
Approximate information state for partially observed systems

Jayakumar Subramanian
Electrical and Computer Engineering

McGill University, Montreal, QC H2T2A7
jayakumar.subramanian@mail.mcgill.ca

Aditya Mahajan
Electrical and Computer Engineering

McGill University, Montreal, QC H2T2A7
aditya.mahajan@mcgill.ca

Abstract

The standard approach for modeling partially observed systems is to model them as partially observable Markov deci-
sion processes (POMDPs) and obtain a dynamic program in terms of a belief state. The belief state formulation works
well for planning but is not ideal for learning because the belief state depends on the model and, as such, is not observable
when the model is unknown.

In this paper, we present an alternative notion of an information state for obtaining a dynamic program in partially
observed models. In particular, an information state is a sufficient statistic for the current reward which evolves in a
controlled Markov manner. We show that such an information state leads to a dynamic programming decomposition.
Then we present a notion of an approximate information state and present an approximate dynamic program based on
the approximate information state. Approximate information state is defined in terms of properties that can be estimated
using sampled trajectories. Therefore, they provide a constructive method for reinforcement learning in partially ob-
served systems. We present one such construction and show that it performs better than the state of the art for three
benchmark models.

Keywords: Partially observable Markov decision processes; reinforcement
learning; planning; approximate information state.

1 Introduction

The theory of Markov decision processes focuses primarily on systems with full state observation. When systems with
partial state observations are considered, they are converted to systems with full state observations by considering the
belief state (which is the posterior belief on the state of the system given the history of observations and actions). Al-
though this leads to an explosion in the size of the state space, the resulting value function has a nice property—it is
piecewise linear and convex in the belief state [14]—which is exploited to develop efficient algorithms to compute the
optimal policy [9, 13]. Thus, for planning, there is little value in studying alternative characterizations of partially ob-
served models.

However, the belief state formulation is not as nice a fit for learning. Part of the difficulty is that the construction of
the belief state depends on the system model. So, when the system model is unknown, the belief state cannot be con-
structed using the observations. Therefore, critic based methods are not directly applicable. There are some results that
circumvent this difficulty [3, 7, 10]. However, many of the recent results suggest that using RNNs (Recurrent Neural
Networks [12]) or LSTMs (Long Short Term Memories [8]) for modeling the policy function (actor) and/or the action-
value function (critic) works for reinforcement learning in partially observed systems [1, 2, 5, 6, 16, 17]. In this paper, we
present a rigorous theory for planning and learning in partially observed models using the notions of information state
and approximate information state. We then present numerical experiments that show that the approximate information
state based works well on benchmark models.

2 Model

A general system with partial observations may be represented using the following stochastic input-output model. Con-
sider a system that takes two inputs: a control input Ut ∈ U and a stochastic input Wt ∈ W and generates two outputs:
an observation Yt ∈ Y and a real-valued reward Rt. The spacesW , U , and Y are Banach spaces and the stochastic inputs
(W1, . . . ,WT) are independent random variables defined on a common probability space.

Formally, we assume that there are observation functions {ft}Tt=1 and reward functions {rt}Tt=1 such that Yt =
ft(Y1:t, U1:t−1,Wt) and Rt = rt(Y1:t, U1:t,Wt). An agent observes the history Ht = (Y1:t, U1:t−1) of observations and
control inputs until time t and chooses the control input Ut = πt(Ht) according to some history dependent policy
π := {πt}Tt=1. The performance of policy π is given by

J(π) = Eπ
[T∑
t=1

Rt

]
. (1)

The objective of the agent is to choose a policy π to maximize the expected total reward J(π).

A dynamic programming decomposition. Recursively define the following value functions. VT+1(hT+1) := 0 and for
t ∈ {T, . . . , 1}:

Qt(ht, ut) = E[Rt + Vt+1(Ht+1) | Ht = ht, Ut = ut] and Vt(ht) = max
ut∈U

Qt(ht, ut). (2)

Theorem 1 A policy π = (π1, . . . , πT) is optimal if and only if it satisfies πt(ht) ∈ arg maxut∈U Qt(ht, ut).

The above dynamic program uses the history of observations and actions as state and as such a dynamic program is not
efficient for computing the optimal policy but it will serve as a reference for the rest of the analysis.

Information state and a simplified dynamic program. Let Ft = σ(Ht) denote the filtration generated by the history of
observations and control actions.
Definition 1 An information state {Zt}t≥1, Zt ∈ Z , is an Ft adapted process (therefore, there exist functions {ϑt}Tt=1
such that Zt = ϑt(Ht)) that satisfies the following properties:

(P1) Sufficient for performance evaluation, i.e., E[Rt | Ht = ht, Ut = ut] = E[Rt | Zt = ϑt(ht), Ut = ut].

(P2) Sufficient to predict itself, i.e., P(Zt+1 = zt+1|Ht = ht, Ut = ut) = P(Zt+1 = zt+1|Zt = zt, Ut = ut), for all zt+1.

There is no restriction on the space Z , although an information state is useful only when the space Z is “small” in an
appropriate sense. We have assumed that the space Z is time-homogeneous for convenience. In some situations, it may
be more convenient to construct an information state which takes values in spaces that are changing with time.

For some models, instead of (P2), it is easier to verify the following stronger conditions:

(P2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕt}Tt=1 such that Zt+1 = ϕt(Zt, Yt+1, Ut).

1

(P2b) Is sufficient for predicting future observations, i.e., for any yt+1

P(Yt+1 = yt+1 | Ht = ht, Ut = ut) = P(Yt+1 = yt+1 | Zt = ϑt(ht), Ut = ut).

Proposition 1 (P2a) and (P2b) imply (P2).

Note that Zt = Ht is always an information state, so an information state always exists. It is straight-forward to show
that if we construct a state space model for the above input-output model, then the belief on the state given the history
of observations and controls is an information state. Below we present an example of a non-trivial information state that
is much simpler than the belief state.
Example 1 (Machine Maintenance) Consider a machine which can be in one of n ordered states where the first state is
the best and the last state is the worst. The production cost increases with the state of the machine. The state evolves in
a Markovian manner. At each time, an agent has the option to either run the machine or stop and inspect it for a cost.
After inspection, s/he may either repair it (at a cost that depends on the state) or replace it (at a fixed cost). The objective
is to identify a maintenance policy to determine to minimize the cost of production, inspection, repair, and replacement.

Let τ denote the time of last inspection and Sτ denote the state of the machine after inspection, repair, or replacement.
Then, it can be shown that (Sτ , t− τ) is an information state for the system.

The main feature of an information state is that one can always write a dynamic program based on an information state.

Theorem 2 Let {Zt}Tt=1 be an information state. Recursively define value functions {Ṽt}T+1
t=1 , where Ṽt : Zt 7→ R as follows:

ṼT+1(zT+1) = 0 and for t ∈ {T, . . . , 1}:
Q̃t(zt, ut) = E[Rt + Ṽt+1(Zt+1) | Zt = zt, Ut = ut] and Ṽt(zt) = max

ut∈U
Qt(zt, ut). (3)

Then, Qt(ht, ut) = Q̃t(ϑt(ht), ut) and Vt(ht) = Ṽt(ϑt(ht)).

Remark 1 In light of Theorem 2, an information state may be viewed as a generalization of the traditional notion of
state [11, 18]. Traditionally, the state of an input-output system is sufficient for input-output mapping. In contrast, the
information state is sufficient for dynamic programming.

The notion of information state is also related to sufficient statistics for optimal control [15]. However, in contrast to [15],
we do not assume a state space model for the underlying system so it is easier to develop reinforcement learning algo-
rithms using our notion of an information state.

Coming back to Example 1, Theorem 2 shows that we can write a dynamic program for that model using the information
state (Sτ , t − τ), which takes values in a countable set. This countable state dynamic program is considerably simpler
than the standard belief state dynamic program typically used for that model. Another feature of the information state
formulation is that the information state (Sτ , t − τ) does not depend on the transition probability of the state of the
machine or the cost of inspection or repair. Thus, if these model parameters were unknown, we can use a standard
reinforcement learning algorithm to find an optimal policy which maps (Sτ , t− τ) to current action.

Given these benefits of a good information state, it is natural to consider a data-driven approach to identify an informa-
tion state. An information state identified from data will not be exact and it is important to understand what is the loss
in performance when using an approximate information state. In the next section, we present a notion of approximate
information state and bound the approximation error.

3 Approximate information state (AIS)

Roughly speaking, a compression of the history is an approximate information state if it approximately satisfies (P1) and
(P2). This intuition can be made precise as follows.

Definition 2 Given positive numbers ε and δ, an (ε, δ)-approximate information state {Ẑt}Tt=1, where Ẑt takes values in
a in a Polish metric space (Ẑ, d), is an Ft adapted process (therefore, there exist functions {ϑ̂t}Tt=1 such that Ẑt = ϑ̂t(Ht))
that satisfies the following properties:

(AP1) Sufficient for approx. performance evaluation, i.e.,
∣∣E[Rt | Ht = ht, Ut = ut]−E[Rt | Ẑt = ϑ̂t(ht), Ut = ut]

∣∣ ≤ ε.
(AP2) Sufficient to predict itself approximately. For any Borel subset A of Ẑ define, µt(A) = P(Ẑt+1 ∈ A | Ht = ht,

Ut = ut) and νt(A) = P(Ẑt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut). Then, Kd(µt, νt) ≤ δ, where Kd(·, ·) denotes the
Wasserstein or Kantorovich-Rubinstein distance1 between two distributions.

1Let (X , d) be a Polish metric space. For any two probability measures µ, ν on X , the Wasserstein distance between µ and ν is:
Kd(µ, ν) = infπ∈Π(µ,ν)

∫
X d(x, y)pdπ(x, y) where Π represents the product space of the two distributions.

2

Our main result is that one can write an approximate dynamic program based on an approximate information state.

Theorem 3 Let {Ẑt}Tt=1 be an (ε, δ)-approximate information state. Recursively define value functions {V̂t}T+1
t=1 , where V̂t : Ẑt 7→

R as follows: V̂T+1(ẑT+1) = 0 and for t ∈ {T, . . . , 1}:
Q̂t(ẑt, ut) = E[Rt + V̂t+1(Ẑt+1) | Ẑt = ẑt, Ut = ut] and V̂t(ẑt) = max

ut∈U
Q̂t(ẑt, ut).

Suppose V̂t is Lipschitz continuous with Lipschitz constant LV . Then, we have the following:

|Qt(ht, ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε and |Vt(ht) = V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.

Based on Prop. 1, we provide an alternative characterization of an approximate information state. We can replace (AP2)
with the following stronger conditions:

(AP2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕ̂t}Tt=1 such that Ẑt+1 = ϕ̂t(Ẑt, Yt+1, Ut).
Moreover, these functions are Lipschitz in Y with Lipschitz constant LU .

(AP2b) Is sufficient for predicting future observations approximately. For any Borel subset A of Y define, µt(A) =

P(Yt+1 ∈ A | Ht = ht, Ut = ut) and νt(A) = P(Yt+1 ∈ A | Ẑt = ϑ̂t(ht), Ut = ut). Then, K(µt, νt) ≤ δ,
Proposition 2 If (AP2) is replaced by (AP2a) and (AP2b), the result of Theorem 3 holds with LV replaced by LULV .

Corollary 1 Suppose {Zt}Tt=1 is an information state and {Ẑt}Tt=1 is an (ε, δ)-approximate information state. Then for any real-
ization ht of Ht, we have the following:

|Qt(ϑt(ht), ut)− Q̂t(ϑ̂t(ht), ut)| ≤ (T − t)(ε+ LV δ) + ε and |Vt(ϑt(ht))− V̂t(ϑ̂t(ht))| ≤ (T − t)(ε+ LV δ) + ε.

4 Reinforcement learning using approximate information state

In this section, we use an approximate information state to design reinforcement learning algorithms for infinite horizon
POMDPs. We split our approach into two steps—a data-driven approach to construct an approximate information state
and reinforcement learning using this approximate information state.

Constructing an approximate information state. The definition of approximate information state suggests two ways
to construct an information state from data: either use ϑ̂(ht) to determine an approximate information state that satisfies
conditions (AP1) and (AP2) or conditions (AP1), (AP2a), and (AP2b). We present the second approach here.

We use two function approximators: (i) A recurrent neural network (RNN) or its refinements such as LSTM or GRU with
state Ct−1, inputs (Yt, Ut−1) and output Ẑt. We denote this function approximator by ρ. (ii) A feed forward network as
in the previous case, except that ν̃t+1 is the prediction of νt+1, the distribution of the next approximate information state
Ẑt+1. We denote this function approximator as ψ.

To minimize ε and δ, we train the networks ρ and ψ using the loss function Lρ,ψ = λLR + (1 − λ)Lν where LR =
1
B

∑B
t=1 smoothL1(R̃t − Rt), (where B is the batch size and smoothL1 is the standard smooth approximation for L1

loss) and Lν = −∑B−1
t=1 log(ν̃t+1(Yt+1)), which is the negative log likelihood loss for ν̃t and thus approximates the

KL-divergence between µt and νt. We use the KL-divergence as a surrogate for the Wasserstein distance because: (i)
Wasserstein distance is computationally expensive to compute; and (ii) KL-divergence upper bounds the total variation
(due to Pinsker’s inequality), which in turn upper bounds Wasserstein distance for metric spaces with bounded diameter.

Reinforcement learning. Let πθ : Ẑt 7→ ∆(Ut) be a parametrized stochastic policy, where the parameters θ lie in a closed
convex set Θ. For example, πθ could be a feed forward neural network with input Ẑt and output to be a |Ut| dimensional
vector η, where: πθ(u|ẑ) = exp(τηu)/

∑
w∈U exp(τηw), where τ is a hyperparameter. In such a policy, θ corresponds to the

weights of the network. The basic idea behind policy based reinforcement learning is to get sample path based estimates
of the performance gradient ∇θJ , which is then used as a gradient loss function for updating the parameters θ using
stochastic gradient descent.

RNN: 𝜌
NN: 𝜋𝜃 Softmax

NN: 𝜓

State: 𝐶𝑡−1

𝑌𝑡

𝑈𝑡−1 𝜂𝑡

𝑍̂𝑡

𝑈𝑡

To environment

𝑅̃𝑡

𝜈̃𝑡+1

An architecture for combining the construction of the approximate in-
formation state with reinforcement learning is shown on the right. In
this architecture, we train the networks (ρ, φ) and πθ in parallel using
a two time-scale algorithm. In particular, by a slight abuse of notation,
let ρ and ψ denote the weights of the corresponding networks. Then,[

ρk+1

ψk+1

]
=

[
ρk
ψk

]
+ ak∇ρ,ψLρ,ψ and θk+1 = θk + bk∇θJ(πθk),

3

0 20000 40000 60000 80000 100000 120000 140000
Samples

−100

−80

−60

−40

−20

0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(a) Voicemail problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

−800

−600

−400

−200

0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(b) Tiger problem

0 20000 40000 60000 80000 100000 120000 140000
Samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
er

fo
rm

an
ce

Planning solution

AIS

RPG

(c) 4× 4 grid problem

Figure 1: Performance versus samples for all examples. The solid line shows the median value and the shaded region
shows the region between the first and third quartiles over 25 runs.

where the learning rates {ak}k≥1 and {bk}k≥1 satisfy the standard two time-scale stochastic approximation conditions [4].

The results of the experiment for three small dimensional POMDP benchmarks—voicemail, tiger, and 4 × 4 grid—are
shown in Fig. 1.

References
[1] A. Baisero and C. Amato. Learning internal state models in partially observable environments;. Reinforcement Learning under

Partial Observability, NeurIPS Workshop, 2018.

[2] B. Bakker. Reinforcement learning with long short-term memory. In NIPS, 2002.

[3] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. JAIR, 15:319–350, 2001.

[4] V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):291–294, 1997.

[5] M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[6] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. Memory-based control with recurrent neural networks. arXiv:1512.04455, 2015.

[7] A. Hefny, Z. Marinho, W. Sun, S. Srinivasa, and G. Gordon. Recurrent predictive state policy networks. arXiv:1803.01489, 2018.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial
intelligence, 101(1-2):99–134, 1998.

[10] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In NIPS, 2002.

[11] A. Nerode. Linear automaton transformations. Proceedings of American Mathematical Society, 9:541–544, 1958.

[12] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning representations by back-propagating errors. Nature, 323(9):533–536,
1986.

[13] G. Shani, J. Pineau, and R. Kaplow. A survey of point-based POMDP solvers. AAMAS, 2013.

[14] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable markov processes over a finite horizon. Operations
research, 21(5):1071–1088, 1973.

[15] C. Striebel. Sufficient statistics in the optimal control of stochastic systems. Journal of Mathematical Analysis and Applications,
12:576–592, 1965.

[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory POMDPs with recurrent policy gradients. In
International Conference on Artificial Neural Networks, 2007.

[17] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal of the IGPL, 18(5):620–634, 2010.

[18] H. S. Witsenhausen. Some remarks on the concept of state. In Y. C. Ho and S. K. Mitter, editors, Directions in Large-Scale Systems,
pages 69–75. Plenum, 1976.

4

