A\, & ~ 1/2 and the relative improvement
A Jmmse ._ Jlin - 1 ' 0,2 7
Jlin 2 (1 + 02>2

is significant for moderate values of o. For example, for 0 = 1,
the relative percentage improvement is 12.5%.

The relative percentage improvement A := (J™™€ —
JHm) /Jim % 100 as a function of o for different values of A
is shown in Fig. 1. The improvement is significant for higher
values of \.

This significant improvement over MMSE estimates for a
simple example motivates the central question of this paper:
what are the estimation and filtering strategies that minimize
the team mean-squared error? This question is conceptually
challenging because agents with different partial observations
have to generate estimates in a coordinated manner to minimize
a common system-wide coupled cost. In order to minimize such
a coupled cost, each agent needs to anticipate the estimates
that will be generated by all other agents. The need to antic-
ipate the decisions made by other agents, makes the problem
of minimizing team mean-squared error significantly different
from minimizing mean-squared error. We use tools for team the-
ory [2] to determine such coordinated strategies for estimation
in Section II. Then, we determine such coordinated strategies
for filtering in Section III. We generalize the filtering results to
infinite horizon setup in Section III-F. Finally, we present exam-
ples to illustrate that MTMSE estimates significantly outperform
MMSE and consensus Kalman filtering estimates.
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A. Literature Overview

Following the seminal work of Kalman [3] on recursive
MMSE filtering, several variations of single- and multi-agent
MMSE filtering have been investigated in the literature. How-
ever, as far as we are aware, there are only two references which
have investigated estimation or filtering for the MTMSE objec-
tive [4], [5]. Both references investigated multi-agent filtering
of a continuous time linear stochastic process. In [4], each agent
observes a noise corrupted measurement of the state and the
objective is to minimize a specific form of team mean-squared
error. The key idea of [4] is to consider an augmented state and
observation model and formulate the team mean-square error as
the squared norm of an appropriately defined inner product of
these augmented variables. It is shown that team mean-squared
filtering problem can be formulated as a Hilbert space mean-
squared error filtering problem and, therefore, solved using an
appropriate Kalman filter. The model considered in [5] is similar
except that each agent has multiple observation channels and,
at each time, can select which observation channel to use. The
solution approach is similar to [4].

Although [4], [5] are able to transform a MTMSE filtering
problem to a Hilbert space MMSE filtering problem, the ap-
proach has several limitations. First, and most importantly, the
approach of [4], [5] is only applicable to a specific form of
MTMSE cost. The formulation of the team mean-squared error
as a squared norm of an appropriately defined inner product
does not hold for the more general team mean-squared error
considered in this paper. In particular, the form of the team mean-
squared error considered in the practical examples in Section IV
cannot be written as the squared norm of an appropriate inner
product. Second, the size augmented state variables used in [4],
[5] scales linearly with the number of agents. In particular, for
a n-agent MTMSE filtering where the state is of dimension d,,
the augmented state (and therefore the augmented estimate) is of
dimensionn(d,)? x nd,. Thus the resulting Kalman filter needs
to keep track of n?(d,)® x n?(d,)* dimensional covariance
matrix. In contrast, the solution that we propose only requires
a Kalman filter with a d, x d, dimensional error covariance.
Finally, [4], [5] did not consider sharing of measurements among
the agents. Such a sharing of measurements is a key feature of
the general filtering model that we consider in this paper.

Estimation problems with coupling between the estimates
have been considered in the economics literature [6]-[8]. How-
ever, in such models, agents are strategic and want to mini-
mize an individual estimation objective. The solution concept is
identifying estimation strategies which are in Nash equilibrium
which is different from the solution concept of minimizing a
common team estimation error considered here.

There is arich literature on multi-agent filtering for distributed
sensor fusion [9]-[13] as well as for distributed simultaneous
localization and mapping (SLAM) in robotics [14]-[16]. There
is also arich literature on multi-agent estimation using consensus
and gossip Kalman filters [17]-[22] (and references therein).
However, all these methods only consider MMSE filtering. As
illustrated by motivating example presented at the beginning,
MTMSE estimates can be significantly different from MMSE
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estimates. So, the vast literature on multi-agent MMSE filtering
is not directly applicable for MTMSE filtering.

B. Contributions of the Paper

The salient feature of the model is that agents are infor-
mationally decentralized and need to cooperate to minimize a
common team estimation objective. Our focus is to identify the
structure of estimation strategies that find MTMSE when the
graph topology, system dynamics, and the noise covariances are
known to all agents.

We consider the problem of minimizing the team mean-
squared error in an estimation problem where the measurements
of the agents may be split into a common measurement and
local measurements.' Using tools from team theory [2], we show
that the optimal MTMSE estimate is a sum of two terms. The
first term is the MMSE estimate of the state given the common
measurement. The second term is a linear function of the innova-
tion in the local measurement given the common measurement.
Furthermore, the corresponding gains are computed by solving
a system of matrix equation, which can be converted into a linear
system of equations using vectorization.

We then consider the problem of minimizing the sum of team
mean-squared errors over time in a filtering problem where the
agents share their measurements with their neighbors over a
completely connected communication graph. Since the graph is
completely connected, the information available at each agent
can be split into common information and local information. We
show that the structure of the optimal MTMSE estimates identi-
fied in the estimation setup continue to hold for filtering as well.
We setup an appropriate linear system with delayed observation
to derive recursive formulas for the MMSE estimate of the state
based on the common information and the innovation in the local
measurements given the common measurements. We also derive
recursive formulas for computing various covariances needed to
compute the gain which multiplies the innovation term in the
optimal estimates.

Finally, we show that under standard stabilizability and de-
tectability conditions, a time-homogeneous estimation strategy
is optimal for minimizing the long-term average team mean-
squared error.

A preliminary version of this paper appeared in [1], where
the main result for the filtering problem (Theorem 2) was stated.
The proof of Theorem 2 relies heavily on the results for the
estimation problem (Theorem 1) which was not included in [1].
Neither were the generalization to infinite horizon (Theorem 3).
The detailed numerical experiments and the comparison with
MMSE estimate and consensus Kalman filtering (Section 1V),
the detailed comparison with [4], [5] (Section I), the relation
between the MTMSE estimates and decentralized control (Sec-
tion V-B), and the trade-off between MTMSE filter complexity
and estimation accuracy (Section V-C) are new as well.

'If no such split is possible, then the common measurement is simply empty.
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C. Notation

Let §;; denote the Kronecker delta function (which is one
if ¢ = j and zero otherwise). Given a matrix A, A;; denotes
its (4, j)-th element, A;, denotes its i-th row, A,; denotes its
j-th column, AT denotes its transpose, vec(A) denotes the
column vector of A formed by vertically stacking the columns
of A. Given a vector x, ||z||> denotes z"x. Given matrices A
and B, diag(A, B) denotes the matrix obtained by putting A
and B in diagonal blocks, and A ® B denotes the Kronecker
product of the two matrices. Given matrices A and B with
the same number of columns, rows(A, B) denotes the matrix
obtained by stacking A on top of B. Given a squared matrix
A, Tr(A) denotes the sum of its diagonal elements. Given a
symmetric matrix A, the notation A > 0 and A > 0 mean that
A is positive definite and semi-definite, respectively. 1, is
a n X m matrix with all elements being equal to one. 0,, is
a square n X n matrix with all elements being equal to zero.
I,, is the n x n identity matrix. We omit the subscript from
I,, when the dimension is clear from context. We sometimes
consider random vectors X = (z1, ..., xy) as aset with random
elements {1, ...,z }. In particular, given two random vectors
X =(x1,...,2) and Y = (y1,...,Ym), we define X Y
to mean vec({x1,..., 2k} ({Y1,---,Ym}). Similarly, we use
X \Y tomean vec({x1, ..., 2} \{y1,- -, Ym})-

Given any vector valued process {y(t)}:>1 and any time
instances t1, to such that ¢; < o, y(t1:t2) is a short hand
notation for vec(y(t1),y(t1 +1),...,y(t2)). Given matri-
ces {A(i)}, with the same number of rows and vec-
tors {w (i)}, rows((;—, A(7)) and vec((®);_, w(i)) denote
rows(A(1),..., A(n)) and vec(w(1),...,w(n)), respectively.

Given random vectors z and y, [E[z] and var(z) denote the
mean and variance of x while cov(z, y) denotes the covariance
between x and y.

II. MINIMUM TEAM MEAN-SQUARED ERROR (MTMSE)
ESTIMATION

A. Model and Problem Formulation

Consider a system with n agents that are indexed by the set
N ={1,...,n}. The agents are interested in estimating the
state = € R% of nature. Agent i makes a local measurement
yi € R%, i € N. In addition, all agents observe a common
measurement, which we denote by yg € R%. We use Ny to
denote the set {0,1,...,n}.

The variables (x,yo, Y1, ---,Yn) are assumed to be jointly
Gaussian zero-mean random variables. For any ¢, j € Ny, let
©; = cov(z,y;) and 3;; = cov(y,, y;). _

Agent i € N generates an estimate 2; € R% according to
an estimation rule g;, i.e., Z; = ¢;(yo, y;). Given weight ma-
trices {S;;}i jen and {L;}ien, where S;; € R%*% and L, €
R4=*d= | the performance is measured by the team estimation
error given by:

i€N jeN

oz, 21,. ..
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Let £ = vec(Zy, ..., 2,) denote the estimate of all agents. The
team estimation error ¢(x, ) is a weighted quadratic function
of (Lx — ). In particular,

c(x,2) = (Lx — 2)TS(Lx — 2), 3)
where S and L are given by
S11 Sin Ly
S=1": : and L= | |. “)
Sni Son L,

We assume that the matrix S is positive definite.
We now present a few examples of the estimation error
function of the form (3):

1) Suppose x = vec(xy,...,2,), where x; is the local state
of agent ¢ € N. Suppose the agents want to estimate their
own local state, but at the same time, want to make sure
that the average z := % > ien Ziof their estimates is close
to the average 7 := 1 > ien i of their local states. In this

n
case, the team mean-squared error function is

c(,2) = |lzi — 2> + Mz — 2%, (5)
ieN
where A\ € R~q. This can be written in the form (3) with

L =1, and
A
Sij = (5ZJ + TL2> I.

2) Suppose the agents are moving in a line (e.g., a vehicular
platoon) or in a closed shape (e.g., UAVs flying in a
formation) and want to estimate their local state but, at
the same time, want to ensure that the difference ciz =
Z; — Z;+1 between their estimates is close to the difference
d; := x; — x;4 of their local states.

For example when agents are moving in a line, the team
mean-squared error function is

(e, 2) = i = z1*+ X D |di—dil®,  (6)

€N ieN\n
where A € R~q. This can be written in the form (3) with
L =Tand
(I1+2M1, i=j¢€{2,...,n—1}
S _ (I+NMI, i=je{l,n}
" I, jefi+1,i—1}
0, otherwise.

A similar weight matrix can be obtained for the case when
agents are moving in a closed shape.
3) Suppose each agent generates an estimate 2; € R% of the
state x of nature and the objective is to minimize
) =YY (2= 20) Sy(x — 2),
ieN jeN
This can be written in the form (3) with L = 1,41 ®
14, «aq,. This cost function is equivalent to the team mean-
squared error considered in [4], [5].
We are interested in the following optimization problem.
Problem 1: Given the covariance matrices {O;};cn, and
{%i; }i,jen, and weight matrices L and .S, choose the estima-
tion strategy g = (g1, ..., gn) to minimize the expected team

clx, 21, ...
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estimation error J(g) given by
J(9) := Ele(z, 2)]. ™
Remark 1: InProblem 1, the system model is common knowl-
edge among all agents. Thus, it may be viewed as a problem
of “centralized planning and decentralized execution.” The key
conceptual difficulty in the problem is that the estimates are
generated using different information (recall that the information
available at agent i is (yo, y; )) with the objective of minimizing a
common coupled team estimation error given by (3). This feature
makes the Problem 1 conceptually different from the standard
estimation problem of minimizing the MMSE error. ]

B. Optimal Team Estimation Strategy

We define three auxiliary variables:

e All agents’ common estimate of state x given the common
measurement y at all agents. We denote this estimate by
%o and it is equal to E[z|yo].

e All agents’ common estimate of agent i’s measurement
y; given the common measurement yo. We denote this
estimate by g; and it is equal to E[y;|yo].

e The innovation in the local measurement of agent i with
respect to the common measurement. We denote this inno-
vation y; and it is equal to y; — ¥;.

Let ©; denote the covariance cov(x, ;) and 3;; denote the
covariance cov(y;, §;). From elementary properties of Gaussian
random variables, we have the following:

Lemma 1: The covariance matrices defined above are given
by

1) ©,=6; - 00X 00 Loi-

2) zij = Eij — 210260120]

Therefore, the auxiliary variables defined above are given by

3) Zg = @OE&}yo

) i = Zij S0 Yo-

Furthermore, we have o

5) Elzilyo,vil = Zo +A®i2i_i1gi-

6) E[g; | yo, vi] = ;i35 -

The result follows from elementary properties of Gaussian
random variables. Then, we have the following.

Theorem 1: The estimation strategy that minimizes the team
mean-squared error in Problem 1 is a linear function of the mea-
surements. Specifically, the MTMSE estimate may be written
as

zi = Lizg + F;y;, Vi€ N, (8)
where the gains { F; };c v satisfy the following system of matrix
equations:

Z [Siijiji — Siijéi =0, Vie N. ©)
jEN
If im‘ > ( for all 7 € N, then (9) has a unique solution which
can be written as

F=T"y,
where F = vec(F1,...,F,),
n= vec(Sl.Lél, . Sn.L@n),
I = [ijlijen, where Ty =% @ Sy

(10)
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Furthermore, the minimum team mean-squared error is given by
J*=Te(LTSLPy) —n'T 1y, (11)
where S; = [S;1,..., ] and Py = var(z — ).

The proof of Theorem 1 is presented in Appendix A.

To illustrate this result, consider the two agent example pre-
sented in the introduction. In that model, there is no common
measurement. Sozg =0, Qé = 0, and therefore 3; = y;. More-
over, ¥;; = 1+ 025ij and ©; = 1. Therefore,

- A
Fij = SijEij = (5” + 4) (1 + 51’]‘0'2),

A

i1+5i2:1+§~

1 1
1+ ao? |1’

where o« = (1 4+ A\/4)/(1 + A/2) and the minimum team mean-
squared error is

i =

Thus, the optimal gains are

F:Filn:

040'2

J = ZS” —n'F=(2+ N oz
i,

Thus, we recover the results obtained by brute force calculations

in the introduction.

Remark 2: In (8), the first term of the estimate is the MMSE
estimate of the current state given the common measurements.
The second term may be viewed as a “correction” which depends
on the innovation in the local measurement. A salient feature
of the result is that the gains {F;};,cy depend on the weight
matrix S.

Remark 3: When S is block diagonal, there is no cost cou-
pling among the agents and Problem 1 reduces to n separate
problems. Thus, the MMSE estimates L;z; are also the MTMSE
estimates.

III. MINIMUM TEAM MEAN-SQUARED ERROR (MTMSE)
FILTERING

In this section, we consider the problem of filtering to min-
imize team mean-squared error when agents share information
over a communication graph. We start with a quick overview of
graph theoretic terminology.

A. Overview of Graph Theoretic Terminology

A directed weighted graph G is an ordered set (N, E, 7) where
N is the set of nodes and E C N x N is the set of ordered
edges, and 7 : E — RF is a weight function. An edge (i, ) in
FE is considered directed from ¢ to j; ¢ is the in-neighbor of j;
7 is the out-neighbor of i; and 7 and j are neighbors. The set of
in-neighbors of 4, called the in-neighborhood of i, is denoted by
N, ; the set of out-neighbors of ¢, called the out-neighborhood,
is denoted by N;'.

In a directed graph, a directed path (vy,va,...,vx) is a
weighted sequence of distinct nodes such that (v;,v;+1) € E.
The length of a path is the weighted number of edges in the
path. The geodesic distance between two nodes 7 and j, denoted

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

by ¢;;, is the shortest weight length of all paths connecting the
two nodes. The weighted diameter of the graph is the largest
weighted geodesic distance between any two nodes. A directed
graph is called strongly connected if for every pair of nodes
1,7 € N, there is a directed path from ¢ to j and from j to 7.
A directed graph is called complete if for every pair of nodes
1,7 € N, there is a directed edge from 7 to j and from j to <.

B. Model and Problem Formulation

1) Observation Model: Consider a linear stochastic process
{x(t)}>1, o(t) € R, where x(1) ~ N(0,3,) and for t > 1,

x(t+1) = Ax(t) + w(t), (12)

where Aisad, x d, matrix and w(t) € R%, w(t) ~ N(0,Q),
is the process noise. There are n agents, indexed by N =
{1,...,n}, which observe the process with noise. At time ¢,
the measurement y; () € R% of agenti € N is given by

where C; is a d) x d, matrix and v;(t) € R%, v;(t) ~
N(0, R;), is the measurement noise. Eq (13) may be written
in vector form as

y(t) = Cx(t) +o(t),
where C = rows(Cy,...,Cy), y(t) = vec(yi(t), ...
and v(t) = vec(vi(t),...,v,(t)).

The agents are connected over a communication graph G,
which is a strongly connected weighted directed graph with
vertex set N. For every edge (7,7), the associated weight 7;;
is a positive integer that denotes the communication delay from
node ¢ to node j.

Let I;(t) denote the information available to agent i at time ¢.
We assume that agent ¢ knows the history of all its measurements
and 7;; step delayed information of its in-neighbor j, j € N,
ie.,

s Yn(t)),

L(t) = {ys(t:)}y o | (O {5t =70}

jEN,

(14)

In (14), we implicitly assume that I;(¢) = @) for any ¢ < 0.

Let ;(t) = I;(t) \ 1;(t — 1) denote the new information that
becomes available to agent ¢ at time ¢. Then, (;(1) = y;(1) and
fort > 1,

1i(t) = vee(yi(t), {¢; (t — i) }jen; )-
It is assumed that at each time ¢, agent j € N, communicates
¢;(t) to all its out-neighbors. This information reaches the out-
neighbor ¢ of agent j at time ¢ 4 7;;.
Some examples of the communication graph are as follows.
Example 1: Consider a complete graph with 7-step delay
along each edge. The resulting information structure is

Li(t) ={y(lit — 7),y:(t =7+ 1:t) },
which is the 7-step delayed sharing information structure [23].
Example 2: Consider a strongly connected graph with unit
delay along each edge. Let 7% = max; jen {;;, denote the
weighted diameter of the graph and N} = {j € N : li; =k}
denote the k-hop in-neighbors of i with N? = {i}. The resulting
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information structure is

-
L= U wt-n},
k=0 jeNF
which we call the neighborhood sharing information structure.
At time ¢ agent i € N generates an estimate 2(t) € R% of
L;x(t) (where L; is a R%*% matrix) according to

2i(t) = 9ie(Li(1)),
where g; , is a measurable function called the estimation rule
at time ¢. The collection g; := (g;.1, gi,2, - - . ) is called the es-
timation strategy of agent i and g := (g1, ..., gy) is the team
estimation strategy profile of all agents.

2) Estimation Cost: Let Z(t) = vec(Z1(t),..., 2,(t)) de-
note the estimate of all agents. As in Section II, we assume
that the estimation error ¢(z(t), £(t)) is a weighted quadratic
function of (Lx(t) — 2(t)) of the form

c(a(t), 2(t) = (La(t) — 200)TS(La(t) — 2(t)).  (15)

Examples of such estimation error functions were given in
Section II-A.
3) Problem Formulation: Tt is assumed that the system sat-
isfies the following assumptions.
(A1) The cost matrix S is positive definite.
(A2) The noise covariance matrices {R;};cn are positive
definite and () and X, are positive semi-definite.

(A3) The primitive random variables
(@(1),{w®) iz, {vi@ =1, - {on(®) }iz1)  are
independent.

(A4) For any square root D of matrix ) such that DD = @,
(A, D) is stabilizable.

(A5) (A, Q) is detectable.

We are interested in the following optimization problem.

Problem 2 (Finite Horizon): Given matrices A, {C;}ien,
Y Q, {Ri}tien, L, S, a communication graph G (and the
corresponding weights 7;;), and a horizon T, choose a team
estimation strategy profile g to minimize J1(g) given by

T

Jr(g) =B {Zc(w(t),é(t))] : (16)
t=1

Problem 3 (Infinite Horizon): Given matrices A, {C;}ien,

Y, Q, {Ri}ien, and a communication graph G (and the corre-

sponding weights 7;;), choose a team estimation strategy profile

g to minimize .J(g) given by

T(g) = limsup I (g). (17)
T—o0

As was the case for the estimation problem presented in
Section II, a salient feature of the model is that the estimates
are generated using different information while the objective is
to minimize a common coupled estimation error given by (16)
or (17). This feature makes the Problems 2 and 3 conceptually
diffferent from the standard filtering problem of minimizing the
MMSE error.

Remark 4: For Problem 2, the assumption that the dynamics,
measurements, and cost are time-homogeneous is made simply
for convenience of notation. As will be evident from the analysis,
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the results for Problem 2 generalize to the setting of time-varying
dynamics, measurements, and cost in a natural manner. O

C. Roadmap of the Results

The main idea behind identifying a solution for Problem 2
is as follows. We observe that the choice of the estimates only
affects the instantaneous estimation error but does not affect
the evolution of the system or the estimation error in the fu-
ture. Therefore, the problem of choosing an estimation profile
g=(91,--.,9n) tominimize Jr(g) is equivalent to solving the
following 7" separate optimization problems:

min  Ele(z(t), 2(¢))], Vte{l,...,T}.
(91,¢5-:9n,t)
Since the communication graph is strongly connected, the in-
formation I;(t) available at agent ¢ can be written as 7°°™(¢) U
I}°¢(t), where

17ty = () Li(t) =y(1:t —77)
€N
is the common information among all agents (recall that 7* is
the weighted diameter of the communication graph) and
19(t) = (1) \ 1" (1)

is the location information at agent <. Thus, we may view Prob-
lem (18) as an estimation problem with n agents where agents
have local and common information and, therefore, use the
results of Section II to derive the MTMSE filtering strategy. To
do so, we define variables which are equivalent to the auxiliary
variables defined in Section II-B:

e All agents’ common estimate of state x(t) given the com-
mon information I°°™(t) at all agents. We denote this
estimate by 2°°™(¢) and it is equal to E[x(t)[1°°™(t)].

e All agents’ common estimate of the local information at
agent ¢ given the common information. We denote this
estimate by 7°¢(¢) and it is equal to TB[1°¢(¢)|1°°™ (t)].

e The innovation in the local information at agent ¢ with
respect to the common information. We denote this inno-
vation by I; () and it is equal to I;(t) — I;(t).

Furthermore, we let ©;(t) denote the

cov(z(t), I;(t)) and 33;(t) denote the
cov(Ie(t), 1°°(1)).

In order to use the results of Theorem 1, we need to derive

expressions for recursively updating the above variables and
covariances, which we do next.

(18)

covariance
covariance

D. Recursive Expressions for Auxiliary Variables
and Covariances

The information structure of the problem is effectively equal
to 7*-step delayed information structure [23]. To derive recursive
expressions for auxiliary variables and covariances, we follow
the central idea of [23] and express the system variables in terms
of delayed state x(t — 7" + 1).

1) Delayed State Estimates and Common Estimates: We de-
fine

Bt -7 +1) = Bla(t — r* + 1) | I°™(1)]

=E[z(t—7"+1)|y(l:t — 77)] (19)
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as the delayed state estimate of the state and let
Ft—17"+)=at—-7"+1)—2(t—-7"+1)

denote the corresponding estimation errorand P(t — 7% 4+ 1) =
var(Z(t — 7° + 1)) denote the estimation error covariance. Note
that £(¢ — 7" + 1) is the one-step prediction estimate in central-
ized Kalman filtering and can be updated as follows. Start with
#(1) = 0 and for ¢t > 1, update

B(t+1) = Ai(t) + AK()[y(t) — C2(t)],  (20)

where
K(t) = P(t)CT[CP(#)CT + R] ! Q1)

is the Kalman gain. Furthermore, the error covariance P(t) can
be pre-computed recursively using the forward Riccati equation:
P(l) =%, andfort > 1,

P(t+1) = AA)P)AM)TAT + AK(H)RK(t)TAT + Q,
(22)
where A(t) =T — K(t)C.
Now, observe that we can compute the common estimate
Z°™(t) using a (7 — 1)-step propagation of the delayed state
estimate Z(t — 7" + 1) as follows:

Feom(t) = AT et — 7 + 1). (23)

2) Local Estimates and Local Innovation: To find a conve-
nient expression for local innovation 71°¢(t), we express 11°¢(t)
in terms of the delayed state 2:(¢ — 7* + 1). For that matter, for
any t,{ € Zw, define the d, x 1 random vector w'¥ (¢,t) as
follows:

t—0—1

2.

s=max{1,t—k}

w®) (0,t) = APl (s), (24)

where w(*) (£, t) is the weighted accumulated process noise from
time max{1,# — k} to time ¢t — £ — 1. Note that w*) (£,¢) = 0
ift <min{k,¢+ 1} or ¢ > k. For any t > k, we may write

x(t) = ARz (t — k) + w*(0,1), (25)
yi(t) = Ci ARz (t — k) + Ciw™ (0, 1) + v;(¢). (26)

By definition 7}°¢(t) C y(t — 7* + 1:t). Thus, forany i € N,
we can identify matrix C}°¢ and random vectors w°°(¢) and
v1°¢(¢) (which are linear functions of w(t — 7* + 1:t — 1) and
vi(t — 7 + 1:t)) such that

IP9(t) = Cl%a(t — 7+ 1) + wlE(t) + (1)
As an example, we write the expressions for

(Cloc wioc(t),vlee(t)) for the delayed sharing and neigh-

? Ve

borhood sharing information structures below. For any ¢ < 7%,
define

Wi, t) = vee(Cow™ V(% = 1,1),...,Cow™ V(0 1)),
Ci(0) = rows(Ci, CiA, ..., C; AT 471,
Vi(l,t) = vec(vi(t — 7"+ 1),...,0:,(t = 1)).

27)

Example 1 (cont.): For the 7-step delayed sharing infor-
mation structure 1,°°(t) = y;(t — 7 + 1:t). Thus, C}°° = C;(0),
wioc(t) = W;(0,t), and v°°(t) = V;(0,1).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Example 2 (cont.): For the neighborhood sharing information
structure, I;(t) = Up—o Ujenr{y;(1:t — k) }. Thus,

0 = rows (7L Ojens G(0))
we(t) = vee (OF! Qs Willi1))

ot Qe Villi))

Now, a key-result is the following.

Lemma 2: w'°°(t), vl°¢(t), #(t — 7* + 1), and I°°™(¢) are
independent.

Proof: Observe that Ieom () = y(1:t — 1) and
Z(t — 7" + 1) are functions of the primitive random variables
up to time ¢ — 7%, while w!°¢(¢) and v!°¢(t) are functions of
the primitive random variables from time ¢ — 7% + 1 onwards.
Thus, w!°°(¢) and v}°°(t) are independent of Z(t — 7* + 1) and
I¢°™(t). Furthermore, (A3) implies that w!°¢(t) and vl°°(t)
are independent of each other. Note that Z(t — 7 + 1) is the
estimation error when estimating (¢ — 7* 4 1) given I¢°™(¢)
and is, therefore, uncorrelated with 7°°™(t). Since all random
variables are Gaussian, Z(t — 7"+ 1) and I°°™(t) being
uncorrelated also means that they are independent.

Combining Lemma 2 with (27), we get

vI°°(t) = vec (

Il°°(t) = BI°C(4)[I°°™(t)] = Cl%%(t — 7" + 1).  (28)
Combining this with (27), we get,
IPe () = () = I°°(t)

(29)

= CI°°F(t — 7% + 1) + wi°(t) + vi°°(t).

3) Covariances: Let P#(t) denote cov(w;°(t), w}(t))
and P (t) denote cov(vj°°(t), v)°(t)). Note that these can be
computed from he expressions of w!°¢(t) and v}°¢(¢), which
were derived earlier based on the communication graph.

Eq. (29) and Lemma 2 imply that

i (t) = cov(Il°°(t), [°°(t))
1 * locT 30)
=C;"P(t — 7"+ 1)C + Pj(t) + P(t),

where P(t) is computed using (22).
Furthermore, Eqgs. (25) and (29) and Lemma 2 imply that

0;(t) = cov(x(t), I}°°(t))
. . T (€1Y)
= A" IP(t — 7+ 1)CP + PP (1),
where P?(t) = cov(w™ ~1(0,t),w!°¢(t)) and P(t) is com-
puted using (22).

E. Main Result for Problem 2

As mentioned in Section III-C, the problem of choosing
the MTMSE estimation strategy g = (g1, .., gr) to minimize
Jr(g) is equivalent to solving T separate estimation sub-
problems given by (18). Based on Theorem 1, the MTMSE
estimate of each of these sub-problems is given as follows.

Theorem 2: Under assumptions (A1)-(A3), the filtering
strategy which minimizes the team mean-squared error in
Problem 2 is a linear function of the measurements. Specifically,
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the MTMSE estimates at time ¢ may be written as
2i(t) = Li@™(t) 4+ F;(t)I1°°(¢) (32)

where 0™ (t) and I)°°(t) are computed using (22) and (29).
The gains {F;(t)};cn satisfy the following system of matrix
equations

> [Sz‘ij(t)iji(t) - Siij@i(t)} =0, VYie N, (33)
JEN

where iij(t) and (:)i(t) are computed using (30) and (31).
Eq (33) has a unique solution which can be written as

F(t) =T(t) (1), (34)
where
F(t) = vec(Fy(t),. .., Fa(t)),
n(t) = vec(S1aLOL (L), . . ., SnelOy (1)),

F(t) = [FU (t)]i,jeN7 where Fij (t) = iij (t) (%9 SIJ

Furthermore, the minimum team mean-squared error is given
by

= [Te(LTSLPy(t)) = n(t) T(t) 'n(t)], (35
=1
where Py(t) = var(z(t) — 2°°™(t)) and is given by
Py(t) = A" Pt — 7+ 1)(AT HT 2% (1),  (36)

and X% (t) = var(w(™ 1 (0,1)).

Proof: The expressions for the MTMSE estimates (32)
and the corresponding gains (33) follow immediately from
Theorem 1. Now, since R;; is positive definite (which is part
of (A2)), standard results from Kalman filtering [24, Section
3.4] imply that P(t) is positive definite. Using this fact in (30)
implies that 3;;(t) is positive definite. Therefore, the vectorized
formula (34) follows from Lemma 5.

The expression for the minimum team mean-squared er-
ror follow from an argument similar to that in the proof of
Theorem 1. The expression for Py () follows from (22) and (25).

Remark 5: Remark 2 about the structure of the MTMSE
estimates continues to hold for filtering setup as well. The first
term in the MTMSE estimate (32) is the MMSE estimate of
the current state based on the common information. The second
term is a “correction” which depends on the innovation in the
local measurements.

Remark 6: As in the estimation setup, the gains which multi-
ply the innovation in (32) are coupled and depend on the weight
matrix S.

Remark 7: Since we have assumed that the dynamics
are time-homogeneous, the processes {w™ ~Y(0,t)};>,-,
{wl°¢(t)}y>7+, and {v1°°(t) }4>, are stationary. Hence, for ¢ >
7*, the covariance matrices 32" (t), P (t), P} (t), and P} (t) are
constant.

Remark 8: Note that iu ® Si; = 0 when S;; = 0. There-
fore, when the weight matrix S is sparse, as is the case for the
cost (6), ¥y (and, therefore, P}%(t) and P/} (t)) need to computed
only for those ¢, 7 € N for which S;; # 0.
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F. Main Result for Problem 3

Now, we consider the infinite horizon MTMSE filtering intro-
duced in Problem 3, which can be thought of as a “steady-state”
version of Section III-E. We first state a standard result from
centralized Kalman filtering [24].

Lemma 3: Under (A2)—(AS), for any initial covariance >, >
0, the sequence {P(t)}:+>1 given by (21) is weakly increasing
and bounded (in the sense of positive semi-definiteness). Thus
it has a limit, which we denote by P. Furthermore,

1) P does not depend on ¥,,.

2) P is positive semi-definite.

3) P is the unique solution to the following algebraic Riccati

equation.
P=AAPATAT + AKRKTAT + Q,
where K = PCT[CPCT + R 'and A =1 — KC.

4) The matrix (A — K C) is asymptotically stable.

Recall from Remark 7 that ¥ (¢), P (t), 5 (t) and Py (t)
are constants for ¢ > 7%. We denote the correspondmg Values

fort > 7* as 2, P" PZLJ”, and P” Now define:

(37)

Py=A" *1P(AT**1) + 3, (38)
— Cle°PCl" 4 PY + P, (39)
0, = AT 1pClecT 4 pr. (40)

Lemma 4: Under (A2)—(AS), we have the following:

D limg o Po(t) = Po.

2) limtﬂoc 21']' (t) = iij.

3) limt%x éi (t) = (:)i-

Proof: All relations follow immediately from Lemma 3 and

Remark 7. U
Theorem 3: Under (Al)—(AS5), the following time-
homogeneous filtering strategy minimizes the team

mean-squared error for Problem 3:
ZA’l(t) _ L’LACOIH( ) +FIIOC( ) (41)

where 2°°™(t) = AT “12(t — 7" + 1) (which is same as (22)),
Z(t) is updated using the steady state version of (20) given by
B(t+1) = Az(t) + AK[y(t) — C(t)], (42)
and the gains {F;};cx satisfy the following system of matrix
equations:
Z [S,JFJSJZ — SszjéJ =0, Vi € N,
JEN
where f]ij and ©; are given by (39) and (40). Eq. (43) has a
unique solution and can be written more compactly as

(43)

F=T"p, (44)
where
F ec(Fy,..., F,),
n= vec(Sl.Lél, R Sn.Lén),
f(t) = [fij]i,jENa where fij = Sij & S”
Furthermore, the optimal performance is given by
J*=Tr(LTSLPy)) — 7T 17, (45)

where P is given by (38).
The proof of Theorem 3 is presented in Appendix C.
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Fig.2.  Afouragent UAV formation. The arrows indicate communication links
between the agents. Each link has delay 2.

IV. SOME ILLUSTRATIVE EXAMPLES

In this section, we present a few examples to illustrate the
details of the main results.

A. Team Mean-Squared Estimation in a UAV Formation

Consider a UAV formation with n agents as shown in Fig. 2.
Let N = {1,...,n} and x;(¢) denote the state of agenti € N.
For the ease of exposition, we assume that z;(¢) € R, which
could correspond to say the altitude of the UAV. Let z(t) =
vec(x1(t),...,x,(t)) denote the state of the system, which
evolves as

x(t+1) = Ax(t) + w(t),
where A is a known n x n matrix and w(t) ~ N (0, Q). The
agent ¢ observes the state with noise, i.e.,
yi(t) = Cyz(t) + v;(t),
where v;(t) ~ N(0, R;).
The communication graph is as shown in Fig. 2, where each

link is assumed to have delay 2. Thus, the information structure
is given by

1€ N,

L,(t) = {y(L:t — 2), yi(t — L:1)}.
The objective is to determine the MTMSE filtering for per-step
estimation error given by (5), i.e., the agents want to estimate
their local state and ensure that the average of the local state
estimates is close to the average of their actual states.

We first show the computations of the MTMSE estimates.
Observe that 7°°™(¢) = y(1:t — 2) and

Lo%(t) = {yalt — 1), wa(1)}-
Thus, C°¢ = rows(C;, C; A), and
wi°(t) = vec(0, Ciw(t — 1)), v°°(t)

= vec(v;(t — 1), v;(t)).

As argued in Remark 7, the covariance matrices X" (t), P? (t),
P2 (t), and P} (t) are constant for ¢ > 7*. Thus, we only need to
compute these for t = 1 and ¢ > 2. Note that the weight matrix
S is dense, so we do not get the computational savings described
in Remark 8.

We have the following:

e ¥¥(1)=0andfort > 2, X"(t) = Q.

e P7(1) = |:04><1

000 QCT].

0451 and for t>2,
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* P¥(1) = diag(0,0)
diag(0, CZQCJT).
e PY(1) = diag(0, R;) and Pj(t) = diag(R;, R;).
* Pp(t) = diag(0,0) for j # i and all .
Substituting these, we get that 3,;(1) = d;;diag(0, R;) and
fort > 2,

and for

Ci Cj 1) ij RZ' 0
Substituting these in (33) or (34) gives us the optimal gains. The
MTMSE estimates can then be computed using (32) as described
in Section V-A.

We compare the performance of MTMSE filtering strategy
with two baselines. The first is MMSE strategy where, each
agent ignores the cost coupling and simply generates the MMSE
estimates using

ZM() = Lil[z(8)[Li(2)]-
It can be shown that performance of the MMSE strategy is

JPe = Tr(LTSLPy(t) + Y Tr
ieN

(Ki(t)T LIS S,L; [Kj(t)iji(t) - 2<i)i(t)} )

jEN

3ii(t) = P(t—1) +

(46)

(47)

Recall that for this particular example we have L = 1.

The second is a consensus based Kalman filter as described
in [17]. We do not have a closed form expression for the weighted
mean square error of the consensus Kalman filter, so we evaluate
the performance J%KF using Monte Carlo evaluation averaged
over 1000 sample paths.

For the numerical experiments we pick

0.65,
Aig = {0.1,

C1 =2 X 114y, and fori # 1, C; = 0.1e;, where ¢; is a vector
with only the 7;;, element equal to one and the rest zero, ) =
I,R=0.11, and T = 100.

The relative improvements

Lt N T e
Jr Jr

of the MTMSE strategy compared to MMSE strategy and con-

sensus Kalman filtering as a function of A are shown in Fig. 3.

These plots show that the MTMSE strategy outperforms the

MMSE and consensus Kalman filtering strategies by up to a

factor of 4 and 600 in the relative improvements for n = 10 and

% = 10. This improvement in performance will increase with

the number of agents.

1=7
elsewhere

CKF __
mmse __
AT —_—

B. Team Mean-Squared Estimation in a Vehicular Platoon

Now we consider a vehicular platoon with four agents shown
in Fig. 4. As before, let z;(t) € R denote the position of the
platoon. We assume that the dynamics and the observation model
are similar to that described in Section IV-A (but with different
A and C matrices).
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n =10
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e 2
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2 4 6 8 10
A
n2
(@)
41&
n =10
3,,

loglo(A%KF)
[N}

75 10

o

N |

R
[> o

3
3
[~

(b)

Fig. 3. Relative improvement of MTMSE filtering compared to (a) MMSE
strategy for 4 and 10 number of agents, and (b) consensus Kalman filtering
(shown on a log scale) for UAV formation.

M. NN NN

) e 970 e 00 @70

Fig. 4. A four agent vehicular platoon. The arrows indicate communication
links between the agents.

The communication graph is as shown in Fig. 4. Thus, the
information structure is given by

I (t) = {y1(L:t), y2(1:t — 1), ys(1:t — 2), ya(1:t — 3)
I2<t) = {yl(lzt - 1)ay2(1:t)ay3( it — )73/4(1 t— 2)
I3(t) = {y1 (it — 2), yo(L:t — 1), y3(1:t), ya(1:t — 1)},

Iu(t) = {y1 (1t — 3), y2(1et — 2), y3(1:t — 1), ya(1:t)}.
The objective is to determine the MTMSE filtering for per-step
estimation error given by (6), i.e., the agents want to estimate
their local states and ensure that the difference between the
estimates of adjacent agents is close to difference between their
actual states.

We first show the computations of the MTMSE estimates.
Observe that 7°°™(t) = y(1:t — 3) and

Lo°(t) = {ya (t — 2:t),ya(t — 2:t — 1), ys(t — 2)},
IR(t) = {ya(t — 2:t — 1), yo(t — 2:t), ys(t — 2:t — 1),

2

)

—
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y4(t - 2)}7
Iilioc(t) = {yl(t - 2)3 y2(t — 2t — 1)7y3(t - 2:t)a
ya(t — 2:t — 1)},

IP°(t) = {2t — 2), ya(t — 2:t — 1), ya(t — 2:)}.

Similar to the previous example, the covariance matrices
¥w(t), PP (t), P (t), and P};(t) are constant for ¢ > 7*. Thus,
we need to compute these fort = 1,7 = 2,and? > 3.Inaddition,
since the cost matrix .S is sparse, we only need to compute ;¥ ()
and Pg(t) for j € {i —1,i,i+ 1} N N (see Remark 8). The
details for computing p3p 4 are similar to the previous section and
are omitted due to space limitations. The MTMSE estimates can
be computed using (32) as described in Section V-A.

We compare the performance of MTMSE filtering strategy
with the MMSE strategy and the consensus Kalman filtering as
before.

For the numerical experiment in this part, we pick

09 0 0 O

A_ |07 09 0 0
107 07 09 o0’

0.5 0.7 0.7 0.9

Ci=1,Q=1IR=0.1I and T = 100.

The relative improvements as a function of A are shown in
Fig. 5. These plots show that the MTMSE strategy outperforms
the MMSE and consensus Kalman filtering strategies by up to
a factor of 2 and 800. Again, this improvement in performance
will increase with the number of agents.

V. DISCUSSION OF THE RESULTS
A. Implementation of MTMSE Filtering Strategy

In this section, we provide the details about implementing
the MTMSE filtering strategies for both the finite and infinite
horizon setups.

1) Implementation of Finite Horizon MTMSE Filtering Strat-
egy: Based on Theorem 2, the MTMSE filtering strategy can be
implemented as follows.

a) Computing the gains: The gains {F(¢)}]_, are computed
offline as follows. First the variance {P(¢)}]_, are computed
using the forward Riccati equation (22). Then, the covariances
{3450}, and {©;(t)}T_, are computed for all i,j € N.
Thereafter, the gains { K (t)}]_, are computed using (21) and
the gains {F(t)}]_, are computed using (34).

Finally, the gains {K (t)}]_, and {F;(t)}]_, are stored in
agent 4.

b) Computing the MTMSE estimates: Agenti € N carries out
the following computations to generate Z;(¢). First, it computes
the delayed centralized estimate (¢ — 7* 4 1) using (20). Then,
ituses &(t — 7* + 1) to compute £°°™ () and I.°°(t) using (22)
and (28), respectively. Then, it uses #°°™(¢) and I}°°(¢) to
generate the MTMSE estimate as follows

Zi(t) = L@ (8) + Fy () (1 () — [°°(t).

Authorized licensed use limited to: McGill University. Downloaded on September 25,2021 at 18:17:37 UTC from IEEE Xplore. Restrictions apply.



5216

2 1
é
~
J1
40 80 120 160
A
(a)
3%
u:.\ [_/\/\,WN_\/\/\J\/\J\
S 2.6 |
<
=
20
< 23
2 : : : |
0 40 80 120 160
A
(b)
Fig. 5. Relative improvement of MTMSE filtering compared to (a) MMSE

strategy and (b) consensus Kalman filtering (shown on a log scale) for vehicular
platoon.

2) Implementation of Infinite Horizon MTMSE Filtering
Strategy: Based on Theorem 3, the MTMSE filtering strategy
can be implemented as follows.

a) Computing the gains: The gains { F; } are computed offline
as follows. First the variance P is computed using the forward
algebraic Riccati equation (37). Then, the covariances P, iij,
and ©, are computed foralli, j € N using (38)—(40). Thereafter,
the gain K is computed using Lemma 3 and the gain F is
computed using (44). Finally, the gains K and F are stored
in agent .

b) Computing the MTMSE estimates: Agenti € N carries out
the following computations to generate Z;(t). First, it computes
the delayed centralized estimate & (¢t — 7* + 1) using (42). Then,
ituses #(t — 7% + 1) to compute 2°°™(¢) and 11°¢(t) using (22)
and (28), respectively. Then, it uses #°°™(¢) and I.°°(t) to
generate the MTMSE estimate as follows

2i(t) = L@ ™ (t) + Fy(1°°(t) — L°(t)).

B. Connection to Decentralized Stochastic Control

One of the most celebrated results in centralized stochastic
control of linear systems with quadratic cost and Gaussian
disturbance (so-called LQG setup) is the separation of estimation
and control. In particular, the optimal control action is equal to a
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gain multiplied by the current state estimate. The computation of
the gain matrix and the estimate are separated from each other.
The gain matrix is computed based on the solution of a backward
Riccati equation where the state estimates are updated based
on the Kalman filtering equation (which is a forward Riccati
equation). The forward and the backward Riccati equations are
decoupled and can be solved separately.

These simplifications do not hold for decentralized control of
LQG systems. In general, non-linear strategies may outperform
the best linear strategies. Linear strategies are known to be
optimal only for specific models [25]-[30]. But in these cases
there is no separation of estimation and control.

The results of this paper shed light on the lack of separation
in decentralized control of LQG systems. We explain this in
Appendix D using the example of decentralized stochastic con-
trol with one-step delayed information structure [26], [31], [32].
For this model, we show that the decentralized control problem
is equivalent to a MTMSE filtering problem, where the weight
matrix depends on the solution of a backward Riccati equation.
As shown in Theorem 2, the gains for MTMSE filtering depends
on the weight matrix S in the cost function. That is the reason
that the computation of the state estimate is not separated from
the computation of the controller gains.

C. Trade-Off Between Filter Complexity and Estimation
Accuracy

For graphs with neighborhood sharing information structure,
the dimension of I1°°(t) and Fj(t) are proportional to the di-
ameter 7% of the graph. It is possible to trade-off the imple-
mentation complexity with the filtering accuracy by ‘“shedding”
information at each agent. We explain this via the example of
Section IV-B.

We consider two approximate information structures for this
example, which we denote by {Il-(l)(t)}ieN and {Ii(z) (t) }ien-
For both these information structures, the common information
is the same as before, i.e.,

reemm )= () 17™(t) = y(1:t — 3), m e {1,2}.
ieN
But the local information I;OC’("L)(t) = Ii(m)(t) \ 70m:(m) (¢)
is a subset of the original 7}°°(¢). In particular, we assume the
following.
1) IS;: In the first approximation, each agent just uses the
measurements from a time window of size two to “correct”
the common information based estimate, i.e.,

Iioc’(l)(t) = {y(t —1:t),y2(t — 1)},
W) = {ya(t — 1), ya(t — Lit), ys(t — 1)},
I;’OC’(I)(t) = {yg(t - 1),93@ - 1t)7y4(t - 1)}’

loc, (1
1290 () = {ys(t — 1), ya(t — 1)},
2) IS,: In the second approximation, each agent justs uses its
local measurements to “correct” the common information
based estimate, i.e.,

103 (1) = yi(t — 2:1).

2
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TABLE 1
COMPARISON OF THE SIZE AND PERFORMANCE OF THE THREE INFORMATION
STRUCTURES FOR THE VALUES OF PARAMETERS OF
SECTION IV-B AND A = 100

Info structure Dimension of local info  Performance J3./\

ie{1,4} ic{2,3}
IS : {Ii(t) }ien 6 8 180.46
St {1 (O} ien 3 4 193.72
15 : {1, (O }ien 3 3 252.09

For completeness, we refer to the original information struc-
ture as ISo. Note that 7.°“(™ (¢) c 11°°(t), therefore any fil-
tering strategy based on the approximate information structure
{Ii(m) (t)}ien can be implemented in the original information
structure {;(t) }sen. The size of 1)°°(t) (and therefore I'°°(t))
for the different information structures is shown in Table I.

To compare the peformance of these three information struc-
tures, we note that the structure of the weight matrix S implies
thatlimy , J7./\isaconstant. So, we evaluate J7./\ for large
value of A (A = 100) and compare the performance of the three
information structures. The results are also shown in Table I.

This example shows that it is possible to trade-off the com-
plexity of the MTMSE filter with the estimation accuracy. Note
that although the two approximate information structures are
almost of the same size, IS; has better performance than ISs.
This is because IS uses some local infomration from the neigh-
borhood nodes, while IS, does not. This suggested that itis better
to have some information from many agents rather than a lot of
information from a few agents but a more detailed investigation
is needed to quantify such a comparison.

VI. CONCLUSION

In this paper, we investigate multi-agent estimation and fil-
tering to minimize team mean-square error. We show that the
MTMSE estimates are given by

Zi(t) = La®™ () + Fy(8)(1°°() — (1))

The first term of the estimate is the conditional mean of the
current state given the common information. The second term
may be viewed as a “correction” which depends on the “innova-
tion” in the local measurements. A salient feature of this result
is that the gains {F;(¢)};en depend on the weight matrix S.
Using illustrative examples, we show that the MTMSE estimates
significantly smaller team mean-squared error as compared to
MMSE strategy and consensus Kalman filtering.

The results were derived under the assumptions that the
state process {x(t)};>1 is a linear stochastic process and the
observation channels are linear and additive Gaussian noise.
In future, we plan to investigate team estimation of general
stochastic processes over general measurement channels, which
will give rise to non-linear filtering equations.

Finally, our focus in this paper was to establish the structure
of MTMSE filtering and filtering strategies. Having identified
this structure, it is possible to implement the policy efficiently
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in a distributed manner. For example, for the infinite horizon
setup, it is possible to use a consensus Kalman filter [17]-[22] to
keep track of the delayed state estimate &(t — 7* + 1) and use
distributed algorithms to solve the linear system of equations
I'F = 7) using distributed algorithms [33]-[35].

APPENDIX A
PROOF OF THEOREM 1

A. A Preliminary Result

In order to compute the gains and the performance, we need
to compute ©; = cov(z, ;) and EU = cov(;, Yj)-
Lemma 5: For any {S;;}i jen, {Pi;}ijen and {L;}ien of
compatible dimensions, the following matrix equation
jEN

(48)

for unknown { F; };c n of compatible dimensions can be written
in vectorized form as

I'F =n, 49)

where F', n, and I" are as defined in Theorem 1. Furthermore,

define S = [Sij]i,jEN and P = [Pij}i,jEN-IfS >0,P > 0,and

P;; > 0,7 € N, then I" > 0 and thus invertible. Then, Eq. (48)
has a unique solution that is given by
F=T"!.

The proof of Lemma 5 is presented in Appendix B.

(50)

B. Proof of Theorem 1

The key observation behind the proof is that Problem 1 may
be viewed as a MTMSE filtering problem [2], where agents
observe different information and want to minimize a common
estimation cost. For the ease of notation, for a given agent ¢, we
let (g;, g—i) and (Z;, 2_;) denote the strategy and estimates of all
agents. Pick an agent ¢« € N, and fix the strategy g_; of all the
other agents. Then the expected cost from the point of view of
agent ¢ is given by

Egi% [ (1' 227 )|y07 yl]

where the superscript g_; in the expectation indicates that the
cost depends on the strategy of agents other than .

A necessary condition for optimality is that agent ¢ is playing
a best response to the strategy of all other players, i.e.,

0
0%;

It is shown in [2, Theorem 4], that when ¢(z, 2) is convex, (51)
is also a sufficient condition for optimality.

From the dominated convergence theorem, we can inter-
change the order of derivative and expectation to get

£ [e(x, 2, 2-3)|yo, vi] = 0, Vi€ N. (51)

LHS of(50) = E“{afic(x Zi, %)

Z Z LkCL' - Zk Skj( éj)

|: " keN JEN

=9k l:z Sij (ij — 2])

jEN

Yo, y2:|

Yo, yz]

Yo, Z/z} .
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Substituting the above in (51), we get that a necessary and
sufficient condition for a strategy (g;, g—;) to be team optimal is

Z (S EY 25 | yo, vi) — Si; LiElx | yo,yi]] =0, Vi€ N.
jEN
(52)
Note here that the superscript g; in 5%’ [2; | yo, y;] highlights that
the expectation depends on the choice of g;. There is no such
dependence in E[x | yo, y;]. Thus, the strategy g given by (8) is
optimal if and only if

> [SHE[F(ys

JjEN

—9;) + Lji?o|yo, vi)

— SiL;E[z|yo,yi]] =0, Vi€ N, (53)
or equivalently
> [SiijE[ﬂjlyo,yi]
JEN
— Si;LiE[z — Zo|yo, yi] | =0. Vie N.  (54)

Note that from Lemma 1, we have
Elz — folyo, yi] = ©:55 -

Substituting the above and the expression for E[g;|yo, y;] from
Lemma 1 in (54), we get that the strategy given by (8) is optimal
if and only if, for all: € N,

Z {Slijijlg;l — S”LJ(:)ZXA:;ll] :ljz =0.

jeEN
Since the above should hold for all y; € R% , the coefficient of

y; must be identically zero. Thus, the strategy given by (8) is
optimal if and only if

> [Sm‘Fj Siist

JEN

_ Siijéiigf} —0, Yie N. (55

Furthermore, Lemma 5 implies that when fl,—i > 0, then (55)
has a unique solution given by (10).

Now for the minimum value of the estimation error, consider
a single term of the estimation error

E[(Liz — 2)7Si;(Ljz — )]

WE [(¢ - &0) LTSy L (x — &)
— 2y — ) FT Sy Lz — &o)
+(yi — 9:) F Sii Fi(y; — 95)] [3]

< Tr(PoLiTSiij) = 2Te(F S35 L;0;) + Te(F] Sy F%50),
(56)
where (a) follows from substituting (8), (b) uses Lemma 1,
and (c) uses the fact that for any matrices Tr(ABCD) =
Tr(BCDA). Thus, the expected team estimation error is

— Z Z E[(Liz — 2)7Si;(Ljx — ;)]

i€N jeN
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@ Z Z [Tr(POLISiij) -2 Tr(FiTSiijéi)

€N jeN
-+ TI‘(F;I—S”FJEJZ)}

= Tr(P,LTSL)

=S [ ETS 28351565 - S FiS] | 13

ieN JEN

Y (P LTSL) —

=Y T [ FNY 8510,

€N jeN

where (d) follows from (56), and (e) follows from (55). The
result now follows from observing that

ZTI‘ FlT Z S”Ljéz

ieN JjEN
= E vec(F;

where the first
vec(A)T vec(B).

(57)

€N

Tvec(S;LO;) = FTn=n"T"1y,

equality follows from Tr(ATB) =

APPENDIX B
PROOF OF LEMMA 5

By vectorizing both sides of (48) and using vec(ABC') =
(CT® A) x vec(B), we get

Z(PL‘]‘ X Sij) vec(Fj) — VQC(S,'.LPZ‘,*) =0, VieN.
jEN
Substituting I';; = P ® S
get (49).
IfS>0 P>0,and P; >0, i € N, then [32, Lemma 1]
implies that I" > 0 and thus invertible. Hence, Eq. (48) has a
unique solution that is given by (50).

and 7); = vec(S;LP;;), we

APPENDIX C
PROOF OF THEOREM 3

>, is the variance of the innovation in the standard Kalman
filtering equation and by positive definiteness of R; is positive
definite. Lemma 5 implies that (43) has a unique solution that is
given by (44). To show the strategy (41) is optimal, we proceed in
two steps. We firstidentify alower bound in optimal performance
and then show that the proposed strategy achieves that lower
bound.

Step 1: From Theorem 2, for any strategy g, we have that
1 I
T > [Tr(LTSLPy(t))

t=1

1

FIr(9) > — ()T ()n(t)]
Taking limits of both sides and using Lemma 4 (which implies
that limy_, . 7(¢) = 7 and lim;_,, ['(¢) = T"), we get

1 _ _
limsup = Jr(g) > Te(L'SLPy)) — 7' T = J*.  (58)

T—00
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Step 2: Suppose 2(t) is chosen according to strategy (44) and
let J(t) denote E[c(x(t), £(t))]. Following (56) and (57) in the
proof of Theorem 1, we have that

J(t) = Tr(LTSLPy(t))
YT <FJ > [285L50i(t) = Sy FySit)] >

From Lemma 4, we have that

lim J(t) = Tr(LTSLP)
—00
— ZTI‘ (F;I' Z [QSiij(:)i — Sij _jiji] )
ieN jEN
=Tr(L"SLPy) — 7' T = J*.
Thus, by Cesaro’s mean theorem, we get

limy o0 Zthl J(t) = J*. Hence, the strategy (44) achieves
the lower bound of (58) and is therefore optimal.

APPENDIX D
ONE-STEP DELAYED OBSERVATION SHARING

A. Problem Statement

In this section, we use the result of Theorem 2 to show the
relationship between MTMSE filtering and control in delayed
observation sharing model [26], [31], [32]. The notation used
in this section is self-contained and consistent with the standard
notation used in decentralized stochastic control.

Consider a decentralized control system with n agents, in-
dexed by the set N = {1,...,n}. The system has a state z(t) €
R% . The initial state x(1) ~ N (0, X,) and the state evolves as
follows:

z(t+1) = A(t)x(t) + B(t)u(t) + w(t), (59)
where A and B are matrices of appropriate dimensions. u(t) =
vee(ui(t), ..., un(t)), where u;(t) € R% is the control action
chosen by agent i, and {w () };>1,w(t) € R isani.i.d. process
with w(t) ~ N(0,%,,). Each agent observes a noisy version
yi(t) € R% of the state given by

yi(t) = Ci()x(t) + vi(t)

where {v; (t)}i>1, vi(t) € R%, is an i.i.d. process with v; () ~
(0,%%). This may be written in a vector form as

(60)

y(t) = C)x(t) +v(1), (61)
where C' = rows(Cy,...,Cy), v(t) = vec(vi(t),...,vn(t)),
and y(t) = Vec(yl (t)v <o Yn (t))

Assumption  1: The primitive random variables

(z(1), {w(t) }r=1, {v1(t) }e>1, - - -

dent.

In addition to its local observation y;(t), each agent also
receives the one-step delayed observations of all agents. Thus,
the information available to agent 7 is given by

Li(t) .= {yi(t),y(1:t — 1),u(l:t —1)}. (62)
Therefore, agent ¢ chooses the control action u;(t) as follows.
ui(t) = gia(Li(t)), (63)

{vn(t)}+>1) are indepen-

5219

where g; ; is the control laws of agent ¢ at time ¢. The collec-
tion g = (g1,-..,9n), where g; = (gi.1, ..., g: 1) is called the
control strategy of the system. The performance of any control
strategy g is given by

Ju

g) =K u(t)"Ru(t)]

t=1

2(T)'Qx(T)|,

where () is symmetric positive semi-definite matrix, R is sym-
metric positive definite matrix, and the expectation is with
respect to the joint measure on the system variables induced
by the choice of g.

Problem 4: Given the system dynamics and the noise statis-
tics, choose a control strategy ¢ to minimize the total cost J(g)
given by (64).

Problem 4 is a decentralized stochastic control problem. In
such problems there is no separation of estimation and control
(see, for example [32]). We show that this lack of separation is
due to the fact that the MTMSE filtering strategy depends on the
weight matrix of the estimation cost.

(64)

B. Equivalence to MTMSE Filtering

We start with a basic property of linear quadratic models. Let
P(1:T) denote the solution to the following backward Riccati
equation. P(T) = Qand fort € {T —1,...,1},

Pit)=Q+ATP(t+1)A

—ATP(t+1)B(R+B'P(t+1)B) 'B"P(t +1)A.
Define
S(t)=R+ B'"P(t+1)B,
L(t) = S(t) Y (BTP(t + 1) A).

Then, we have the following.
Lemma 6: For any control strategy g, define

9) = z_: E[(u(t) + L(t)x (1) TS (1) (u(t) + L(t)z(1))]-
t=1

(65)
Then, a strategy ¢ that minimizes J°(g) also minimizes J(g).
Proof: Following [36, Chapter 8, Lemma 6.1], we can show
that the total cost J(g) can be written as

ZE

T-1

+ Z E [(u(t) + L()z(t)TS(#) (u(t) + Lt)z(t))] .

=1

O)TP(t+ L)w(t) +2(1)TP(1)z(1)]

~+

(66)

The third term is equal to J°(g) and the first two terms do not

depend on the control strategy g. Thus, J(g) and J°(g) have the
same argmin.

Now, we split the state x(¢) into a deterministic part Z(¢) and

a stochastic part Z(t) as follows. (1) = 0, i(l) x(1), and

w(

T(t+1) = Az(t) + Bu(t), z(t+1)=Az(t)+w(t),
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y(t) = Cx(t),
Since the system is linear, we have
z(t) =z(t) +x(t) and y(t) = y(t) + g(t).

Note that Z(¢) is a function of the past control actions, which
are known to all agents. Now, for any control strategy g, define
2;(t) = u;(t) + L;(t)Z(t). Then, the cost J°(g) may be written
as

() = CE(t) + v(t).

!

: E[(2:(t) + L(t)2(1)) S (1) (i(t) + L(H)Z(1)].

1

(67)

o~
Il

The process {Z(t)}+>1 is an uncontrolled linear stochastic pro-
cess and the cost (67) is of of the same form as the weighted
mean-square cost that we have considered in this paper.
Following [25], we define I;(t) = {§;(t), §#(1:t — 1)} which
may be considered as the control-free part of the information
structure.
Lemma 7: For any strategy g and any agent ¢ € N, fi(t) is
equivalent to I;(t), i.e., they generate the same sigma algebra.[]
Proof: The result follows from a similar argument as given
in [37, Chapter 7, Section 3]. [ |
Since I;(t) is equivalent to I;(t), we may assume that 2;(t) is
chosen as a function of fi(t) instead of 7;(¢). Thus, Problem 4
is equivalent to the following MTMSE filtering problem.
Problem 5: Suppose n agents observe the linear dynamical
system {Z(¢) };>1 and share their observations over a one-step
delayed sharing communication graph. Thus, the information
available at agent ¢ is

L(t) = {5:(t), 5(1:t = 1)}
Agent i chooses an estimate Z;(t) of Z(¢) according to an
estimation strategy h; ¢, i.e.,

Zi(t) = hig(Li(1))
to minimize an estimation cost given by (67).

Problem 5 is a MTMSE filtering problem and can be solved
using Theorem 2. One can then take the solution of Problem 5
and translate it back to Problem 4 as follows.

Theorem 4: Let h* be the optimal strategy for Problem 5, i.e.,

hi (L) = — Li(t)(t)
— Fi(t) (%:(t) — E[g:(0)|g(1:t = 1)), (68)
where
F(t) = E#(0)]§(1:t — 1)),
L(t) = rows(L1(t),...,L,(1)),

and the gains {F;(t)} are computed as per Theorem 2. Define
strategy g* as follows:
e (i(8)) = hi (Li(1) — Li(t)z(2), (69)
i.e.,
9i+(Ii(t)) = — Li(t)2(t)
— Fi(t) (%:(t) = Elya(t)[y(1:t — 1), u(l:t = 1)])
(70)

where  2(t) = E[z(t)|I¢°(t)] = z(t) + E[z(t)|g(1:t — 1)].
Then g* is the optimal strategy for Problem 4.
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Proof: The change of variables Z;(t) = u;(t) + L;(¢)Z(t)
implies that if A" is an optimal strategy for Problem 5, then
g* given by (69) is optimal for Problem 4.

To establish (70), we need to show that &(t) = Z(t) + z(t).
Define, I1°™(t) = {y(1:t — 1), u(1l:t — 1)} and ™ (t) =
{g(1:t — 1)}. Then by Lemma 7 we have, I°°™(t) is equivalent

to 1¢°™(t), i.e., they generate the same sigma algebra. The rest
of the proof follows from the definition of Z(¢). We have

(t) = Bz () 1™ (1)]
= B[z ()| 1™ ()] + Bl2(1)[ 1™ (¢)]
© )+ 3(t),

where () follows from state splitting and I¢°™ (t) = I°°™(¢)
and (b) follows from the fact that Z(¢) is a deterministic function
of 1¢°™(¢). ]

The main take away is as follows. By a simple change of

variables we showed that the one-step delayed observation shar-
ing problem is equivalent to a MTMSE filtering problem, where
the weight matrix S(t) of the estimation cost depends on the
backward Riccati equation for the cost function. The MTMSE
filtering strategy depends on the weight matrix S(¢) and that
is the reason why there is no separation between estimation
and control. Nonetheless, the optimal gains can be computed
as follows.

1) Solve a Riccati equation to compute the weight functions
S(1:T) and gains L(1:T").

2) Solve a Kalman filtering equation (which does not depend
on S(1:T)) to compute the covariances 3(t) and ©(t)
defined in Theorem 2.

3) Use S(t), L(t), %(t), and ©(t) to obtain the optimal gains
F;(t) by solving a system of matrix equations.

4) Using Theorem 4 above, we can write the optimal strategy
gi ¢ in terms of Fi(t) and L;(t).
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