
Approximate information state for partially observed systems

Jayakumar Subramanian and Aditya Mahajan

Abstract— The standard approach for modeling partially
observed systems is to model them as partially observable
Markov decision processes (POMDPs) and obtain a dynamic
program in terms of a belief state. The belief state formulation
works well for planning but is not ideal for online reinforcement
learning because the belief state depends on the model and, as
such, is not observable when the model is unknown.

In this paper, we present an alternative notion of an informa-
tion state for obtaining a dynamic program in partially observed
models. In particular, an information state is a sufficient
statistic for the current reward which evolves in a controlled
Markov manner. We show that such an information state leads
to a dynamic programming decomposition. Then we present
a notion of an approximate information state and present
an approximate dynamic program based on the approximate
information state. Approximate information state is defined
in terms of properties that can be estimated using sampled
trajectories. Therefore, they provide a constructive method
for reinforcement learning in partially observed systems. We
present one such construction and show that it performs better
than the state of the art for three benchmark models.

I. INTRODUCTION

The theory of Markov decision processes focuses primar-
ily on systems with full state observation. When systems with
partial state observations are considered, they are converted
to systems with full state observations by considering the
belief state (which is the posterior belief on the state of
the system given the history of observations and actions).
Although this leads to an explosion in the size of the state
space, the resulting value function has a nice property—it is
piecewise linear and convex in the belief state [1]—which
is exploited to develop efficient algorithms to compute the
optimal policy [2], [3]. Thus, for planning, there is little value
in studying alternative characterizations of partially observed
models.

However, the belief state formulation is not as nice a
fit for online reinforcement learning. Part of the difficulty
is that the construction of the belief state depends on the
system model. So, when the system model is unknown, the
belief state cannot be constructed using the observations.
Therefore, critic based methods are not directly applicable.
There are some results that circumvent this difficulty [4]–
[6]. However, many of the recent results suggest that using
RNNs (Recurrent Neural Networks [7]) or LSTMs (Long
Short Term Memories [8]) for modeling the policy function
(actor) and/or the action-value function (critic) works for
reinforcement learning in partially observed systems [9]–
[14]. In this paper, we present a rigorous theory for planning

J. Subramanian and A. Mahajan are with the Faculty of Electri-
cal & Computer Engineering, McGill University, Montreal QC H3A
0E9, Canada jayakumar.subramanian@mail.mcgill.ca
aditya.mahajan@mcgill.ca

and learning in partially observed models using the notions
of information state and approximate information state. We
then present numerical experiments that show that the ap-
proximate information state based works well on benchmark
models.

II. MODEL

A general system with partial observations may be rep-
resented using the following stochastic input-output model.
Consider a system that takes two inputs: a control input
Ut ∈ U and a stochastic input Wt ∈ W and generates
two outputs: an observation Yt ∈ Y and a real-valued
reward Rt. The spaces W , U , and Y are Banach spaces and
the stochastic inputs (W1, . . . ,WT) are independent random
variables defined on a common probability space.

Remark 1 For ease of exposition, we ignore measurability
and present our main arguments informally. We assume that
W , U , and Y are finite sets. The arguments can be made
rigorous using standard methods [15]. 2

Formally, we assume that there are observation functions
{ft}Tt=1 and reward functions {rt}Tt=1 such that

Yt+1 = ft(Y1:t, U1:t,Wt) and Rt = rt(Y1:t, U1:t,Wt).

An agent observes the history Ht = (Y1:t, U1:t−1) of
observations and control inputs until time t and chooses the
control input

Ut = πt(Ht)

according to some history dependent policy π := {πt}Tt=1.
The performance of policy π is given by

J(π) = Eπ
[T∑
t=1

Rt

]
. (1)

The objective of the agent is to choose a policy π to
maximize the expected total reward J(π).

A. A dynamic programming decomposition

In this section, we present a dynamic program for (1)
which uses the history of observations and actions as state.
Such a dynamic program is not efficient for computing the
optimal policy but it will serve as a reference for the rest of
the analysis.

First consider the dynamic program for computing the
value of any policy π. In particular, define the reward-to-
go function as

Jt(ht;π) := Eπ
[T∑
s=t

Rs

∣∣∣∣ Ht = ht

]
. (2)

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 1629

From definitions in (1) and (2), we have

J(π) = E[J1(H1;π)].

Thus, the dynamic program (3) gives a recursive method to
compute J(π).

Let JT+1(hT+1;π) := 0. Then, the reward to go functions
can be computed recursively as follows:

Jt(ht;π)
(a)
= Eπ

[
Rt + E

[T∑
s=t+1

Rs

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
= Eπ

[
Rt + Jt+1(Ht+1;π)

∣∣ Ht = ht
]
, (3)

where (a) follows from the towering property of conditional
expectation and the fact that Ht ⊆ Ht+1. Note that Jt(ht;π)
only depends on the future policy (πt, . . . , πT) and not on
the past policy (π1, . . . , πt−1).

Now, recursively define the following value functions.
VT+1(hT+1) := 0 and for t ∈ {T, . . . , 1}:

Qt(ht, ut) = E[Rt + Vt+1(Ht+1) | Ht = ht, Ut = ut] (4)

and
Vt(ht) = max

ut∈U
Qt(ht, ut). (5)

Theorem 1 A policy π = (π1, . . . , πT) is optimal if and
only if it satisfies

πt(ht) ∈ arg max
ut∈U

Qt(ht, ut). (6)

PROOF To prove this, we need to show the following:
(C) At any time t, Jt(ht, π) ≤ Vt(ht), with equality if and

only if (πt, πt+1, . . . , πT) satisfy (6).
We prove this using backward induction. At t = T + 1,
(C) is satisfied by definition and this forms the basis of
induction. We assume that (C) holds for time t+1, which is
the induction hypothesis. Then for time t, we have from (3),

Jt(ht;π) = Eπ
[
Rt + Jt+1(Ht+1;π)

∣∣ Ht = ht
]

(a)

≤ Eπ
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht
]

(b)

≤ Vt(ht),

where (a) follows from the induction hypothesis and (b)
follows from the definition of the value function (5) and (4).
From the induction hypothesis, the equality in (a) is achieved
if and only if {πs}s>t satisfy (6). From (5), we see that
the equality in (b) is achieved if and only if πt(ht) ∈
argmaxu∈U Qt(ht, u), i.e., πt satisfies (6). Hence, (C) holds
at time t. ■

B. Information state and a simplified dynamic program

Let Ft = σ(Ht) denote the filtration generated by the
history of observations and control actions.

Definition 1 An information state {Zt}t≥1, Zt ∈ Z , is an
Ft adapted process (therefore, there exist functions {ϑt}Tt=1

such that Zt = ϑt(Ht)) that satisfies the following proper-
ties:

(P1) Sufficient for performance evaluation, i.e.,

E[Rt | Ht = ht, Ut = ut] =

E[Rt | Zt = ϑt(ht), Ut = ut].

(P2) Sufficient to predict itself, i.e., for any Borel subset
A of Z ,

P(Zt+1 ∈ A | Ht = ht, Ut = ut) =

P(Zt+1 ∈ A | Zt = ϑt(ht), Ut = ut).

There is no restriction on the space Z , although an
information state is useful only when the space Z is “small”
in an appropriate sense. We have assumed that the space Z
is time-homogeneous for convenience. In some situations, it
may be more convenient to construct an information state
which takes values in spaces that are changing with time.

For some models, instead of (P2), it is easier to verify the
following stronger conditions:
(P2a) Evolves in a state-like manner, i.e., there exist

measurable functions {φt}Tt=1 such that

Zt+1 = φt(Zt, Yt+1, Ut).

(P2b) Is sufficient for predicting future observations, i.e.,
for any Borel measurable subset A of Y ,

P(Yt+1 ∈ A | Ht = ht, Ut = ut) =

P(Yt+1 ∈ A | Zt = ϑt(ht), Ut = ut).

Proposition 1 (P2a) and (P2b) imply (P2). 2

PROOF For any Borel measurable subset A of Z , we have

P(Zt+1 ∈ A | Ht = ht, Ut = ut)

(a)
=

∑
yt+1∈Y

P(Yt+1 = yt+1, Zt+1 ∈ A | Ht = ht, Ut = ut)

(b)
=

∑
yt+1∈Y

1{φt(ϑt(ht), yt+1, ut) ∈ A}
× P(Yt+1 = yt+1 | Ht = ht, Ut = ut)

(c)
=

∑
yt+1∈Y

1{φt(ϑt(ht), yt+1, ut) ∈ A}
× P(Yt+1 = yt+1 | Zt = ϑt(ht), Ut = ut)

(d)
= P(Zt+1 ∈ A | Zt = ϑt(ht), Ut = ut)

where (a) follows from the law of total probability, (b)
follows from (P2a), (c) follows from (P2b) and (d) from
the law of total probability. ■

Note that Zt = Ht is always an information state, so an
information state always exists. It is straight-forward to show
that if we construct a state space model for the above input-
output model, then the belief on the state given the history
of observations and controls is an information state. Below
we present an example of a non-trivial information state that
is much simpler than the belief state.

Example 1 (Machine Maintenance) Consider a machine
which can be in one of n ordered states where the first state
is the best and the last state is the worst. The production cost

1630

increases with the state of the machine. The state evolves in a
Markovian manner. At each time, an agent has the option to
either run the machine or stop and inspect it for a cost. After
inspection, s/he may either repair it (at a cost that depends
on the state) or replace it (at a fixed cost). The objective
is to identify a maintenance policy to minimize the cost of
production, inspection, repair, and replacement.

Let τ denote the time of last inspection and Sτ denote the
state of the machine after inspection, repair, or replacement.
Then, it can be shown that (Sτ , t−τ) is an information state
for the system. 2

The main feature of an information state is that one can
always write a dynamic program based on an information
state.

Theorem 2 Let {Zt}Tt=1 be an information state. Recur-
sively define value functions {Ṽt}T+1

t=1 , where Ṽt : Zt 7→ R

as follows: ṼT+1(zT+1) = 0 and for t ∈ {T, . . . , 1}:

Q̃t(zt, ut) = E[Rt + Ṽt+1(Zt+1) | Zt = zt, Ut = ut]

Ṽt(zt) = max
ut∈U

Q̃t(zt, ut). (7)

Then, we have the following:

Qt(ht, ut) = Q̃t(ϑt(ht), ut) and Vt(ht) = Ṽt(ϑt(ht)). (8)

PROOF We prove the result by backward induction. By
construction, (8) is true at time T+1. This forms the basis of
induction. Assume that (8) is true at time t+1 and consider
the system at time t. Then,

Qt(ht, ut) = E[Rt + Vt+1(Ht+1) | Ht = ht, Ut = ut]

(a)
= E[Rt + Ṽt+1(ϑt+1(Ht+1)) | Ht = ht, Ut = ut]

(b)
= E[Rt + Ṽt+1(Zt+1) | Zt = ϑt(ht), Ut = ut]

(c)
= Q̃t(ϑt(ht), ut),

where (a) follows from the induction hypothesis, (b) follows
from the properties of information state, and (c) follows
from the definition of Q̃. This shows that the action-value
functions are equal. By maximizing over the actions, we get
that the value functions are also equal. ■

Remark 2 In light of Theorem 2, an information state may
be viewed as a generalization of the traditional notion of
state [16], [17]. Traditionally, the state of an input-output
system is sufficient for input-output mapping. In contrast,
the information state is sufficient for dynamic programming.

The notion of information state is also related to sufficient
statistics for optimal control [18]. However, in contrast
to [18], we do not assume a state space model for the under-
lying system so it is easier to develop reinforcement learning
algorithms using our notion of an information state. 2

Coming back to Example 1, Theorem 2 shows that
we can write a dynamic program for that model using
the information state (Sτ , t − τ), which takes values in
a countable set. This countable state dynamic program is
considerably simpler than the standard belief state dynamic

program typically used for that model. Another feature of
the information state formulation is that the information state
(Sτ , t− τ) does not depend on the transition probability of
the state of the machine or the cost of inspection or repair.
Thus, if these model parameters were unknown, we can use a
standard reinforcement learning algorithm to find an optimal
policy which maps (Sτ , t− τ) to current action.

Given these benefits of a good information state, it is
natural to consider a data-driven approach to identify an
information state. An information state identified from data
will not be exact and it is important to understand what is the
loss in performance when using an approximate information
state. In the next section, we present a notion of approximate
information state and bound the approximation error.

III. APPROXIMATE INFORMATION STATE (AIS)

Roughly speaking, a compression of the history is an
approximate information state if it approximately satisfies
(P1) and (P2). This intuition can be made precise as follows.

Definition 2 Given positive numbers ε and δ, an (ε, δ)-
approximate information state {Ẑt}Tt=1, where Ẑt takes
values in a in a Polish metric space (Ẑ, d), is an Ft adapted
process (therefore, there exist functions {ϑ̂t}Tt=1 such that
Ẑt = ϑ̂t(Ht)) that satisfies the following properties:
(AP1) Sufficient for approximate performance evalua-

tion, i.e.,∣∣E[Rt | Ht = ht, Ut = ut]−
E[Rt | Ẑt = ϑ̂t(ht), Ut = ut]

∣∣ ≤ ε.

(AP2) Sufficient to predict itself approximately. For any
Borel subset A of Ẑ define,

µt(A) = P(Ẑt+1 ∈ A | Ht = ht, Ut = ut)

and

νt(A) = P(Ẑt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut).

Then,
K(µt, νt) ≤ δ,

where K(·, ·) denotes the Wasserstein or Kantorovich-
Rubinstein distance1 between two distributions. 2

Remark 3 Kantorovich-Rubinstein duality [19] states that
for any probability measures µ and ν on X ,

K(µ, ν) = sup
∥f∥Lip≤1

∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣
where ∥f∥Lip denotes the Lipschitz constant of a function f
(with respect to the metric d). This along with (P2) imply

1Let (X , d) be a Polish metric space. For any two probability measures
µ, ν on X , the Wasserstein distance between µ and ν is:

K(µ, ν) = inf
π∈Π(µ,ν)

∫
X

d(x, y)dπ(x, y)

where Π represents the product space of the two distributions.

1631

that for a Lipschitz continuous function V̂ : Ẑ → R with
Lipschitz constant LV (with respect to the metric d),∣∣E[V̂ (Ẑt+1)|Ht = ht, Ut = ut]−

E[V̂ (Ẑt+1)|Ẑt = ϑ̂t(ht), Ut = ut]
∣∣ ≤ LV δ.

Our main result is that one can write an approximate
dynamic program based on an approximate information state.

Theorem 3 Let {Ẑt}Tt=1 be an (ε, δ)-approximate infor-
mation state. Recursively define value functions {V̂t}T+1

t=1 ,
where V̂t : Ẑt 7→ R as follows: V̂T+1(ẑT+1) = 0 and for
t ∈ {T, . . . , 1}:

Q̂t(ẑt, ut) = E[Rt + V̂t+1(Ẑt+1) | Ẑt = ẑt, Ut = ut]

V̂t(ẑt) = max
ut∈U

Q̂t(ẑt, ut). (9)

Suppose V̂t is Lipschitz continuous with Lipschitz constant
LV . Then, we have the following:

|Qt(ht, ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε

|Vt(ht) = V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.
(10)

PROOF We prove the result by backward induction. By
construction, (10) is true at time T+1. This forms the basis of
induction. Assume that (10) is true at time t+1 and consider
the system at time t. Let C = (T − t − 1)(ε + LV δ) + ε.
Then,

Qt(ht, ut) = E[Rt + Vt+1(Ht+1) | Ht = ht, Ut = ut]

(a)

≤ E[Rt + V̂t+1(ϑ̂t+1(Ht+1)) | Ht = ht, Ut = ut] + C

(b)

≤
(
E[Rt | Ẑt = ϑ̂t(ht), Ut = ut] + ε

)
+
(
E[V̂t+1(Ẑt+1) | Ẑt = ϑ̂t(ht), Ut = ut] + LV δ

)
+ C

= Q̂t(ϑ̂t(ht), ut) + (T − t)(ε+ LV δ) + ε.

where (a) follows from the induction hypothesis and (b)
follows from (AP1) and Remark 3. The reverse inequality
can be proven using a similar argument. By maximizing
over actions, we get the relationship between the value
functions. ■

Based on Prop. 1, we provide an alternative characteri-
zation of an approximate information state. We can replace
(AP2) with the following stronger conditions:
(AP2a) Evolves in a state-like manner, i.e., there ex-

ist measurable functions {φ̂t}Tt=1 such that Ẑt+1 =
φ̂t(Ẑt, Yt+1, Ut). Moreover, these functions are Lips-
chitz in Y with Lipschitz constant LU .

(AP2b) Is sufficient for predicting future observations
approximately. For any Borel subset A of Y define,
µt(A) = P(Yt+1 ∈ A | Ht = ht, Ut = ut) and
νt(A) = P(Yt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut). Then,
K(µt, νt) ≤ δ,

Proposition 2 If (AP2) is replaced by (AP2a) and (AP2b),
the result of Theorem 3 holds with LV replaced by LULV .2

PROOF If (AP2) is replaced by (AP2a) and (AP2b), the
statement of Remark 3 holds with LV replaced by LULV .
Using this in Theorem 3 gives the desired result. ■

Corollary 1 Suppose {Zt}Tt=1 is an information state and
{Ẑt}Tt=1 is an (ε, δ)-approximate information state. Then for
any realization ht of Ht, we have the following:

|Qt(ϑt(ht), ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε

|Vt(ϑt(ht))− V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.
(11)

PROOF The result follows from Theorems 2 and 3. ■

A. Replacing Wasserstein distance by total variation

It is possible to replace the Wasserstein distance in (AP2)
by the total variation distance2 ∥µt − νt, ∥TV . In particular,
suppose we define an (ε, δ)-approximate information state as
a process that satisfies (AP1) and

∥µt − νt∥TV ≤ δ.

Then there are two ways to bound the approximation error
in this case:

1) In Theorem 3, we replace the condition that V̂t is Lip-
schitz with the condition that V̂t is uniformly bounded
and LV denotes the sup-norm of Vt, i.e., LV =
∥V̂ ∥∞ := supẑ∈Ẑ |V̂ (ẑ)|. This result holds because,
∥µt − νt∥TV < δ implies that for any function V̂t:∣∣∣∫

Ẑ
V̂tdµt −

∫
Ẑ
V̂tdνt

∣∣∣ ≤ ∥V̂t∥∞δ.

2) If Ẑ is a bounded metric space with diameter D,
then [19, Case 6.16] gives:

K(µ, ν) ≤ D∥µ− ν∥TV .

Thus, the result of Theorem 3 holds with δ replaced by
Dδ.

B. Remarks and discussion

• The notion of approximate information state is related
to predictive state representation (PSR) [5], which pre-
dicts a distribution on the future observations given
the current history and future actions. Thus, PSR is a
state sufficient for input-output models. However, PSR
does not predict future rewards, so it is not sufficient
for performance evaluation, and therefore, for dynamic
programming.

• The notion of information state is also related to
bisimulation based equivalence [20], which constructs
an equivalence in the belief state that is sufficient for
dynamic programming. In principle, the bisimulation
equivalence may be relaxed using bisumulation met-
rics [21] to obtain an approximate information state.

2The total variance metric between two probability measures µ and ν is:

∥µ− ν∥TV := sup
f :∥f∥∞≤1

∣∣∣∫ f(x)µ(dx)−
∫

f(x)ν(dx)
∣∣∣.

1632

The key difference in our definition of information state
is that we do not assume a state space model. So,
an approximate information state is a compression of
the history and not just a compression of the beliefs.
Therefore, it is easier to develop reinforcement learning
algorithms based on approximate information state.

• A reinforcement learning algorithm based on properties
very similar to our definition of approximate informa-
tion state was presented in [14]. However, that paper
did not include an approximation result similar to The-
orem 3 and, therefore, did not provide any performance
guarantees.

C. Relationship to state aggregation

Suppose the approximate information state is a compres-
sion of an information state Zt, rather than the history Ht.
In particular, there exist measurable functions ϑ̃t such that
Ẑt = ϑ̃t(Zt). Such a compression is called a state-based
(ε, δ) approximate information state if:

1)
∣∣E[Rt | Zt = zt, Ut = ut]

− E[Rt | Ẑt = ϑ̃t(zt), Ut = ut]
∣∣ ≤ ε.

2) Let µt(A) = P(Ẑt+1 ∈ A | Zt = zt, Ut = ut) and
νt(A) = P(Ẑt+1 ∈ A | Ẑt = ϑ̃t(zt), Ut = ut). Then
K(µt, νt) ≤ δ.

Then, similar to Theorem 3, we can show that:

|Qt(zt, ut)− Q̂t(ϑ̃t(zt), ut)| ≤ (T − t)(ε+ LV δ) + ε

|Vt(zt) = V̂t(ϑ̃t(zt))| ≤ (T − t)(ε+ LV δ) + ε.

These bounds are similar to bounds for aggregating Markov
decision processes obtained in [22].

IV. EXTENSION TO INFINITE HORIZON

In this section, we explain how to extend the notions of
information state and approximate information state to infi-
nite horizon discounted reward setup where the performance
of a policy is given by

J∞(π) = Eπ
[∞∑
t=1

βt−1Rt

]
,

where β ∈ (0, 1) is the discount factor. Such an extension is
non-trivial because we do not assume a state space model for
the system. So in the infinite horizon case, the history depen-
dent dynamic program (3) cannot be written as the fixed point
of a time-homogeneous contractive operator. Nonetheless, we
show that when the per-step reward is uniformly bounded,
the obvious extensions of the information state to infinite
horizon works.

A. Information state for infinite horizon

Definition 3 An Ft-adapted process {Zt}t≥1 is an informa-
tion state for infinite horizon if, in addition to satisfying (P1)
and (P2), it satisfies the following:
(S) The expectation E[Rt|Zt = ϑt(Ht), Ut = ut] and the

transition kernel P(Zt+1 ∈ A|Zt = ϑt(Ht), Ut = ut)
are time-homogeneous.

We refer to such a process as time-homogeneous information
state. 2

In time-homogeneous infinite horizon POMDPs, the belief
state is an information state because it satisfies (P1) and (P2)
and also satisfies (S).

For any time-homogeneous information state, define the
Bellman operator B : [Z → R] → [Z → R] as follows: for
any uniformly bounded function V : Z → R

[BV](z) = max
u∈U

E[Rt + βV (Zt+1)|Zt = z, Ut = u]. (12)

Because of (S), the expectation on the right hand side does
not depend on time. Due to discounting, the operator B is
a contraction and therefore, if the rewards are uniformly
bounded, the following fixed point equation has a unique
bounded solution:

V = BV. (13)

Let V ∗ be the fixed point and π∗ be any policy such that
π∗(z) achieves the arg max in the right hand side of (12)
for [BV ∗](z). Is is easy to see that V ∗ is the performance
of the time homogeneous policy (π∗, π∗, . . .). However, it is
not obvious that V ∗ equals to the optimal performance JOPT

(defined below), because the proof of Theorem 2 relies on
backward induction and is not applicable to infinite horizon
models. So, we present an alternative proof below.

Theorem 4 Let {Zt}t≥1 be a time-homogeneous infor-
mation state process. Suppose the rewards are uniformly
bounded and lie in the interval [0,M]. Let V ∗ be the unique
bounded fixed point of the Bellman operator B. Fix a starting
time s and let JOPT

s denote the optimal performance from
time s onwards, i.e.,

JOPT
s (hs) := max

π
Eπ

[∞∑
t=s

βt−s−1Rt

∣∣∣ Hs = hs

]
, (14)

where the maximum is over all (possibly randomized) history
dependent policies. Then, JOPT

s (hs) = V ∗(ϑs(hs)). 2

PROOF Fix a time T > s and let

JOPT
s,T (hs) := max

π
Eπ

[T∑
t=s

βt−s−1Rt

∣∣∣ Hs = hs

]
be the optimal performance for the time interval [s, T]. Note
that JOPT

s,∞ = JOPT
s .

Let V (0) = 0 and iteratively define V (n+1) =
BV (n). From Theorem 1, we know that JOPT

s,T (hs) =

V (T−s)(ϑs(hs)). Now, we consider two directions:
• We first derive a lower bound on JOPT

s,∞. Note that

JOPT
s,∞(hs) = max

π
E

[∞∑
t=s

βt−s−1Rt

∣∣∣∣ Hs = hs

]

≥ max
π

E

[T∑
t=s

βt−s−1Rt

∣∣∣∣ Hs = hs

]
= JOPT

s,T (hs) = V (T−s)(ϑs(hs)). (15)

1633

• Next, we derive an upper bound on JOPT
s,∞. Note that

JOPT
s,∞(hs) = max

π
E

[∞∑
t=s

βt−s−1Rt

∣∣∣∣ Hs = hs

]

≤ max
π

E

[T∑
t=s

βt−s−1Rt

∣∣∣∣ Hs = hs

]
+

∞∑
t=T+1

βt−s−1M

= JOPT
s,T (hs) +

βT

1− β
M

= V (T−s)(ϑs(hs)) +
βT

1− β
M. (16)

Combining (15) and (16), we get

V (T−s)(ϑs(hs)) ≤ JOPT
s,T (hs) ≤ V (T−s)(ϑs(hs))+

βT

1− β
M.

(17)
Recall that B is a contraction. Therefore, limT→∞ V (T−s) =
V ∗. Hence, the result follows from (17) by taking the limit
T → ∞. ■

B. Approximate information state for infinite horizon

Definition 4 An Ft-adapted process {Ẑt}t≥1 is a (ε, δ)-
approximate information state for infinite horizon if, in addi-
tion to satisfying (AP1) and (AP2), it satisfies the following:

(AS) The expectation E[Rt|Ẑt = ϑ̂t(Ht), Ut = ut] and the
transition kernel P(Ẑt+1 ∈ A|Ẑt = ϑ̂t(Ht), Ut = ut)
are time-homogeneous.

We refer to such a process as time-homogeneous approxi-
mate information state. 2

If Ẑ is a compact subset of the Euclidean space with diameter
dmax and the per step reward is bounded by Rmax, then any
Ẑ valued process satisfies ε ≤ Rmax and δ ≤ dmax. Thus,
any compression is a (Rmax, dmax) approximate information
state.

As before, define the Bellman operator B̂ : [Ẑ → R] →
[Ẑ → R] as follows: for any uniformly bounded function
V : Ẑ → R,

[B̂V](ẑ) = max
u∈U

E[Rt + βV (Ẑt+1)|Ẑt = ẑ, Ut = u]. (18)

Because of (AS), the expectation on the right hand side does
not depend on time. Then, similar to Theorem 4, we can
establish the following.

Theorem 5 Let {Ẑt}∞t=1 be a time-homogeneous (ε, δ)-
approximate information state. Suppose the rewards are
uniformly bounded. Let V̂ ∗ be the unique bounded fixed
point of V = B̂V . Suppose V̂ ∗ is Lipschitz continuous with
Lipschitz constant LV . Then,

|JOPT
s (hs)− V ∗(ϑ̂t(hs))| ≤

ε+ βLV δ

1− β
.

PROOF The proof follows by combining ideas from Theo-
rems 3 and 4. ■

V. REINFORCEMENT LEARNING USING APPROXIMATE
INFORMATION STATE

In this section, we use an approximate information state to
design reinforcement learning algorithms for infinite horizon
POMDPs. We split our approach into two steps—a data-
driven approach to construct an approximate information
state and reinforcement learning using this approximate
information state.

A. Constructing an approximate information state

The definition of approximate information state suggests
two ways to construct an information state from data: either
use ϑ̂(ht) to determine an approximate information state that
satisfies conditions (AP1) and (AP2) or conditions (AP1),
(AP2a), and (AP2b). The first approach is more efficient,
but the second is easier to understand. So we first describe
the latter and then the former.

Note that training a network requires the control inputs
{Ut}t≥1. In this section, we assume that the control and
the observations have been generated according to a pure
exploration policy. In the next section, we will consider the
case when policy is being learned along with the approximate
information state.

1) Construction based on (AP1), (AP2a) and (AP2b): We
use two function approximators:

• A recurrent neural network (RNN) or its refinements
such as LSTM (Long Short-Term Memory) [8] or GRU
(Gated Recurrent Unit) [23] with state Ct−1 = Ẑt−1,
inputs (Yt, Ut−1) and output Ẑt. We denote this function
approximator by ρ.

• A feed forward network with inputs (Ẑt, Ut) and output
(R̃t, ν̃t+1), where R̃t is a prediction of the expected
reward and ν̃t+1 is the prediction of νt+1, the distri-
bution of the next observation Yt+1. We parameterize
ν̃t+1 as multi-variate Gaussain. We denote this function
approximator as ψ.

By construction ρ satisfies (AP2a). To minimize the ε in
(AP1), we define the loss functions

LR =
1

B

B∑
t=1

smoothL1(R̃t −Rt),

where B is the batch size and

smoothL1(x) =

{
1
2x

2 if |x| < 1

|x| − 1
2 otherwise,

is the standard smooth approximation for L1 loss. To mini-
mize the δ in (AP2), we define the loss function

Lν = −
B−1∑
t=1

log(ν̃t+1(Yt+1)),

which is the negative log likelihood loss for ν̃t and thus
approximates the KL-divergence between µt and νt. We
use the KL-divergence as a surrogate for the Wasserstein
distance because: (i) Wasserstein distance is computationally
expensive to compute; and (ii) KL-divergence upper bounds

1634

RNN: 𝜌
NN: 𝜋𝜃 Softmax

NN: 𝜓

State: 𝐶𝑡−1

𝑌𝑡

𝑈𝑡−1 𝜂𝑡

�̂�𝑡

𝑈𝑡

To environment

�̃�𝑡

�̃�𝑡+1

Fig. 1: Neural network based function approximators for RL
using AIS.

the total variation (due to Pinsker’s inequality), which in turn
upper bounds Wasserstein distance for metric spaces with
bounded diameter. To train the networks ρ and ψ, we use a
weighted combination of these losses to get a single scalar
loss:

Lρ,ψ = λLR + (1− λ)Lν (19)

where λ ∈ [0, 1] is a hyperparameter.
2) Construction based on (AP1) and (AP2): We use two

function approximators:
• A recurrent neural network (RNN) or its refinements

such as LSTM (Long Short-Term Memory) [8] or GRU
(Gated Recurrent Unit) [23] with state Ct−1, inputs
(Yt, Ut−1) and output Ẑt. We denote this function
approximator by ρ.

• A feed forward network as in the previous case, except
that ν̃t+1 is the prediction of νt+1, the distribution of
the next approximate information state Ẑt+1. We denote
this function approximator as ψ.

Note that we do not require Ct−1 = Ẑt−1 in this case. This is
because to satisfy (AP2), the approximate information state
just needs to be a function of the history, and not necessarily
evolve in a state-like manner. To minimize ε and δ, we train
the networks ρ and ψ using the loss function Lρ,ψ defined
in (19), where LR is as before and

Lν = −
B−1∑
t=1

log(ν̃t+1(Ẑt+1)). (20)

B. Reinforcement learning

In this section, we present an approach to use the ap-
proximate information state for reinforcement learning. Let
πθ : Ẑt 7→ ∆(Ut) be a parametrized stochastic policy, where
the parameters θ lie in a closed convex set Θ. For example,
πθ could be a feed forward neural network with input Ẑt
and output to be a |Ut| dimensional vector η, which forms
the input to a softmax function, that can be written as:

πθ(u|ẑ) =
exp(τηu)∑
w∈U exp(τηw)

, (21)

where τ is a hyperparameter. In such a policy, θ corresponds
to the weights of the network. The basic idea behind policy
based reinforcement learning is to get sample path based
estimates of the performance gradient ∇θJ , which is then
used as a gradient loss function for updating the parameters
θ using stochastic gradient descent.

An architecture for combining the construction of the
approximate information state with reinforcement learning is

shown in Fig. 1. In this architecture, we train the networks
(ρ, ϕ) and πθ in parallel using a two time-scale algorithm. In
particular, by a slight abuse of notation, let ρ and ψ denote
the weights of the corresponding networks. Then,[
ρk+1

ψk+1

]
=

[
ρk
ψk

]
+ak∇ρ,ψLρ,ψ and θk+1 = θk+bk∇θJ(πθk),

where the learning rates {ak}k≥1 and {bk}k≥1 satisfy the
standard two time-scale stochastic approximation condi-
tions [24].

VI. NUMERICAL EXPERIMENTS

In this section, we use the approximate information
state based reinforcement learning for three small dimen-
sional POMDP benchmarks: voicemail [25], tiger [2] and
4× 4 grid [26]. See [27] for the details of the environments.

We use the approach described in Sec. V-A.2, with the
following choices for the networks:

• The ρ network is a two layer recurrent neural network,
where the input is one-hot encoded, the first layer is a
fully connected layer with 5 neurons and tanh activation
and the second layer is a GRU layer with 5 neurons.
This network outputs Ẑt as the state of the GRU cell.

• The ψ network has two parts—one for R̃t and one for
ν̃t+1. Both these parts are two layer feedforward neural
networks, where the input is an approximate information
state and one-hot encoded action, the first layer is a
fully connected layer with 5 neurons and tanh activation
and the second layer is a fully connected layer with
a single neuron for R̃t and 5 neurons for ν̃t+1. This
network outputs R̃t and the mean for a 5 dimensional
multi-variate Gaussian distribution with unit variance as
a parameterized distribution for ν̃t+1.

• The policy network πθ is a two layer feedforward neural
network, where the input is an approximate information
state, the first layer is a fully connected layer with 5
neurons and tanh activation and the second layer is a
fully connected layer with |U| neurons. The output of
this network are the parameters of a |U| dimensional
softmax distribution.

We train these networks for β = 0.95, λ = 10/11,
B = 300 and {ak}k≥1 and {bk}k≥1 chosen according to
ADAM(0.1) and ADAM(0.08) [28] respectively. The per-
formance gradients are estimated using REINFORCE [29].
The plots for 500 iterations of the algorithm are shown in
Fig. 2. We compare our performance with recurrent policy
gradient (RPG) [11] algorithm, which is one of the state of
the art algorithms for POMDPs. The data for RPG is taken
from [27]. The experiments with RPG used a two layer RNN
for the policy function, where the first layer is a recurrent
LSTM layer with 20 neurons and the second layer is a fully
connected layer with 20 neurons. This outputs parameters
for the softmax function to obtain distributions over actions.
The RPG implementation also included a history dependent
baseline for variance reduction. This was a two layer RNN
where the first layer is a recurrent LSTM layer with 20

1635

0 20000 40000 60000 80000 100000 120000 140000
Samples

�100

�80

�60

�40

�20

0

P
er
fo
rm

an
ce

Planning solution

AIS

RPG

(a) Voicemail problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

�800

�600

�400

�200

0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(b) Tiger problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(c) 4× 4 grid problem

Fig. 2: Performance versus samples for all examples. The solid line shows the median value and the shaded region shows
the region between the first and third quartiles over 25 runs.

neurons and the second layer is a fully connected layer with a
single neuron. In all three examples, our algorithm performed
better than or as good as RPG. Part of the reason for better
performance is that we could use a much higher learning
rate of 0.08 for the policy network πθ, as compared to the
RPG implementation in [27], which experienced instability
for learning rates above 0.001.

VII. CONCLUSION

In this paper, we present a notion of information state
for partially observed systems. We show that an information
state is sufficient for dynamic programming. We then relax
the definition to describe an approximate information state
that can be used to identify an approximately optimal policy.

The approximate information state is defined in terms
of properties that can be estimated from data, so it can
be used to develop sampling based reinforcement learning
algorithms. We present one such algorithm and show that it
performs better than or comparable to RPG, which is a state
of the art reinforcement learning algorithm for POMDPs.

The actor only reinforcement learning algorithm presented
in this paper is just a proof of concept. It is straight forward
to extend standard critic only and actor-critic algorithms
using approximate information state by adding a neural net-
work that approximates action-value functions Q̂∗(ẑ, u) and
Q̂π(ẑ, a) in the architecture in Fig. 1. It will be interesting
to evaluate how such extensions perform in practice.

ACKNOWLEDGMENTS

We are grateful to Raihan Seraj for providing planning
and RPG solutions for all three examples in Fig. 2.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations re-
search, vol. 21, no. 5, pp. 1071–1088, 1973.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[3] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” AAMAS, 2013.

[4] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estima-
tion,” JAIR, vol. 15, pp. 319–350, 2001.

[5] M. L. Littman, R. S. Sutton, and S. P. Singh, “Predictive representa-
tions of state,” in NIPS, 2002.

[6] A. Hefny, Z. Marinho, W. Sun, S. Srinivasa, and G. Gordon, “Recur-
rent predictive state policy networks,” arXiv:1803.01489, 2018.

[7] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Nature, vol. 323, no. 9,
pp. 533–536, 1986.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] B. Bakker, “Reinforcement learning with long short-term memory,” in
NIPS, 2002.

[10] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving deep
memory POMDPs with recurrent policy gradients,” in International
Conference on Artificial Neural Networks, 2007.

[11] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent
policy gradients,” Logic Journal of the IGPL, vol. 18, no. 5, pp. 620–
634, 2010.

[12] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in 2015 AAAI Fall Symposium Series, 2015.

[13] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based
control with recurrent neural networks,” arXiv:1512.04455, 2015.

[14] A. Baisero and C. Amato, “Learning internal state models in partially
observable environments;,” Reinforcement Learning under Partial Ob-
servability, NeurIPS Workshop, 2018.

[15] O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov control
processes: basic optimality criteria. Springer, 2012.

[16] A. Nerode, “Linear automaton transformations,” Proceedings of Amer-
ican Mathematical Society, vol. 9, pp. 541–544, 1958.

[17] H. S. Witsenhausen, “Some remarks on the concept of state,” in
Directions in Large-Scale Systems, Y. C. Ho and S. K. Mitter, Eds.
Plenum, 1976, pp. 69–75.

[18] C. Striebel, “Sufficient statistics in the optimal control of stochastic
systems,” Journal of Mathematical Analysis and Applications, vol. 12,
pp. 576–592, 1965.

[19] C. Villani, Optimal transport: Old and New. Springer, 2008.
[20] P. S. Castro, P. Panangaden, and D. Precup, “Equivalence relations in

fully and partially observable markov decision processes,” in IJCAI,
2009.

[21] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite markov
decision processes,” in UAI, 2004.

[22] D. Bertsekas, “Convergence of discretization procedures in dynamic
programming,” IEEE Trans. Autom. Control, vol. 20, no. 3, pp. 415–
419, 1975.

[23] K. Cho, B. v. M. C. Gulcehre, D. Bahdanau, F. B. H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” in EMNLP, 2014.

[24] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

[25] J. D. Williams and S. Young, “Partially observable markov decision
processes for spoken dialog systems,” Computer Speech & Language,
vol. 21, no. 2, pp. 393–422, 2007.

[26] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains,” in AAAI, 1994.

[27] R. Seraj, “Learning in the presence of partial observability and concept
drifts,” Master’s thesis, McGill University, 2019.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[29] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

1636

