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Optimal control of network-coupled subsystems:
Spectral decomposition and low-dimensional

solutions
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Abstract—In this paper we investigate the optimal control of
network-coupled subsystems with coupled dynamics and costs.
The dynamics coupling may be represented by the adjacency
matrix, the Laplacian matrix, or any other symmetric matrix
corresponding to an underlying weighted undirected graph. Cost
couplings are represented by two coupling matrices which have
the same eigenvectors as the coupling matrix in the dynamics. We
use the spectral decomposition of these three coupling matrices
to decompose the overall system into (L+ 1) systems with
decoupled dynamics and cost, where L is the number of linearly
independent eigendirections associated with non-zero eigenvalue
triples of the three coupling matrices. Furthermore, the optimal
control input at each subsystem can be computed by solving
(Ldist + 1) decoupled Riccati equations where Ldist (Ldist ≤ L) is
the number of distinct non-zero eigenvalue triples of the three
coupling matrices. A salient feature of the result is that, given the
spectral decompositions of the couplings, the solution complexity
does not directly depend on the number of subsystems. Therefore,
the proposed solution framework provides a scalable method for
synthesizing and implementing optimal control laws for large-
scale network-coupled subsystems.

Index Terms—Optimal control, linear systems, large-scale
systems, Riccati equations, spectral decompositions.

I. INTRODUCTION

A. Motivation

The recent proliferation of low cost sensors and actuators
has given rise to many networked control systems such as the
Internet of Things, smart grids, smart buildings, etc., where
multiple subsystems are connected over a network. In such
systems, the evolution of the state of a subsystem depends on its
local state and local control and is also influenced by the states
and controls of its neighbors. Such networks are often referred
to as large-scale systems or complex networks, and various
aspects of such systems have been investigated since the early
1970s [2], [3], including issues such as controllability [4], [5],
observability [5], [6], control energy [7], distributed control [8]–
[10] and decentralized control [11]–[14].

A key theme for investigating large-scale networked control
systems is to identify conditions under which the optimal
control laws may be synthesized and implemented with
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low-complexity. Such conditions include simplified control
objectives (e.g., consensus [8]–[10] and synchronization [15]),
simplified control inputs (e.g., pinning control [16]–[18]
and ensemble control [19]), simplified coupling between
subsystems (e.g., symmetric interconnections [5], [11], [12],
[20], [21], exchangeable or anonymous subsystems [22]–
[24], sparse connections or structure reduction [25], [26],
decoupled dynamics [27], hierarchical decompositions [28]
and patterned systems [29]), approximate optimality (e.g.,
mean-field games [30]–[32], control based on approximate
aggregations [33], approximate distributed control [34], [35],
and graphon control [36]).

In this paper, we propose a decomposition method for large-
scale network-coupled subsystems which relies on the spectral
decomposition of the dynamic and cost couplings among the
subsystems. Several related approaches have been considered
in the literature. An earlier approach similar in spirit to ours
is [33], which considered the problem of approximating a
high-dimensional system with a low-dimensional system using
state aggregation. Both exact and approximate solutions were
proposed. Spectral decomposition of large-scale systems with
symmetric interconnected subsystems have been considered
in [11], [12]. Algebraic decomposition of mean-field coupled
subsystems has been considered in [23], [24]. Algebraic
decomposition with cost couplings and no dynamics couplings
is considered in [27], [37]. Similar problems under the graphon
LQR framework are studied in [38]. A key feature which
distinguishes our approach from these works above is that
our approach is applicable to models where the couplings in
dynamics and costs among subsystems are not homogeneous
and such couplings could be dense or spare, and that we
establish optimal solutions rather than an approximate solution.
Another line of related work is graphical games ([25], [39,
Chapter 6]) where the coupling of the utility function depends
on an underlying graph. In contrast to these, we consider a
control problem and propose a different type of decomposition.

B. Contributions of this paper

In this paper, we investigate a control system with mul-
tiple subsystems connected over an undirected graph. Each
subsystem has a local state and takes a local control action.
The evolution of the state of each subsystem depends on its
local state and local control as well as a weighted combination
(which we call the network field) of the states and controls
of its neighbors. Moreover, the weights in the network field,
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which are represented by a coupling matrix, may correspond to
the adjacency matrix, Laplacian matrix or any other symmetric
matrix that characterizes the underlying graph. The subsystems
can also be coupled in the (quadratic) costs via two coupling
matrices that share the same eigenvectors with the coupling
matrix in the dynamics. The objective is to choose the control of
each subsystem to minimize the total cost over time. The above
model is a linear quadratic regulation problem and a centralized
solution can be obtained by solving ndx × ndx-dimensional
Riccati equation, where n is the number of subsystems and dx
is the dimension of the state of each subsystem. In this paper,
we propose an alternative solution that has low complexity and
may be implemented in a local manner with aggregated (or
projected) state information and local state information. For
some particular cases, the control can be implemented in a
distributed manner that relies on neighbourhood information
and local information.

The main contributions of this paper are the following:
• A spectral decomposition technique is devoloped to de-

compose the linear quadratic control problem for network-
coupled dynamical subsystems into L+ 1 decoupled sub-
problems, where L is the number of linearly independent
eigendirections associated with non-zero eigenvalue triples
of the three coupling matrices.

• These L + 1 decoupled subproblems can be solved by
solving only Ldist + 1 decoupled Riccati equations of
dimension dx × dx, where Ldist is the number of distinct
non-zero eigenvalue triples of the three coupling matrices
and dx is the state dimension of each subsystem. In
contrast, a direct centralized solution requires solving
an ndx × ndx-dimensional Riccati equation where n is
the number of subsystems. We note that the inequalities
Ldist ≤ L ≤ n always hold. Thus the method proposed
in this paper leads to considerable simplifications in
synthesizing optimal control laws.

• To implement the optimal control input, each subsystem
needs to know the (L+ 1)dx-dimensional vector of local
components of eigen and auxiliary states (which are
defined later in the paper). In contrast, to implement the
centralized solution, each subsystem needs to know the
ndx dimensional global state. Thus, in applications such
as [40]–[42] where L� n, the method proposed in this
paper leads to considerable simplification in implementing
the optimal control law.

• The solution method is extended to solve stochastic
linear quadratic control problems for network-coupled
subsystems.

• The solution method is applied to study consensus
problems to establish optimal distributed control solutions
for some particular cases.

C. Notations and definitions

We use N and R to denote respectively the sets of natural
and real numbers. The notation A = [aij ] means that aij is
the (i, j)th element of the matrix A. For a vector v, vi denotes
its ith element. For a matrix A, Aᵀ denotes its transpose.
Given vectors v1, . . . , vn, cols(v1, . . . , vn) denotes the matrix

formed by horizontally stacking the vectors. For any n ∈ N,
1n denotes the n-dimensional vector of ones, 1n×n denotes
the n × n-dimensional matrix of ones, and In denotes the
n× n-dimensional identity matrix.

A pair (A,B) is stabilizable if there exists a matrix L such
that A+BL is Hurwitz (i.e., all its eigenvalues have negative
real parts). A pair (C,A) is detectable if there exists a matrix
F such that Aᵀ + FCᵀ is Hurwitz.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider a network consisting of n nodes connected over
an undirected weighted graph G(N , E ,W ), where N =
{1, . . . , n} is the set of nodes, E ⊆ N ×N is the unordered set
of edges, and W = [wij ] ∈ Rn×n is the weighted adjacency
matrix. Let M = [mij ] ∈ Rn×n be a symmetric coupling
matrix corresponding to the underlying graph G(N , E ,W ).
For instance, M may represent the underlying adjacency
matrix (i.e., M = W ) or represent the underlying Laplacian
matrix (i.e., M = diag(W1n) −W ). For any node i ∈ N ,
Ni := {j ∈ N : (i, j) ∈ E} denotes the set of neighbors of
node i. Note that the edge set E is allowed to include self-loops.
Therefore the set Ni may contain node i.

The system operates in continuous time for either a finite
interval [0, T ] or an infinite interval [0,∞). A state xi(t) ∈ Rdx

and a control input ui(t) ∈ Rdu are associated with each node
i ∈ N . At time t = 0, the system starts from an initial state
(xi(0))i∈N and for t > 0, the state of node i evolves according
to

ẋi(t) = Axi(t) +Bui(t) +DxGi (t) + EuGi (t), (1)

where A, B, D and E are matrices of appropriate dimensions
and

xGi (t) =
∑
j∈N

mijxj(t) and uGi (t) =
∑
j∈N

mijuj(t) (2)

are the locally perceived network field of states and control
actions at node i. It is assumed that all the different subsystems
have the same parameter matrices A, B, D and E.

We follow an atypical representation of the “vectorized”
dynamics. Define

x(t) = cols(x1(t), . . . , xn(t)),

u(t) = cols(u1(t), . . . , un(t)),

as the global state and control actions of the system, and

xG(t) = cols(xG1 (t), . . . , xGn(t)),

uG(t) = cols(uG1 (t), . . . , uGn(t)),

as the global network field of states and actions. Note that
x(t), xG(t) ∈ Rdx×n and u(t), uG(t) ∈ Rdu×n are matrices
and not vectors. The system dynamics may be written as

ẋ(t) = Ax(t) +Bu(t) +DxG(t) + EuG(t). (3)

Furthermore, we may write

xG(t) = x(t)M
ᵀ

= x(t)M and uG(t) = u(t)M
ᵀ

= u(t)M.
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B. System performance and control objective

At time t ∈ [0, T ), the system incurs an instantaneous cost

c(x(t), u(t)) =
∑
i∈N

∑
j∈N

[
gijxi(t)

ᵀ
Qxj(t)+hijui(t)

ᵀ
Ruj(t)

]
,

(4)
and at the terminal time T , the system incurs a terminal cost

cT (x(T )) =
∑
i∈N

∑
j∈N

gijxi(T )
ᵀ
QTxj(T ), (5)

where Q, QT , and R are matrices of appropriate dimensions
and gij and hij are real-valued weights.

We are interested in the following optimization problems.

Problem 1 Choose a control trajectory u : [0, T ) → Rdu×n

to minimize

J(u) =

∫ T

0

c(x(t), u(t))dt+ cT (x(T )) (6)

subject to the dynamics in (3).

Problem 2 Choose a control trajectory u : [0,∞)→ Rdu×n

to minimize

J(u) =

∫ ∞
0

c(x(t), u(t))dt. (7)

subject to the dynamics in (3).

C. Assumptions on the cost in the model

(A0) The weight matrices G = [gij ] and H = [hij ] are
respectively given by

G = q0I + q1Mq, H = r0I + r1Mr

where Mq and Mr are symmetric matrices that share with
M the same set of orthonormal eigenvectors {v1, ..., vn}
associated with all their eigenvalues.

For any two n×n-dimensional symmetric matrices M1 and M2,
one can verify that the following statements are equivalent: (i)
M1 and M2 commute (i.e., M1M2 = M2M1); (ii) M1 and M2

are simultaneously diagnolizable (i.e., there exists an invertible
matrix P such that P−1M1P and P−1M2P are both diagonal
matrices); (iii) M1 and M2 are simultaneously diagnolizable
by an orthogonal matrix; (iv) M1 and M2 share the same set
of n orthonormal eigenvectors.

An important special case of Assumption (A0) is that G and
H are both polynomials of M , that is,

G =

KG∑
k=0

qkM
k and H =

KH∑
k=0

rkM
k (8)

where KG and KH denote the degrees of the polynomials and
{qk}KG

k=0 and {rk}KH

k=0 are real coefficients (as those cases in
[1]). Here we use bold face letters to differentiate them from
the coefficients q0, q1, r0 and r1 in Assumption (A0).

When Assumption (A0) holds, let (λ`, λ`r, λ
`
q) denote

the (real) eigenvalue triple of the coupling matrix triple
(M,Mr,Mq) associated with the shared eigenvector v`, ` ∈
{1, ..., n}. We call the eigenvalue triple a non-zero eigenvalue
triple if at least one eigenvalue in the triple is non-zero. Let

L denote the number of linearly independent eigendirections
associated with non-zero eigenvalue triples of (M,Mq,Mr).
Without loss of generality, let v1, ...., vL denote the shared
orthonormal eigenvectors associated with all the non-zero
eigenvalue triples.

For ease of notation, for ` ∈ {1, . . . , L}, define

q` = q0 + q1λ
`
q and r` = r0 + r1λ

`
r.

(A1) The matrices Q and QT are symmetric and positive
semi-definite and R is symmetric and positive definite.

(A2) For ` ∈ {1, . . . , L}, q` is non-negative and r` is strictly
positive. Moreover q0 ≥ 0 and r0 > 0.

Assumption (A2) ensures that for any y ∈ Rn, yᵀGy ≥ 0
and yᵀHy > 0. Assumptions (A1) and (A2) ensure that G⊗Q
and G⊗QT are symmetric positive semi-definite, and H ⊗R
is symmetric positive definite, which are standard sufficient
conditions for finite-horizon LQR problems to have a unique
optimal solution (see for instance [43]).

D. Some remarks on the assumptions on the cost function

Since the subsystems (or agents) are coupled in the dynamics
over an underlying graph, it may be reasonable to assume
that the cost structure respects the same graph structure. The
polynomials in (8) allow us to consider cost coupling structures
which may involve not only the immediate neighbourhood but
also multiple-hop neighbourhood connections. We present a
few examples with different coefficients {qk}KG

k=0 and {rk}KH

k=0

in (8) in the following:
1) If KG = KH = 0, q0 = 1, r0 = 1 and all other

coefficients are zero, then G = H = I . In this case, the
instantaneous cost reduces to

c(x(t), u(t)) =

n∑
i=1

[xi(t)
ᵀ
Qxi(t) + ui(t)

ᵀ
Rui(t)].

Thus, the problem is equivalent to the social optimal
control problem where the cost is the summation of the
costs of all the subsystems.

2) If KG = 2, KH = 1, q0 = 1,q1 = −2,q2 = 1, r0 = 1
and all other coefficients are zero, then G = (I −M)2

and H = I . If, furthermore, the matrix M = 1
n1n1

ᵀ
n,

then the instantaneous cost reduces to

c(x(t), u(t)) =

n∑
i=1

[(xi(t)− x̄(t))
ᵀ
Q(xi(t)− x̄(t))

+ ui(t)
ᵀ
Rui(t)],

where x̄(t) := 1
n

∑n
i=1 xi(t), which is similar to the cost

of the social optimal mean field control problem [44].
3) If KG = 2, KH = 0, q2 = 1, r0 = 1, all other

coefficients are zero, and the coupling matrix is the
Laplacian matrix, then G = M2, H = I,M = L :=
diag(W1n −W ). The instantaneous cost reduces to

(x(t), u(t)) =

n∑
i=1

[
ei(t)

ᵀ
Qei(t) + ui(t)

ᵀ
Rui(t)

]
,

where the local state error for subsystem i is given
by ei(t) :=

∑
j∈Ni wij(xi(t) − xj(t)). If, furthermore,
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there are no couplings in the dynamics and A = 0,
this structure then produces the optimal control problem
that can be exactly associated with a distributed control
problem (see Section V for more details).

4) KG and KH can be ∞ as long as the limit of
the corresponding polynomial series is well defined.
Such examples include the exponential function G =
exp(M) =

∑∞
k=0

1
k!M

k, and the inverse function
G = (I − γM)−1 =

∑∞
k=0 γ

kMk (when the spectral
radius ρ(M) of M satisfies ρ(M) < γ−1).

E. Salient features of the model

3 4

2 1
2

2

1

1

(a) A graph G

3 4

2 1

5

4

58

5 2

(b) 2-hop neighborhood of G

Fig. 1: A graph and its 2-hop neighborhood.

We highlight salient features of the model via an example.
Consider a system with 4 nodes connected via a network shown
in Fig. 1(a), with

G = q0I + q1M + q2M
2 and H = r0I + r1M + r2M

2,

where M and M2 are the weighted adjacency matrix of the
graph G and that of the 2-hop neighborhood of G, respectively,
given by

M =


0 2 0 1
2 0 2 0
0 2 0 1
1 0 1 0

 and M2 =


5 0 5 0
0 8 0 4
5 0 5 0
0 4 0 2

 .
1) Salient features of the dynamics: For this example,

xG1 (t) = 2x2(t) + x4(t), xG2 (t) = 2x1(t) + 2x3(t),

xG3 (t) = 2x2(t) + x4(t), xG4 (t) = x1(t) + x3(t).

Thus, each subsystem is affected by its neighbors. The influence
of each neighbor is not homogeneous but depends on the
weight associated with the corresponding edge in the graph.
Furthermore, the network field xG(t) is not homogeneous and
varies from subsystem to subsystem.

2) Salient features of the cost: If M is the weighted adja-
cency matrix of the graph G, the matrix Mk, k ∈ N, represents
the weighted adjacency matrix of the k-hop neighborhood of
G. Thus, G = q0I + q1M + q2M

2 means that each node has
a coupling of q0 with its own state, a coupling of q1 with
its 1-hop neighborhood and a coupling of q2 with its 2-hop
neighborhood. Similar interpretation holds for H . Note that

G = q0I+q1M+q2M
2 =

[
q0+5q2 2q1 5q2 q0+q1

2q1 q0+8q2 2q1 4q2

5q2 2q1 q0+5q2 q1

q1 4q2 q1 q0+2q2

]
.

Thus, the agents are not interchangeable, i.e., in general, Gii 6=
Gjj and Gki 6= Gkj .

III. SPECTRAL DECOMPOSITION OF THE SYSTEM

Since the coupling matrix M is real and symmetric, it admits
spectral factorizations. Under Assumption (A0), the following
simultaneous spectral decompositions hold for M , Mq and
Mr:

M =

L∑
`=1

λ`v`v`
ᵀ
, Mq =

L∑
`=1

λ`qv
`v`
ᵀ
, Mr =

L∑
`=1

λ`rv
`v`
ᵀ
.

(9)

In the rest of this section, we decompose the dynamics
and the cost based on the above spectral decomposition. Our
decompositions may be viewed as generalizations of mean-field
decompositions used in [23], [24] to heterogenous networks.

A. Spectral decomposition of the dynamics

For ` ∈ {1, . . . , L}, define eigenstates and eigencontrol
actions as

x`(t) = x(t)v`v`
ᵀ
, (10)

u`(t) = u(t)v`v`
ᵀ
, (11)

respectively. Multiplying both sides of (3) by v`v`
ᵀ

, we get

ẋ`(t) = (A+ λ`D)x`(t) + (B + λ`E)u`(t), (12)

where we have used the fact that Mv`v`
ᵀ

= λ`v`v`
ᵀ
. Let

x`i(t) and u`i(t) denote the i-th column of these matrices, i.e.,

x`(t) = cols(x`1(t), . . . , x`n(t)),

u`(t) = cols(u`1(t), . . . , u`n(t)).

Therefore, the dynamics (12) can be written as a collection of
decoupled “local” dynamics: for i ∈ N ,

ẋ`i(t) = (A+ λ`D)x`i(t) + (B + λ`E)u`i(t). (13)

Using the spectral factorization (9), we may write:

xG(t) = x(t)M =

L∑
`=1

λ`x`(t), (14)

uG(t) = u(t)M =

L∑
`=1

λ`u`(t). (15)

Now, define auxiliary state and auxiliary control actions as

x̆(t) = x(t)−
L∑

`=1

x`(t) and ŭ(t) = u(t)−
L∑

`=1

u`(t).

Then, by subtracting (12) from (3) and substituting (14)
and (15), we get

˙̆x(t) = Ax̆(t) +Bŭ(t). (16)

Note that x̆(t) ∈ Rdx×n and ŭ(t) ∈ Rdu×n. Let x̆i(t) and
ŭi(t) denote the i-th column of these matrices, i.e.,

x̆(t) = cols(x̆1(t), . . . , x̆n(t)),

ŭ(t) = cols(ŭ1(t), . . . , ŭn(t)).
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Therefore, the dynamics (16) of the auxiliary state can be
written as a collection of decoupled “local” dynamics:

˙̆xi(t) = Ax̆i(t) +Bŭi(t), i ∈ N . (17)

The above decomposition may be summarized as follows.

Proposition 1 The local state and control at each node i ∈ N
may be decomposed as

xi(t) = x̆i(t) +

L∑
`=1

x`i(t), (18)

ui(t) = ŭi(t) +

L∑
`=1

u`i(t), (19)

where the dynamics of x̆i(t) depend on only ŭi(t) and are
given by (17) and the dynamics of x`i(t) depends on only u`i(t)
and are given by (13). 2

B. Spectral decomposition of the cost

For any n × n matrix P = [pij ], any d × n matrices
x = cols(x1, . . . , xn), and y = cols(y1, . . . , yn), we use the
following short hand notation:

〈x, y〉P =
∑
i∈N

∑
j∈N

pijx
ᵀ
i yj . (20)

Proposition 2 The instantaneous cost may be written as

c(x(t), u(t)) = 〈x(t), Qx(t)〉G + 〈u(t), Ru(t)〉H ,

which can be simplified as follows:

〈x(t), Qx(t)〉G

=
∑
i∈N

[
q0x̆i(t)

ᵀ
Qx̆i(t) +

L∑
`=1

q`x`i(t)
ᵀ
Qx`i(t)

]
,

〈u(t), Ru(t)〉H

=
∑
i∈N

[
r0ŭi(t)

ᵀ
Rŭi(t) +

L∑
`=1

r`u`i(t)
ᵀ
Ru`i(t)

]
. 2

See Appendix for the proof.

IV. MAIN RESULTS: STRUCTURE AND SYNTHESIS OF
OPTIMAL CONTROL STRATEGIES

A. Finite horizon setup

The main result for the finite horizon setup is the following.

Theorem 1 For ` ∈ {1, . . . , L}, let P ` : [0, T ]→ Rdx×dx be
the solution to the backward Riccati differential equation

−Ṗ `(t) = (A+ λ`D)
ᵀ
P `(t) + P `(t)(A+ λ`D)

− P `(t)(B + λ`E)(r`R)−1(B + λ`E)
ᵀ
P `(t) + q`Q

(21)
with the final condition P `(T ) = q`QT . Similarly, let
P̆ : [0, T ]→ Rdx×dx be the solution to the backward Riccati
differential equation

− ˙̆
P (t) = A

ᵀ
P̆ (t) + P̆ (t)A− P̆ (t)B(r0R)−1B

ᵀ
P̆ (t) + q0Q

(22)
with the final condition P̆ (T ) = q0QT .

Then, under assumptions (A0), (A1) and (A2), the optimal
control strategy for Problem 1 is given by

ui(t) = −K̆(t)x̆i(t)−
L∑

`=1

K`(t)x`i(t), i ∈ N , (23)

where
K̆(t) = (r0R)−1B

ᵀ
P̆ (t),

K`(t) = (r`R)−1(B + λ`E)
ᵀ
P `(t).

2

PROOF Consider the following collections of dynamical sys-
tems:
• Eigensystem (`, i), ` ∈ {1, . . . , L}, i ∈ N , with state
x`i(t), control inputs u`i(t), dynamics

ẋ`i(t) = (A+ λ`D)x`i(t) + (B + λ`E)u`i(t),

and cost

J`
i (u`i) =

∫ T

0

[
q`x`i(t)

ᵀ
Qx`i(t) + r`u`i(t)

ᵀ
Ru`i(t)

]
dt

+ q`x`i(T )
ᵀ
Qx`i(T ).

• Auxiliary system i, i ∈ N , with state x̆i(t), control inputs
ŭi(t), dynamics

˙̆xi(t) = Ax̆i(t) +Bŭi(t),

and cost

J̆i(ŭi) =

∫ T

0

[
q0x̆i(t)

ᵀ
Qx̆i(t) + r0ŭi(t)

ᵀ
Rŭi(t)

]
dt

+ q0x̆i(T )
ᵀ
Qx̆i(T ).

Note that all systems have decoupled dynamics and decoupled
nonnegative cost. By Proposition 2, we have

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
`=1

J`
i (u`i)

]
.

Thus, instead of solving:
(CP1) choose control trajectory u : [0, T ) → Rdu×n to

minimize J(u),
we can equivalently solve the following problems:

(CP2) choose control trajectory u`i : [0, T ) → Rdu to
minimize J`

i (u`i) for i ∈ N , ` ∈ {1, . . . , L},
(CP3) choose control trajectory ŭi : [0, T ) → Rdu to

minimize J̆i(ŭi) for i ∈ N .
Given the solutions of Problems (CP2) and (CP3), we can use
Proposition 1 and choose ui(t) according to (19).

Problems (CP2) and (CP3) are standard optimal con-
trol problems and their solution are given as follows. Let
P ` : [0, T ] → Rdx×dx and P̆ : [0, T ] → Rdx×dx be as given
by (21) and (22). Then, for all i ∈ N , the optimal solution of
(CP2) is given by u`i(t) = K`(t)x`i(t), ` ∈ {1, . . . , L}, and the
solution of (CP3) is given by ŭi(t) = K̆(t)x̆i(t). The result
follows by combining the above two equations using (19). �

Remark 1 Based on the definition of x̆i(t), the control in (23)
can be equivalently written as

ui(t) = −K̆(t)xi(t)−
L∑

`=1

(
K`(t)− K̆(t)

)
x`i(t),
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where the first part represents a local state feedback and
the second part represents offset terms proportional to eigen
states. 2

Remark 2 Although the eigenstates {x`i(t)}L`=1 depend on
the eigenvectors (v1, . . . , vL), the corresponding Riccati
equations (21) only depend on the eigenvalue triples
{(λ`, λ`r, λ`q)}L`=1. So, if the coupling matrices have repeated
eigenvalue triples, as is the case when there are certain
symmetries in the underlying graphs, eigendirections with
the same eigenvalue triples have the same Riccati equation.
Therefore, we only need to solve Ldist + 1, Riccati equations,
where Ldist denotes the number of distinct non-zero eigenvalue
triples of the coupling matrices (M,Mr,Mq). 2

Remark 3 The Riccati equations (21)–(22) are significantly
simpler to solve compared to the naive centralized Riccati
equation. Each Riccati equation in (21)–(22) is of dimension
dx×dx, while the centralized Riccati equation is of dimension
ndx × ndx. So, even if one of the coupling matrices (M ,
Mq and Mr) is full rank (i.e., L = n) and all eigenvalue
triples are distinct, solving the n “one-dimensional” Riccati
equations (21)–(22) is significantly simpler than solving one
centralized “n-dimensional” Riccati equation. For coupling
matrices where L� n, such savings become more drastic. 2

B. Infinite horizon setup

Let Q
1
2 denote the symmetric positive semi-definite matrix

that satisfies Q
1
2

ᵀ
Q

1
2 = Q. For infinite horizon problems, we

further impose the following standard assumptions.

(A3) (A,B) is stabilizable and (q
1
2
0 Q

1
2 , A) is detectable.

(A4) For all ` ∈ {1, ..., L}, (A+λ`D,B+λ`E) is stabilizable
and (q`

1
2Q

1
2 , A+ λ`D) is detectable .

Theorem 2 Suppose assumptions (A0)–(A4) hold. For ` ∈
{1, . . . , L}, let P ` ∈ Rdx×dx be the unique symmetric positive
semi-definite solution to the algebraic Riccati equation

0 = (A+ λ`D)
ᵀ
P ` + P `(A+ λ`D)

− P `(B + λ`E)(r`R)−1(B + λ`E)
ᵀ
P ` + q`Q.

(24)

Similarly, let P̆ ∈ Rdx×dx be the unique symmetric positive
semi-definite solution to the algebraic Riccati equation

0 = A
ᵀ
P̆ + P̆A− P̆B(r0R)−1B

ᵀ
P̆ + q0Q. (25)

Then the optimal control strategy for Problem 2 is given by

ui(t) = −K̆x̆i(t)−
L∑

`=1

K`x`i(t), (26)

with K̆ = (r0R)−1BᵀP̆ and K` = (r`R)−1(B+λ`E)ᵀP `.2

The proof follows along the similar lines as the proof of
Theorem 1. Under the extra assumptions (A3) and (A4), one
only needs to replace the finite horizon costs with the infinite
horizon costs and then solve decoupled LQR problems by
solving the corresponding algebraic Riccati equations. (A3)
and (A4) ensure the existence of solutions to the algebraic
Riccati equations (25) and (24) (see e.g. [45]).

C. Remarks on the information structure and the implementa-
tion of the optimal strategy

Since we are interested in regulating a deterministic system,
we may implement the optimal control law either using open-
loop (i.e. pre-computed) control inputs or using closed-loop
(i.e. state feedback) control inputs. For both implementations,
the eigenvalue triples {(λ`, λ`q, λ`r)}L`=1 need to be known at
all subsystems.

For the open-loop implementation, one can write

ui(t) = −K̆(t)Φ̆(t, 0)x̆i(0)−
L∑

`=1

K`(t)Φ`(t, 0)x`i(0), (27)

where the state transition matrices Φ̆(t, 0) and Φ`(t, 0) are
respectively given by Φ̆(t, 0) = exp

( ∫ t

0

(
A − BK̆(τ)

)
dτ
)

and Φ`(t, 0) = exp
( ∫ t

0

(
A+ λ`D − (B + λ`E)K`(τ)

)
dτ
)
.

Thus, to implement the control action, subsystem i needs to
know x̆i(0) and {x`i(0)}L`=1, which can be obtained using one
of the following three information structures:

1) All subsystems know the initial condition x(0) and the
eigendirections {v`}L`=1. Using these, subsystem i can
compute {x`i(0)}L`=1 and x̆i(0), and implement (27).

2) Subsystem i, i ∈ N , knows its local initial state xi(0)
and its local initial eigensystem states {x`i(0)}L`=1. Then
subsystem i can compute x̆i(0) and implement (27).

3) All subsystems knows the initial state {x(0)v`}L`=1. In
addition, subsystem i knows vi := (v1i , · · · , vLi ) and its
local initial state xi(0). Then subsystem i can compute
{x`i(0)}L`=1 and x̆i(0), and implement (27).

The closed-loop implementation, which is given by (23) or
(26), can be obtained by using one of the three information
structures described above with x(0), xi(0) and x`i(0) replaced
by x(t), xi(t) and x`i(t), respectively.

Furthermore, for the information structures in 2) and 3), a
mixed implementation which combines open-loop and close-
loop implementations can also be obtained via only replacing
xi(0) by xi(t) in 2) and 3). In the mixed implementation, for
any subsystem i ∈ N , the close-loop part corresponds to the
individual state xi(t) and the open-loop part corresponds to the
terms {x`i(0)}L`=1 or {x(0)v`}L`=1 which involve the aggregate
of initial states of all subsystems.

V. APPLICATIONS TO CONSENSUS

Consensus refers to a distributed coordination problem in
which nodes connected over a graph update their local states
based on the states of their neighbors. The simplest objective
is for all nodes to converge to a “consensus” value starting
from any initial state x(0), i.e., limt→∞ ‖xi(t) − xj(t)‖ =
0, ∀i, j ∈ N . There are various consensus protocols (i.e., rules
to update the state at each node as a function of the state of
the nearest neighbors and its own state), which have different
rates of convergence. We refer readers to [8], [9], [46] for an
overview. Often these consensus protocols are hand crafted
based on intuitions. In this section, we show that the standard
consensus protocol naturally emerges as the optimal solution
of an appropriately chosen networked control problem.
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In particular, consider a (non-negatively) weighted connected
undirected graph G(V, E ,W ) where W represents its adjacency
matrix. Now consider the system dynamics

ẋi(t) = ui(t), i ∈ N (28)

which is a special case of (1) with A = 0, B = I,D = 0, and
E = 0. Furthermore, consider the cost function

c(x(t), u(t)) = 〈x(t), Qx(t)〉M2 + 〈u(t), Ru(t)〉I (29)

where M = diag(W1n)−W is the graph Laplacian matrix,
and Q and R are arbitrary symmetric positive definite matrices.
The rank of the Laplacian matrix of a (non-negatively weighted)
connected graph is n − 1 and all non-zero eigenvalues are
positive. Thus, L = n− 1 for this setup.

Proposition 3 The solution to Problem 2 with the dynamics
in (28) and the cost in (29) is given by

ui(t) = −R−1Π

n−1∑
`=1

λ`x`i(t), i ∈ N , (30)

where Π denotes the symmetric positive semi-definite solution
to ΠR−1Π = Q. 2

PROOF Since B = I , Q > 0, R > 0, q` = (λ`)2 > 0, r` = 1
q0 = 0, and r0 = 1, (A0)–(A4) are obviously satisfied. An
application of Theorem 2 yields the following optimal control

ui(t) = −
n−1∑
`=1

R−1P `x`i(t), i ∈ N , (31)

where P ` is the symmetric positive semi-definite solution to
the algebraic Riccati equation

0 = −P `R−1P ` + (λ`)2Q. (32)

Note that q0 = 0 in this example implies the solution to the
auxiliary Riccati equation in (25) is P̆ = 0. Hence K̆ = 0 in
(26) and the control law (31) does not contain the auxiliary part.
Let Π = (λ`)

−1
P `. Substituting P ` in (32), Π is then given by

the symmetric positive semi-definite solution to ΠR−1Π = Q.
Hence the optimal control is given by (30). �

Now, recall that

n−1∑
`=1

λ`x`i(t) = xGi (t) =
∑
j∈N

mjixj =
∑
j∈N

mijxj

=
∑
j∈N

wij(xi − xj)

Therefore, the optimal control may be written as

ui(t) = −R−1Π
∑
j∈N

wij(xi(t)− xj(t)), i ∈ N . (33)

Thus the optimal control is the same as the standard consensus
protocol in [8], [46]. A similar result was established in [47,
Theorem 4.6] using a more sophisticated proof argument.

VI. GENERALIZATIONS TO STOCHASTIC SYSTEMS

A. Stochastic networked control problem

In this section we consider a model similar to Section II-A
but with stochastic dynamics. As before, there are n subsys-
tems that are connected over an undirected weighted graph
G(N , E ,W ), with an associated symmetric coupling matrix
M . For any i ∈ N , the state xi(t), the control ui(t), and
the network fields xGi (t) and uGi (t) are defined as before. The
difference is that rather than being deterministic, the system
dynamics are stochastic and are given by

dxi(t) =
[
Axi(t)+Bui(t)+DxGi (t)+EuGi (t)

]
dt+Fdwi(t),

(34)
for all i ∈ N , where the matrices A,B,D,E and F are as
before, F is a matrix of an appropriate dimension, the initial
states (xi(0))i∈N are deterministic, and {wi(t) ∈ Rdw : i ∈
N , t ≥ 0} are standard (dw-dimensional) Brownian motions
that are independent across nodes.

As before, there is an instantaneous cost c(x(t), u(t)) for
t ∈ [0, T ), and a terminal cost c(x(T )), given by (4) and (5).

Let F(t) denote the σ-algebra generated by {w(τ) : 0 ≤
τ ≤ t} where w(τ) := cols

(
w1(τ), . . . , wn(τ)

)
.

We are interested in the following optimization problem.

Problem 3 Choose an F(t)-adapted control u : [0, T ) →
Rdu×n to minimize

J(u) = E

[∫ T

0

c(x(t), u(t))dt+ cT (x(T ))

]
, (35)

subject to the system dynamics in (34) and initial conditions
(xi(0))i∈N .

B. Decompositions

Recall that w(t) := cols
(
w1(t), . . . , wn(t)

)
∈ Rdw×n. We

introduce the following noise processes in eigendirections and
the auxiliary direction: for any i ∈ N and ` ∈ {1, ..., L},

w`
i (t) := w(t)v`v`i and w̆i(t) := wi(t)−

L∑
`=1

w`
i (t).

The corresponding matrix representations are given by

w̆(t) := cols
(
w̆1(t), . . . , w̆n(t)

)
,

w`(t) := cols
(
w`

1(t), . . . , w`
n(t)

)
.

Clearly, w`(t) = w(t)v`v`
ᵀ

and E[w`
i ] = E[w̆i] = 0.

Lemma 1 The following statements hold for all t ∈ [0, T ],
i, j ∈ {1, . . . , n}, `, h ∈ {1, . . . , L}:

1) w̆i(t) and w`
i (t) are independent.

2) w̆j(t) and w`
i (t) are independent if and only if v`j(v

`
j −

v`i ) = 0.
3) w̆i(t) and w̆j(t) are independent if and only if v`iv

`
j = 0.

4) w`
i (t) and w`

j(t) are independent if and only if v`iv
`
j = 0.

5) If i 6= j and ` 6= h, then w`
i (t) and wh

j (t) are
independent. 2

PROOF Since for any fixed time t ∈ [0, T ], w̆i(t), w̆j(t), w`
j(t)

and wh
k (t) are Gaussian random variables with zero mean, they
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are independent if and only if the covariance matrix is zero.
By explicitly computing the covariance matrices, results in
Lemma 1 are verified. �

Since w`
i and w̆i are linear combinations of independent

standard Brownian motions, they themselves are Brownian
motions. It is easy to verify that for s > 0, t ≥ 0, var(w`

i (t+
s) − w`

i (t)) = s(v`i )
2Idw , var(w̆i(t + s) − w̆i(t)) = s

(
1 −∑L

`=1(v`i )
2
)
Idw . Hence the intensities of w`

i and w̆i are |v`i |
and

(
1−

∑L
`=1(v`i )

2
) 1

2 , respectively. Since {v`}L`=1 forms an
orthonormal basis of a subspace in Rn, one can verify that
1−

∑L
`=1(v`i )

2 ≥ 0.
Recall the definition of x̆i(t), ŭi(t), x`(t) and u`(t). Follow-

ing arguments similar to the deterministic case, we obtain the
following stochastic differential equations for the decomposed
dynamics

dx`i(t) =
[
(A+ λ`D)x`i(t) + (B + λ`E)u`i(t)

]
dt+ Fdw`

i (t),

(36)

dx̆i(t) =
[
Ax̆i(t) +Bŭi(t)

]
dt+ Fdw̆i(t), (37)

for all i ∈ N , ` ∈ {1, . . . , L}. Following the proof argument
of Proposition 2, we obtain

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
`=1

J`
i (u`i)

]
, (38)

where for all i ∈ N and ` ∈ {1, . . . , L},

J`
i (u`i) = E

[ ∫ T

0

(
q`x`i(t)

ᵀ
Qx`i(t) + r`u`i(t)

ᵀ
Ru`i(t)

)
dt

+ q`x`i(T )
ᵀ
QTx

`
i(T )

]
, (39)

J̆i(ŭi) = E

[ ∫ T

0

(
q0x̆i(t)

ᵀ
Qx̆i(t) + r0ŭi(t)

ᵀ
Rŭi(t)

)
dt

+ q0x̆i(T )
ᵀ
QT x̆i(T )

]
. (40)

C. Optimal control solution

Theorem 3 Under assumptions (A0), (A1) and (A2), the
optimal control strategy for Problem 3 is the same as the
strategy in Theorem 1 given by (23). Furthermore, the optimal
cost is given by

V (x(0)) =
∑
i∈N

(
V̆i(x̆i(0)) +

L∑
`=1

V `
i (x`i(0))

)
, (41)

where for i ∈ N and ` ∈ {1, ..., L},

V̆i(x̆i(0)) = x̆i(0)
ᵀ
P̆ (0)x̆i(0)

+
(
1−

L∑
`=1

(v`i )
2
) ∫ T

0

Tr
(
P̆ (t)FF

ᵀ)
dt,

(42)

V `
i (x`i(0)) = x`i(0)

ᵀ
P `(0)x`i(0)

+ (v`i )
2

∫ T

0

Tr
(
P `(t)FF

ᵀ)
dt. (43)

2

PROOF The dynamics in (34) can be decomposed into (36)
and (37), and the decomposition of the cost in (35) follows
(38), (39) and (40). Therefore, Problem 3 can be equivalently
decomposed into the linear quadratic control problems defined
by (36) and (39), and the linear quadratic control problems
given by (37) and (40), where i ∈ N . Note that the Brownian
motions are not necessarily independent across all the decou-
pled problems as illustrated in Lemma 1. However, following
the certainty equivalence principle for linear quadratic Gaussian
problems (see e.g., [48]), we obtain the same optimal control
feedback gain as the deterministic case, which does not depend
on the intensity of the Brownian motion. This, together with
the non-negativity of each term in (38) under assumptions
(A1) and (A2), implies that solving the decomposed linear
quadratic control problems independently yields the optimal
feedback gain for and hence optimal solution to Problem 3.
Therefore, the optimal feedback gains are the same as those
in Theorem 1 for the linear quadratic control problems and
the optimal control is given by (23). The optimal costs for the
decomposed linear quadratic control problems are given by
(42) and (43) (see for instance [49]) and hence the optimal
cost for Problem 3 is given by (41). �

Note that the intensity of the Brownian motion does not
influence the optimal feedback gain but it effects the optimal
cost under optimal control.

Remark 4 The result of Theorem 3 generalizes to the infinite
horizon long run average cost setup and the infinite horizon
discounted cost setup in a natural manner. For each of these
setups, the optimal control law will be of the same form as
Theorem 3 but the control gains will be time homogeneous and
determined by the solution of an algebraic Riccati equation.2

D. A special case: mean-field coupling

Suppose the graph G is a complete graph (with self-loops)
with all edge weights equal to 1

n . Let M be its adjacency
matrix. Then M = 1

n1n×n has rank 1 and λ1 = 1 is the only
non-zero eigenvalue with the normalized eigenvector v1 =
1√
n

[1, . . . , 1]ᵀ. Then x1(t) = x(t)v1v1
ᵀ

= x(t)M. Thus, the
eigenstate x1i (t) = 1

n

∑n
j=1 xj(t), i ∈ N , is the same for all

subsystems and we denote it by x̄(t). Let Mq = Mr = M .
According to Theorem 1, the Riccati equation of eigensystem
is given by

− ˙̄P (t) = (A+D)
ᵀ
P̄ (t) + P̄ (t)(A+D)

− P̄ (t)(B + E)(r1R)−1(B + E)
ᵀ
P̄ (t) + q1Q, (44)

where P̄ (t) := P 1(t) and the final condition P̄ (T ) = q1QT .
The Riccati equation for the auxiliary system is given by

− ˙̆
P (t) = A

ᵀ
P̆ (t)+ P̆ (t)A− P̆ (t)B(r0R)−1B

ᵀ
P̆ (t)+ q0Q

with P̆ (T ) = q0QT . The optimal control strategy is given
by ui(t) = −K̆(t)(xi(t) − x̄(t)) − K̄(t)x̄(t), where K̆(t) =
(r0R)−1BᵀP̆ (t) and K̄(t) = (r1R)−1(B + E)ᵀP̄ (t).

The above result is similar in spirit to [23, Theorem 1 and
Theorem 4], which were derived for discrete time systems.
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b
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0 a 0 b
a 0 a 0
0 a 0 b
b 0 b 0


Fig. 2: Graph G with n = 4 nodes and its adjacency matrix

VII. ILLUSTRATIVE EXAMPLES

A. Adjacency matrix coupling

Consider a network with n = 4 subsystems connected over
a graph G, as shown in Fig. 2, with its adjacency matrix as the
coupling matrix M . Note that L = rank(M) = 2. Consider
the following couplings in the cost

G = I − 2M +M2 and H = I. (45)

For the ease of notation define ρ =
√

2(a2 + b2) and
θ = tan−1(b/a). Then it is easy to verify that the non-
zero eigenvalues of M are λ1 = −ρ and λ2 = ρ. The
corresponding eigenvectors are v1 =

[
− 1

2
sin(θ)√

2
− 1

2
cos(θ)√

2

]ᵀ
and v2 =

[
1
2

sin(θ)√
2

1
2

cos(θ)√
2

]ᵀ
. Observe that q` = (1− λ`)2 is

non-negative and r` = 1 is strictly positive, ` ∈ {1, 2}. Thus
the model satisfies assumption (A2).

To illustrate how to use the result of Theorem 1, let’s pick
a subsystem, say subsystem 1, and consider the calculations
that need to be carried out at that subsystem. Recall that for
all i ∈ N , x`i(0) = x(0)v`v`i . Thus

x11(0) =
1

4
x1(0)− sin(θ)

2
√

2
x2(0) +

1

4
x3(0)− cos(θ)

2
√

2
x4(0),

x21(0) =
1

4
x1(0) +

sin(θ)

2
√

2
x2(0) +

1

4
x3(0) +

cos(θ)

2
√

2
x4(0).

Following the mixed implementation with information structure
3) described in Section IV-A, subsystem 1 can calculate the
trajectory for x11(t), x21(t), t ∈ (0, T ] based on the initial
conditions. This together with real time local observation x1(t)
yields x̆1(t).

Subsystem 1 solves three Riccati equations to compute P 1(t),
P 2(t), and P̆ (t) for t ∈ [0, T ], and then applies the optimal
control action given by

u1(t) = −R−1
(
B
ᵀ
P̆ (t)x̆1(t) + (B − ρE)

ᵀ
P 1(t)x11(t)

+ (B + ρE)
ᵀ
P 2(t)x21(t)

)
according to Theorem 1. Similar implementations hold for
other subsystems.

Note that if each xi(t) ∈ Rdx then x(t) ∈ R4dx . A naive
centralized optimal solution of the above system would involve
solving a 4dx × 4dx-dimensional Riccati equation. In contrast,
the above solution involves solving three dx × dx-dimensional
Riccati equations.

Moreover, these computational savings may increase with
the size of the networks. For example, consider the graph
G4c = G ⊗ Kc with 4c nodes, where G is the 4-node graph
shown in Fig. 2 and Kc is the complete graph with c nodes

and each edge weight is 1
c where c is a positive integer. The

adjacency matrix of G4c is given by M4c = M ⊗Kc, where
M and Kc = 1

c1c×c are the adjacency matrices of graph G
and Kc respectively. The only non-zero eigenvalue of Kc is 1.
Thus, the eigenvalues of M4c are the same as eigenvalues of
M . Note that the Riccati equations in Theorem 1 only depend
on the eigenvalues. So for all different graphs G4c where c
can be any positive integer, the Riccati equations are the same.
The method proposed in Theorem 1 would require solving
the same three dx × dx-dimensional Riccati equations while
a naive direct solution would require solving a 4cdx × 4cdx-
dimensional Riccati equation.

As an illustration, we consider the graph G4c = G ⊗ Kc

where G is given in Fig. 2 with weights a = 2 and b = 1.
Recall that G and H are given by (45). As argued above, the
matrix M4c has two non-zero eigenvalues and the optimal
control at each subsystem can be obtained by solving only
3 Riccati equations. Let us set c = 5. Then M20 = M⊗ 1

515×5.

Example 1: We consider a network of coupled harmonic
oscillators where for subsystem i ∈ N , the state is given
by xi = [θi, ωi]

ᵀ representing the angle and angular velocity,
and the control ui represents the input force. Thus dx = 2
and du = 1. Consider Problem 1 with 20 coupled harmonic
oscillators on G20 where the coupling matrix is the adjacency
matrix M20 of the graph G20 and the parameters are

A =

[
0 10
−20 0

]
, B =

[
0

1.5

]
, D =

[
1 0
0 1

]
, R = 1,

E =

[
1
1

]
, Q =

[
6 0
0 6

]
, QT =

[
5 0
0 5

]
, T = 2.

(46)
The result is illustrated in Fig. 3.

Fig. 3: Numerical example under the proposed optimal control
on a network of 20 coupled harmonic oscillators with T = 2.

B. Adjacency matrix coupling for stochastic systems

We consider the same model as in the previous section, but
assume that the system dynamics are stochastic. In particular,
we consider the graph G20 in Section VII-A.

Example 2: Consider the stochastic generalization of Example

1 with F =

[
1 0
0 1

]
. All other parameters are the same as

those in Example 1. A simulation result is given in Fig. 4.
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Fig. 4: Numerical example with additive noise under the
proposed optimal control on a network of 20 coupled harmonics
oscillators with time horizon T = 2.

C. Laplacian matrix coupling

We now consider examples where the coupling matrix
M is the Laplacian matrix of the underlying graph G20 in
Section VII-A.
Example 3: Consider Problem 1 with 20 coupled harmonic
oscillators on G20 where dx = 2, du = 1, the coupling matrix
is the Laplacian matrix L := diag(M20120) − M20 of the
graph G20, and the parameters are given by G = L2, H = I
and (46). The graph G20 is connected and hence the rank of L
is 19. However, there are only 5 distinct non-zero eigenvalues.
Therefore, the solution following Theorem 1 requires solving
5 + 1 decoupled scalar Riccati equations (see Remark 2). In
contrast, a direct centralized solution requires solving a 20×20
dimensional matrix Riccati equation. Note that, the solution
to the auxiliary Riccati equation is P̆ (t) = 0 for all t ∈ [0, T ],
which implies the control signal in the auxiliary direction
should alway be zero (see the auxiliary control in Fig. 5). The
simulation result is illustrated in Fig. 5.

Fig. 5: Numerical example with Laplacian matrix coupling
under the proposed optimal control on a network of 20 coupled
harmonics oscillators over the time horizon T = 2.

VIII. CONCLUSION

We consider the optimal control of network-coupled subsys-
tems where the dynamics and cost couplings depend on three
symmetric coupling matrices that share the same set of eigen-
vectors. The main idea of a low-dimensional decomposition is
to project the state x(t) into L orthogonal eigendirections where
L denotes the number of linearly independent eigendirections
associated with non-zero eigenvalue triples of the coupling
matrices. This projection generates L eigenstates {x`(t)}L`=1

and an auxiliary state x̆(t) = x(t) −
∑L

`=1 x
`(t). A similar

decomposition is obtained for the control inputs. These L+ 1

components are decoupled both in dynamics and cost. There-
fore, the optimal control input for each component can be
obtained by solving decoupled Riccati equations.

The proposed approach requires solving at most L+ 1
Riccati equations, each of dimension dx × dx. If, furthermore,
some of the non-zero eigenvalue triples are repeated and
the coupling matrix has only Ldist (with Ldist ≤ L ≤ n)
distinct non-zero eigenvalue triples, then the proposed approach
only requires solving Ldist + 1 decoupled Riccati equations.
In contrast, a naive centralized solution requires solving an
ndx × ndx-dimensional Riccati equation. Thus, even when
Ldist = n, the proposed approach leads to considerable
computational savings. These savings improve significantly
when Ldist � n, as is the case for adjacency matrices for many
real-world networks.

The proposed approach requires spectral decompositions
of the coupling matrices. For some matrices, spectral decom-
positions can be obtained analytically [50], e.g., when M is
the adjacency or Laplacian matrix of a complete graph or
those of an undirected circulant graph. For others, the spectral
decompositions can be approximated via graphons ([38]).
However, in general, the spectral decomposition will need
to be computed numerically, which typically has a complexity
of O(n3) (e.g., using QR iterations with Householder transfor-
mation [51, p. 213]). Even when the spectral decomposition
needs to be computed numerically, the approach proposed in
this paper leads to computational savings. Solving an algebraic
Riccati equation (in the infinite horizon setting) with state
dimension dx has a complexity1 of O(d3x). Hence the com-
plexity of our solution, including the spectral decomposition,
is O(n3) +O(Ldistd

3
x). In contrast, the complexity of a naive

centralized solution is O(n3d3x).
Future directions of this work include: 1) models where the

subsystems have different local dynamics, 2) models where
the coupling matrices only admit an approximate low-rank
representations, and 3) models with non-linear local dynamics.
Some generalizations of the coupling structure using the
common invariant subspace property appear in [38]. A learning
algorithm which exploits the spectral decomposition proposed
in this paper appears in [53].
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APPENDIX

A. Preliminary properties of the state decomposition

Lemma 2 Let k be a positive integer k and `, `′ ∈ {1, . . . , L}.
Let the pair (M̄, λ̄`) represent (M,λ`), (Mr, λ

`
r) or (Mq, λ

`
q).

Then, under Assumption (A0), we have the following:
(P1) x`(t)M̄ = λ̄`x`(t) and u`(t)M̄ = λ̄`u`(t).

(P2) x`(t)M̄k = (λ̄`)kx`(t) and u`(t)M̄k = (λ̄`)ku`(t).

(P3) x`(t)G = q`x`(t) and u`(t)H = r`u`(t).

(P4) x̆(t)M̄ = 0 and ŭ(t)M̄ = 0.

(P5) x̆(t)M̄k = 0 and ŭ(t)M̄k = 0.

(P6) x̆(t)G = q0x̆(t) and ŭ(t)H = r0ŭ(t).

(P7) x(t)G = q0x̆(t) +
∑L

`=1 q
`x`(t) and u(t)G = r0ŭ(t) +∑L

`=1 r
`u`(t).
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(P8)
∑

i∈N x
`
i(t)
ᵀQx`

′

i (t) = δ``′
∑

i∈N x
`
i(t)
ᵀQx`

′

i (t),
where δ``′ is the Kronecker delta function.

(P9)
∑

i∈N xi(t)
ᵀQx`i(t) =

∑
i∈N x

`
i(t)
ᵀQx`i(t) and∑

i∈N ui(t)
ᵀRu`i(t) =

∑
i∈N u

`
i(t)
ᵀRu`i(t). 2

PROOF We show the result for x̆(t). The result for ŭ(t) follows
from a similar argument.

Since v1, . . . , vL are orthonormal, from (9) we have
v`v`

ᵀ
M̄ = λ̄`v`v`

ᵀ
, which implies (P1). (P2) follows im-

mediately from (P1) and (P3) follows from (P2).
(P4) follows immediately from the definition of x̆(t), (14)

and (P1). (P5) follows immediately from (P4) and (P6) follows
from (P5). (P7) follows from (18), (P3) and (P6). To prove
(P8), we observe that (10) implies that∑

i∈N
x`i(t)

ᵀ
Qx`

′

i (t) =
∑
i∈N

v`iv
`ᵀx(t)

ᵀ
Qx(t)v`

′
v`

′

i

ᵀ

=
(∑
i∈N

v`iv
`′

i

)
v`
ᵀ
x(t)

ᵀ
Qx(t)v`

′
. (47)

Since v1, . . . , vL is orthonormal, we get
∑

i∈N v
`
iv

`′

i =

v`
ᵀ
v`

′
= δ``′ . Substituting this in (47) completes the proof of

(P8). To prove (P9) observe that∑
i∈N

xi(t)
ᵀ
Qx`i(t) =

∑
i∈N

xi(t)
ᵀ
Qx(t)v`v`i

=
∑
i∈N

v`ixi(t)
ᵀ
Qx(t)v` = v`

ᵀ
x(t)

ᵀ
Qx(t)v`. (48)

From (47), we get that the expression in (48) is equal to∑
i∈N x

`
i(t)
ᵀQx`i(t). �

Lemma 3 Let P , x, and y be defined in (20). Let Pi denote
the i-th column of P . Then, we can write

〈x, y〉P =
∑
i∈N

x
ᵀ
i yPi or 〈x, y〉P =

∑
j∈N

P
ᵀ
j x
ᵀ
yj .

2

PROOF The result follows from the definition of 〈x, y〉P . �

B. Proof for Proposition 2

We consider the terms depending on x(t). The term depend-
ing on u(t) may be simplified in a similar manner.

From (18) and linearity of 〈·, ·〉G in both arguments, we get

〈x(t), Qx(t)〉G =
〈
x̆(t) +

L∑
`=1

x`(t), Q
(
x̆(t) +

L∑
`=1

x`(t)
)〉

G

= 〈x̆(t), Qx̆(t)〉G + 2
〈 L∑
`=1

x`(t), Qx̆(t)
〉
G

+
〈 L∑
`=1

x`(t), Q
( L∑
`=1

x`(t)
)〉

G
. (49)

From Lemma 3 and (P6), the first term of (49) simplifies to

〈x̆(t), Qx̆(t)〉G = q0
∑
i∈N

x̆i(t)
ᵀ
Qx̆i(t), (50)

and the second term simplifies to〈 L∑
`=1

x`(t), Qx̆(t)
〉
G

= q0
∑
i∈N

L∑
`=1

x`i(t)
ᵀ
Qx̆i(t)

= q0

L∑
`=1

∑
i∈N

x`i(t)
ᵀ
Q
(
xi(t)−

L∑
`′=1

x`
′

i (t)
)

(a)
= q0

L∑
`=1

∑
i∈N

(
x`i(t)

ᵀ
Qx`i(t)− x`i(t)

ᵀ
Qx`i(t)

)
= 0,

where (a) follows from (P8) and (P9). From Lemma 3 and
(P3), the third term of (49) simplifies to〈 L∑

`=1

x`(t), Q
( L∑
`=1

x`(t)
)〉

G

=
∑
i∈N

L∑
`=1

x`i(t)
ᵀ
Q
( L∑
`′=1

q`
′
x`

′

i (t)
)

=

L∑
`=1

∑
i∈N

x`i(t)
ᵀ
Q
( L∑
`′=1

q`
′
x`

′

i (t)
)

(b)
=

L∑
`=1

∑
i∈N

q`x`i(t)
ᵀ
Qx`i(t), (51)

where (b) follows from (P8). We get the result by substitut-
ing (50)–(51) in (49).
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