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Abstract— In recent years, there has been considerable
interest in reinforcement learning for linear quadratic Gaussian
(LQG) systems. In this paper, we consider a generalization of
such systems where the controller and the plant are connected
over an unreliable packet drop channel. Packet drops cause the
system dynamics to switch between controlled and uncontrolled
modes. This switching phenomena introduces new challenges
in designing learning algorithms. We identify a sufficient
condition under which the regret of Thompson sampling-
based reinforcement learning algorithm with dynamic episodes
(TSDE) at horizon T is bounded by Õ(

√
T ), where the Õ(·)

notation hides logarithmic factors in T . These are the first
results to generalize regret bounds of LQG systems to packet-
drop networked control models.

I. INTRODUCTION

Systems with linear dynamics, quadratic cost, and
Gaussian noise, are a commonly used modelling framework
in control theory. In recent years, there has been a significant
interest in such LQG systems in the AI literature as well.
Apart from the importance of LQG models for applications,
a major reason for this interest is that LQG systems are the
simplest models with continuous state and action spaces, and
unbounded cost. Therefore, algorithms which learn to control
unknown LQG systems must carefully design exploration
schemes to ensure stability during learning.

It was recently shown in [1] that any learning algorithm for
regular LQ must have a regret of Ω̃(n0.5m

√
T ), where n is

the dimension of the state, m is the dimension of the controls,
T is the horizon, and the Ω̃(·) notation hides logarithmic
factors in T . There are several algorithms [1]–[11] which
nearly achieve this lower bound and have regret which can
be upper bounded by Õ(n1.5m

√
T ), where Õ(·) notation

hides logarithmic factors in T .
In this paper, we investigate a generalization of LQG

models where the controller and the plant are connected over
a noisy wireless channel. Such networked control systems
(NCS) come up in various modern applications including
platooning of self driving trucks and control of Internet
of Things. There is a vast literature on planning for NCS
[12], [13]. However, as far as we are aware, deriving regret
bounds for learning in NCS has not been investigated in the
literature.

A standard result in planning for NCS is that the
networked control system can be stabilized if the “capacity”
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of the channel is greater than a quantity which depends on
the unstable eigenvalue of the system. In the simple case of a
packet drop channel, the corresponding condition is that the
probability of packet drop must be less than 1/λ2

max, where
λmax is the largest eigenvalue of the system. So the natural
question in the context of learning is the following: what are
the conditions on the packet drop probability to ensure that
learning regret in NCS is Õ(

√
T ). In this paper, we provide

an initial partial answer to this question.
We consider the simplest model of NCS where the

controller and plant are connected over a packet-drop
channel. When the channel is on, the plant receives the
control action taken by the controller; however, when the
channel is off, the control action is not received at the plant
and the plant evolves in an open-loop manner. Thus the
packet-drop nature of the channel introduces a non-linearity,
which causes the dynamics to switch between closed-loop
and open-loop behaviors. Thus, the analysis of existing
algorithms is not directly applicable to NCS. There is some
work on RL for NCS [14]–[16], but these papers do not
characterize regret.

Due to their switching nature, NCS may be viewed as
Switched Linear Systems (SLS) or Markov Jump Linear
Systems (MJS), depending on the assumptions on packet
drops. In recent years, there has been some work on adaptive
control/reinforcement learning for MJS [17]. However, it was
assumed in the model considered in [17] that the discrete
state (or mode) at time t is available to the controller when
taking the action at time t. However, this is not the case for
the NCS model that we consider in this paper. In our model,
the controller doesn’t know a priori if the control action is
going to be dropped. So the result of [17] is not directly
applicable to our model.

We consider Thompson Sampling with Dynamic Episode
(TSDE) proposed by [10], which is a Bayesian algorithm
for learning unknown LQ systems. We present the natural
generalization of TSDE for NCS, and identify sufficient
conditions under which the regret of TSDE is Õ(n1.5m

√
T ).

These conditions specify a relationship between the packet
drop probability and the set of unknown parameters of the
system. We present examples to show that these conditions
on learning can be strictly stronger or same as the conditions
for planning. This suggests that learning unknown NCS may
require stronger conditions.

The rest of this paper is organized as follows. We
introduce the model in Sec. II, describe the TSDE algorithm,
assumptions, and our main result in Sec. III, discuss the
salient features of the sufficient conditions in Sec. 4, and
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present key steps of the proof in Sec. V. Finally, we conclude
in Sec. VI.

II. MODEL AND PROBLEM FORMULATION

Consider a linear quadratic system with state xt ∈ Rn,
control input ut ∈ Rm, and disturbance wt ∈ Rn. We
assume that the system starts from an initial state x1 = 0
and evolves over time according to

xt+1 = Axt + νtBut + wt, t ≥ 1, (1)

where A ∈ Rn×n and B ∈ Rn×m are the system dynamics
matrices, the noise {wt}t≥1 is an independent and identically
distributed Gaussian process with wt ∼ N (0, σ2

wI) and
{νt}t≥1 is an i.i.d. Bernoulli process with P(νt = 1) = q.

At each time t, the system incurs a per-step cost given by

c(xt, ut, νt) = x
⊺
tQxt + νtu

⊺
tRut, (2)

where Q and R are positive definite matrices.
Let θ⊺ = [A,B] denote the parameters of the system.

θ ∈ Rd×n, where d = n+m. The performance of any policy
π = (π1, π2, · · · ) is measured by the long-term average cost
given by

J(π; θ) = lim sup
T→∞

1

T
Eπ
[ T∑
t=1

c(xt, ut, νt)
]
, (3)

where the expectation is with respect to the prior on θ, the
noise processes, the channel processes, the initial conditions,
and the potential randomizations done by the policy π.

Let J(θ) denote the infimum of J(π; θ) over all policies.
Under the assumptions that pair (A,B) is controllable and
probability of successful transmission satisfies 1 − q ≤
1/|λmax(A)|2, it is shown in [18] that J(θ) is finite and
is given by

J(θ) = σ2
w Tr(S(θ)), (4)

where S(θ) is the unique positive semi-definite solution of
the following modified Riccati equation:

S(θ) = Q+A
⊺
S(θ)A

− qA
⊺
S(θ)B(R+B

⊺
S(θ)B)−1B

⊺
S(θ)A. (5)

Furthermore, the optimal control action is given by

ut = G(θ)xt, (6)

where the gain matrix G(θ) is given by

G(θ) = −(R+B
⊺
S(θ)B)−1B

⊺
S(θ)A. (7)

We are interested in the setting where the system
parameters (A,B) are unknown while the channel statistics
q and the cost matrices (Q,R) are known. We denote the
unknown parameters by a random variable θ and assume
that there is a prior distribution on θ. The Bayesian regret of
a policy π operating for horizon T is defined by

R(T ;π) = Eπ
[ T∑
t=1

c(xt, ut, νt)− TJ(θ)
]
, (8)

where the expectation is with respect to the prior on θ, the
noise processes, the channel processes, the initial conditions,
and the potential randomizations done by the policy π.

III. THOMPSON SAMPLING BASED LEARNING
ALGORITHM

A. Prior and Posterior Beliefs

We assume that the unknown model parameters θ lie in a
compact subset Θ of Rd×n. For any distribution f on Rd,
we will use the notation f

∣∣
Θ

to denote the projection of f
onto Θ, i.e.,

f
∣∣
Θ
=

{
f(θ)∫

Θ
f(θ)dθ

if θ ∈ Θ

0 otherwise.

For any θ ∈ Θ, let θk denote the k-th column of θ (thus,
θ = [θ1, · · · , θn]) and let Aθ and Bθ to denote the A and B
matrices corresponding to θ (thus, θ⊺ = [Aθ, Bθ]).

We assume that θ is a random variable that is independent
of the initial states, the noise processes, and the channel state
process. Furthermore, we assume that there is a prior p1 on
θ that satisfies the following.

Assumption 1 p1 is given as:

p1(θ) =

[ n∏
i=1

ξi1(θ
i)

]∣∣∣∣
Θ

where for i ∈ {1, · · · , n}, ξi1 = N (µi
1,Σ1) with mean µi

1 ∈
Rd and positive-definite covariance Σ1 ∈ Rd×d.

Let zt = vec(xt, νtut). We can write the dynamics as

xt+1 = θ
⊺
zt + wt. (9)

We maintain a posterior distribution µt on θ based on
the history (x1:t−1, u1:t−1, ν1:t−1) of the observations until
time t. From standard results in Bayesian regression [19], we
know that the posterior is a truncated Gaussian distribution

pt(θ) =

[ n∏
i=1

ξit(θ
i)

]∣∣∣∣
Θ

where for i ∈ {1, · · · , n}, ξit(θi) = N (µi
t,Σt) and {µi

t}ni=1

and Σt can be updated recursively as follows:

µi
t+1 = µi

t +
Σtzt(x

i
t+1 − (µi

t)
⊺zt)

σ2
w + z⊺t Σtzt

, (10)

Σ−1
t+1 = Σ−1

t +
1

σ2
w

ztz
⊺
t , (11)

where xt = [x1
t , · · · , xn

t ].

B. Thompson Sampling with Dynamic Episodes Algorithm

We now present a variation of the Thompson sampling
with dynamic episodes (TSDE) algorithm of [10] for the
networked control model presented in Sec. II.

As the name suggests, the algorithm operates in episodes
of dynamic length. Let tk and Tk denote the start time and
the length of episode k, respectively. Episode k ends when
the length of the episode is strictly larger than the length
of the previous episode (i.e., t − tk > Tk−1) or at the first
time after tk when the determinant of the covariance Σt falls
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Algorithm 1 TSDE

1: input: Θ, θ̂, Σ1

2: initialization: t← 1, t0 ← 0, k ← 0.
3: for t = 1, 2, · · · do
4: observe xt

5: update pt according to (10)–(11)
6: if

(
(t− tk > Tk−1) or (detΣt <

1
2 detΣtk)

)
then

7: Tk ← t− tk, k ← k + 1, tk ← t
8: sample θk ∼ µt

9: end if
10: Apply control ut = G(θk)xt

11: end for

below half of its value at time tk, i.e., detΣt <
1
2 detΣtk .

Thus,

tk+1 = min

{
t > tk

∣∣∣∣∣ t− tk > Tk−1 or
detΣt <

1
2 detΣtk

}
. (12)

Note that the stopping condition (12) implies that

Tk ≤ Tk−1 + 1, ∀k. (13)

The TSDE algorithm works as follows. At the beginning
of episode k, a parameter θk is sampled from the posterior
distribution ptk . During the episode, the control inputs are
generated using the sampled parameters θk, i.e.,

ut = G(θk)xt, tk ≤ t ≤ tk+1 − 1. (14)

The complete algorithm is presented in Algorithm 1.

C. Regret Bounds

We impose the following assumptions on the support of
the prior distribution.

Assumption 2 For every θ ∈ Θ, the pair (Aθ, Bθ) is
controllable.

Assumption 3 For all θ ∈ Θ, the probability of successful
transmission satisfies the sufficient condition of [18]:

1− q ≤ 1

|λmax(Aθ)|2
, ∀θ ∈ Θ (15)

where λmax(Aθ) denotes the maximum eigenvalue of Aθ.

Assumption 4 Define δ and σ as follows:

δ := sup
θ,ϕ∈Θ

∥Aθ +BθG(ϕ)∥,

σ := sup
θ∈Θ
∥Aθ∥.

Then, we assume that δqσ1−q < 1.

The following result provides an upper bound on the regret
of the proposed algorithm.

Theorem 1 Under Assumptions 1–4, the regret of TSDE is
upper bounded by

R(T ; TSDE) ≤ Õ(σ2
w(n+m)

√
nT ). (16)

The proof is presented in Sec. V.

IV. DISCUSSION OF THE ASSUMPTION

Assumptions 2 and 3 are necessary for the learning
problem to be well posed. The additional technical
assumption that we have is Assumption 4. Both
Assumptions 3 and 4, pose a constraint between the
packet drop probability q and the uncertain set Θ. In this
section, we explore this relationship in details.

Define a feasible region for planning as, Qp(Θ) = [qp, 1],
where

qp = sup
θ∈Θ

[
1− 1

|λmax(Aθ)|2
]+

,

where [x]+ = max{x, 0}. Similarly, define a feasible region
for learning as, Qℓ(Θ) = {q ∈ [0, 1] : δqσ1−q < 1}, where
δ and σ depend on Θ and are given in Assumption 4.

For the unknown system to have finite performance,
q ∈ Qp(Θ). For our proof of the upper bound to hold
q ∈ Qp(Θ) ∩ Qℓ(Θ). So, a natural question is whether
Qp(Θ) ⊂ Qℓ(Θ) or Qℓ(Θ) ⊂ Qp(Θ). We consider four
cases for (δ, σ) and answer this question for each case.

a) Case 1: δ < 1 and σ < 1.: Observe that
λmax(Aθ) ≤ ||Aθ|| ≤ σ. Therefore, if σ < 1,

1

∥λmax(Aθ)∥2
≥ 1

σ2
≥ 1.

Hence,

qp = sup
θ∈Θ

[
1− 1

|λmax(Aθ)|2
]+

= 0.

Thus, Qp(θ) = [0, 1].
Furthermore, δ < 1 and σ < 1 implies that for all q,

δqσ1−q < 1. Hence, Qℓ(Θ) = [0, 1].
Thus, in this case, both Qℓ(Θ) = Qp(Θ) = [0, 1].

b) Case 2: δ < 1 and σ > 1.: In this case, Qℓ(θ) =
[qℓ, 1], where

qℓ =
log σ

log σ + log 1
δ

.

We now show that depending on Θ, qp > qℓ or qp < qℓ.

Example 1 Suppose,

Θ = {[A,B] ∈ R2 : A ∈ [0.8, 1.2] and B ∈ [2.0, 2.4]}.

Then, δ = 0.624 and σ = 1.2. Moreover,

ql = 0.279 and qp = 0.305.

Thus qp > qℓ and therefore, Qp(Θ) ∩Qℓ(Θ) = Qp(Θ).

Example 2 Suppose,

Θ = {[A,B] ∈ R2 : A ∈ [0.8, 1.2] and B ∈ [0.5, 0.9]}.

Then, δ = 0.962 and σ = 1.2. Moreover,

ql = 0.824 and qp = 0.305.

Thus qℓ > qp and therefore, Qp(Θ) ∩Qℓ(Θ) = Qℓ(Θ).
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c) Case 3: δ > 1 and σ < 1.: In this case Qℓ(Θ) =
[0, qℓ], where qℓ is same as Case 2, but can also be rewritten
as

qℓ =
log 1

σ

log 1
σ + log δ

.

As in Case 1, σ < 1 implies that Qp(Θ) = [0, 1]. Now, we
present an example to show that qℓ can be less than 1.

Example 3 Suppose,

Θ = {[A,B] ∈ R2 : A ∈ [0.1, 0.9] and B ∈ [1.0, 2.4]}.

Then, δ = 1.190 and σ = 0.9. Moreover,

qℓ = 0.37 and qp = 0.

Thus qℓ > qp and therefore, Qp(Θ) ∩Qℓ(Θ) = Qℓ(Θ).

d) Case 4: δ > 1 and σ > 1.: In this case, δqσ1−q > 1
and hence, Qℓ(Θ) = ∅.

The above examples show that in some instances,
Qp(Θ) ⊂ Qℓ(Θ), while in others Qp(Θ) ⊃ Qℓ(Θ).

We conjecture that, Assumption 4 is stronger than what it
needs to be and it should be possible to relax it and replace
∥·∥ in the definition of δ and σ by the spectral radius of
the respective matrices. This would require modifying the
proof of Lemma 1 in Sec. V to exploit asymptotic stability
of A+νkBGk rather than the contractive property. We refer
the reader to [20], where a similar relaxation for the original
TSDE algorithm of [10] is presented.

V. REGRET ANALYSIS

a) A preliminary result.: We first start with a
preliminary result, which is critical in deriving the regret
bounds.

Lemma 1 Define γt = δνtσ1−νt and for any s ≤ t + 1,
define Γs,t = γs · · · γt. Then, under Assumption 4, there
exists a Γ̄ <∞ such that for all t > 1,

t−1∑
s=1

Γs+1,t−1 ≤ Γ̄, a.s.

Proof: Define f(m) = δmσ1−m. Then, Γs+1,t−1

may be written as Γs+1,t−1 = f(ms+1,t−1)
t−s−1, where

ms+1,t−1 =
(∑t−1

τ=s+1 ντ
)
/(t− s− 1).

Observe that f is continuous and, by the strong law of
large numbers, limt→∞ ms+1,t−1 = q a.s. Furthermore, the
rate of convergence of ms+1,t−1 to q depends on s+ 1 and
t− 1 only through their difference t− s− 1.

Thus, for any ϵ > 0, there exists a N(ϵ) such that for all
t − s − 1 ≥ N(ϵ), |ms+1,t−1 − q| < ϵ, a.s. By continuity
of f , for any ϵ′ > 0, there exists a N ′(ϵ′) such that for all
t− s− 1 ≥ N ′(ϵ′), |f(ms+1,t−1)− f(q)| < ϵ′ a.s. Hence,

f(ms+1,t−1) < f(q) + ϵ′ a.s.

By Assumption 4, we know that f(q) < 1. Now we can pick
ϵ′ such that f(q) + ϵ′ =: β∗ < 1. Then for all t ≥ 1,

t−1∑
s=1

f(ms+1,t−1)
t−s−1

≤
t−N ′(ϵ′)−1∑

s=1

β∗t−s−1 +

t−1∑
s=t−N ′(ϵ′)

f(ms+1,t−1)
t−s−1

<
β∗N ′(ϵ′)

1− β∗ +

t−1∑
s=t−N ′(ϵ′)

F t−s−1
∗ ,

where F∗ = supq′∈[0,1] f(q
′). Both terms in the right hand

side are bounded a.s., which proves the result.
b) Regret decomposition.: For the ease of notation, we

use R(T ) instead of R(T ;TSDE) in this section. We also
use Gk and Sk to denote G(θk) and S(θk) respectively. We
know that the policy ut = Gkxt is optimal for model θk
and, therefore, satisfies the following Bellman equation:

J(θk) + x
⊺
t Skxt = c(xt, ut, νt)

+ E[(θ
⊺
kzt + wt)

⊺
Sk(θ

⊺
kzt + wt)]. (17)

Note that xt+1 = θ⊺zt + wt. Adding and subtracting
E[x⊺

t+1Skxt+1] in (17) and rearranging terms, we get

c(xt, ut, νt) = J(θk) + x
⊺
t Skxt − E[x

⊺
t+1Skxt+1]

+ E
[
(θ

⊺
zt)

⊺
Sk(θ

⊺
zt)− (θ

⊺
kzt)

⊺
Sk(θ

⊺
kzt)

]
. (18)

Let KT denote the number of episodes until horizon T .
For each k > KT , we define tk be to T+1. Then, using (18),
we have that

R(T ) = E

[KT∑
k=1

TkJ(θk)− TJ(θ)

]
︸ ︷︷ ︸

regret due to sampling error=:R0(T )

+ E

[KT∑
k=1

tk+1−1∑
t=tk

[
x
⊺
t Skxt − x

⊺
t+1Skxt+1

]]
︸ ︷︷ ︸

regret due to time-varying controller=:R1(T )

+ E

[KT∑
k=1

tk+1−1∑
t=tk

[
(θ

⊺
zt)

⊺
Sk(θ

⊺
zt)

−(θ⊺kzt)
⊺
Sk(θ

⊺
kzt)

]]
.︸ ︷︷ ︸

regret due to model mismatch=:R2(T )

(19)

Thus,
R(T ) = R0(T ) +R1(T ) +R2(T ). (20)

We establish the bound on R(T ) by individually bounding
R0(T ), R1(T ), and R2(T ).

c) Bound on individual terms of (20).: Let XT = σw+
maxt≤T ∥xt∥ be the maximum value of the norm of the state.
Recall that KT is the number of episodes until horizon T .
Then, we have the following.

Proposition 1 The terms in (20) are bounded as follows:
1) R0(T ) ≤ O(σ2

wE[KT ]).
2) R1(T ) ≤ O(E[KTX

2
T ]).
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3) R2(T ) ≤ O
(
d
√
nT E[

√
(σ2

wX
2
T +X4

T ) log(TX
2
T )]
)
.

The proof of boundingR0(T ) andR1(T ) are similar to those
in [10] and is omitted. The proof argument for bounding
R2(T ) is presented in Appendix VI-A.

d) Bounding XT and KT .: Now, to prove the regret
bounds, we establish the following bounds on XT and KT .

Lemma 2 For any α ≥ 1, the following inequalities hold:

1) E[Xα
T ] ≤ O(σα

w log T ).

2) E[Xα
T logX2

T ] ≤ σα
wÕ(1).

3) KT ≤ O(
√
dT log(TX2

T /σ
2
wd)).

We prove the bound on E[Xα
T ] below. The bounds on the

other two terms can be proved in a manner similar to [10]
and [20].

Proof: [of Part 1] During the k-th episode, we have
ut = νtGkxt. Therefore,

∥xt+1∥ = ∥(A+ νtBGk)xt + wt∥
≤ ∥(A+ νtBGk)∥∥xt∥+ ∥wt∥
≤ γt∥xt∥+ ∥wt∥, (21)

where the last inequality follows from the definition of γt =
δνtσ1−νt . Then, iteratively applying (21), we get

∥xt∥ ≤
t−1∑
s=1

Γs+1,t−1∥ws∥ ≤
t−1∑
s=1

Γs+1,t−1 max
s≤T
∥ws∥, (22)

where Γs+1,t−1 = γs · · · γt−1. Now using Lemma 1 in (22),
we get

∥xt∥ ≤ Γ̄max
s≤T
∥ws∥ a.s. (23)

Therefore, for any α ≥ 1,

Xα
T ≤

(
σw+Γ̄max

t≤T
∥wt∥

)α
=

α∑
ℓ=0

(
α
ℓ

)
σα−ℓ
w (Γ̄max

t≤T
∥wt∥)ℓ a.s.

(24)
From [10, Eq. (39)], we have

E
[
max
t≤T
∥wt∥ℓ

]
≤ O(σℓ

w log T ).

Substituting this in (24), we get the result.
e) Putting everything together.: An immediate

consequence of Proposition 1 and Lemma 2 is the
following.

Corollary 1 The terms in (20) are bounded as follows:

1) R0(T ) ≤ Õ(σ2
w

√
dT ).

2) R1(T ) ≤ Õ(σ2
w

√
dT ).

3) R2(T ) ≤ Õ
(
σ2
wd
√
nT
)
.

Proof: We prove each part separately.

1) We have that

R0(T ) ≤ O(σ2
wE[KT ])

(a)

≤ O(σ2
wE[

√
dT log(TX2

T /σ
2
wd))

(b)

≤ O(σ2
w

√
dT log(E[X2

T ]T/σ
2
wd))

(c)

≤ O(σ2
w

√
dT log(T/d))

≤ Õ(σ2
w

√
dT ) (25)

where (a) and (c) follow from Lemma 2, and (b)
follows from Jensen’s inequality.

2) We have that

R1(T ) ≤ O(E[KTX
2
T ])

(d)

≤ O(E[X2
T

√
dT log(TX2

T /σ
2
wd)]

≤ O(
√
dTE[X2

T

√
log(TX2

T /σ
2
wd)])

(e)

≤ O(
√
dT
√
E[X4

T log(TX2
T /σ

2
wd)])

(f)

≤ O(
√
dT

√
σ4
wO(log T ) log T + σ4

wÕ(1))
(g)
= O(σ2

w

√
dT
√
O(log T ) log T )

≤ Õ(σ2
w

√
dT ), (26)

where (d) follows from Lemma 2, (e) follows from
Jensens’s inequality, (f) follows from Lemma 2, and
(g) uses the fact that O(log T ) log T dominates Õ(1).

3) Observe that

E[
√

(σ2
wX

2
T +X4

T ) log(TX
2
T )]

= σ2
wE

[√(
X2

T

σ2
w

+
X4

T

σ4
w

)
log

(
Tσ2

w

X2
T

σ2
w

)]
≤ σ2

wÕ(1), (27)

where the last inequality follows similarly to the
argument in (25). Substituting the value of (27) in
the expression of R2(T ) in Proposition 1 gives us the
result.

f) Proof of Theorem 1: Now we have all the ingredients
to prove Theorem 1.

Proof: [of Theorem 1] Corollary 1 implies that the
R2(T ) term dominates R0(T ) and R1(T ). Thus, the total
regret is of the same order as R2(T ).

VI. CONCLUSION

In this paper, we considered the problem of learning the
optimal control policy in a networked control system where
the link between the controller and the system is a packet
drop channel. We identified sufficient conditions under which
the regret of TSDE is bounded by Õ(n1.5m

√
T ). This bound

is same as the regret bound for classical LQG systems. Our
results show that, as long as the packet-drop probability
satisfy specific conditions that depend on the set Θ of
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uncertain parameters, learning for NCS has a similar regret
as classical LQG systems.

Our sufficient conditions are the intersection of two
feasible regions for the packet drop probability: the feasible
region Qp(Θ) for planning and the feasible region Qℓ(Θ)
for learning. We present examples to show that none of these
two conditions are more restrictive than the other one. These
conditions are sufficient conditions and motivate further
investigation into the model, in particular, to identify lower
bounds on the regret and investigating more sophisticated
models of networked control systems.

APPENDIX

A. Proof of Proposition 1-Bound on R2(T )

We start by considering the term inside the expectation of
R2(T ):

∥S0.5
k θ

⊺
zt∥2 − ∥S0.5

k θ
⊺
kzt∥2

=
(
∥S0.5

k θ
⊺
zt∥+ ∥S0.5

k θ
⊺
kzt∥

)(
∥S0.5

k θ
⊺
zt∥ − ∥S0.5

k θ
⊺
kzt∥

)
≤ (∥S0.5

k θ
⊺
zt∥+ ∥S0.5

k θ
⊺
kzt∥

)
∥S0.5

k (θ − θk)
⊺
zt∥

≤ (∥S0.5
k θ

⊺
zt∥+ ∥S0.5

k θ
⊺
kzt∥

)
∥S0.5

k ∥∥(θ − θk)
⊺
zt∥. (28)

Note that we can bound ∥S0.5
k θ⊺zt∥∥S0.5

k ∥ ≤
∥S0.5

k ∥∥θ
⊺∥∥[I, νtG⊺

k]∥∥xt∥∥S0.5
k ∥ ≤ O(∥xt∥) because

each of the other terms are bounded as θ and θk belong to a
compact set. By the same argument ∥S0.5

k θ⊺kzt∥ ≤ O(∥xt∥).
Combining this with the fact that ∥xt∥ ≤ XT and
substituting in (28), we get

∥S0.5
k θ

⊺
zt∥2 − ∥S0.5

k θ
⊺
kzt∥2 ≤ O

(
XT ∥(θ − θk)

⊺
zt∥
)
. (29)

Therefore,

R2(T ) ≤ O
(
E

[
XT

KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺
zt∥
])

. (30)

Now, we consider the term inside the O(·):

E

[
XT

KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺
zt∥
]

= E

[
XT

KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺
Σ−0.5

tk
Σ0.5

tk
zt∥
]

≤ E
[KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺
Σ−0.5

tk
∥ ×XT ∥Σ0.5

tk
zt∥
]

≤

√√√√E[KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺Σ−0.5

tk
∥2
]

×

√√√√E[KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2

]
, (31)

where the last inequality follows from Cauchy-Schwartz
inequality.

Now, we bound the two terms in (31) separately in
Lemmas 3 and 4.

Lemma 3 We have the following inequality

E

[ KT∑
k=1

tk+1−1∑
t=tk

∥(θ − θk)
⊺
Σ−0.5

tk
∥2
]
≤ O(dnT ).

Proof: The proof is similar to the proof of [20, Lemma
7].

Lemma 4 We have the following inequality

E

[ KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2

]
≤ O

(
d(σ2

wX
2
T+X4

T ) log(TX
2
T )
)
.

Proof: The proof follows a similar structure as the proof
of [20, Lemma 8].

For any s ≤ t, Eq. (11) implies that Σ−1
s ⪯ Σ−1

t and
consequently Σ−1

s ⪯ Σ−1
t implies that Σs ⪰ Σt. Therefore,

from [2, Lemma 11], we get that for any V ̸= 0 (of
appropriate dimensions),

∥V ⊺ΣsV ∥
∥V ⊺ΣtV ∥

≤ detΣs

detΣt
=

detΣ−1
t

detΣ−1
s

. (32)

Eq. (32) implies that for any t ∈ {tk, · · · , tk+1 − 1}, we
have

∥Σ0.5
tk

zt∥2 = z
⊺
t Σtkzt ≤

detΣ−1
t

detΣ−1
tk

z
⊺
t Σtzt ≤ 2z

⊺
t Σtzt (33)

where the last inequality follows from the second stopping
criterion. Therefore,

KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2 ≤ 2X2

T

T∑
t=1

z
⊺
t Σtzt. (34)

Since Σt ⪯ Σ1, we have λmax(Σt) ≤ λmax(Σ1) =
1/λmin(Σ

−1
1 ). Therefore for any t

z
⊺
t Σtzt ≤

1

λmin(Σ
−1
1 )
∥zt∥2 ≤

1

λmin(Σ
−1
1 )

M2
GX

2
T , (35)

where MG = supδ∈{0,1},θ∈Θ ∥[I, δG(θ)⊺]⊺∥. From (35), we
get that

z
⊺
t Σtzt ≤ max

(
σ2
w,

M2
GX

2
T

λmin(Σ
−1
1 )

)
min

(
1,

z⊺t Σtzt
σ2
w

)
. (36)

Hence
T∑

t=1

z
⊺
t Σtzt ≤

(
σ2
w +

M2
GX

2
T

λmin(Σ
−1
1 )

) T∑
t=1

min

(
1,

z⊺t Σtzt
σ2
w

)
(37)

Using (11) and the intermediate step of the proof of [21,
Lemma 6], we have

T∑
t=1

min

(
1,

z⊺t Σtzt
σ2
w

)
=

T∑
t=1

min

(
1,

∥∥∥∥Σ0.5
t ztz

⊺
t Σ

0.5
t

σ2
w

∥∥∥∥)

≤ 2d log

(
Tr(Σ−1

T+1)

d

)
− log detΣ−1

1 . (38)
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Now, from (11), we get that

Tr(Σ−1
T+1) = Tr(Σ−1

1 ) +

T∑
t=1

1

σ2
w

Tr(ztz
⊺
t )

≤ Tr(Σ−1
1 ) +

T

σ2
w

M2
GX

2
T , (39)

where the last inequality uses the fact that Tr(ztz
⊺
t ) =

Tr(z⊺t zt) = ∥zt∥2 ≤ M2
GX

2
T . Combining (37) with (38)

and (39), we get
T∑

t=1

z
⊺
t Σtzt ≤ O

(
d(σ2

w +X2
T ) log(TX

2
T )
)
. (40)

Therefore, we can bound the expectation of the right hand
side of (34) as

E

[
2X2

T

T∑
t=1

z
⊺
t Σtzt

]
≤ O

(
d(σ2

wX
2
T +X4

T ) log(TX
2
T )
)
.

(41)
The result then follows from (34) and (41).

The proof for Proposition 1 then completes by substituting
the results of Lemma 3 and 4 in (31).

B. Proof of Lemma 2

We prove the last two parts separately.

Lemma 5 For any α ≥ 1, we have

E[Xα
T logX2

T ] ≤ σα
wÕ(1).

Proof: The proof argument is the same as that of [20,
Lemma 5].

Lemma 6 The number of episodes KT is bounded by

KT ≤ O(
√

dT log(TX2
T /σ

2
wd)).

Proof: The proof follows along the same lines as proof
of [10, Lemma 3].

Define macro episodes with start times tni , i ∈ N>0,
where n1 = 1 and for i ≥ 1,

ni+1 = min
{
k > ni

∣∣detΣtk < 1
2 detΣtk−1

}
.

Thus, a new macro-episode starts whenever an episode
ends due to the second stopping criterion. Let M denote
the number of macro-episodes until time T and define
nM+1 = KT +1. Let T̃i denote the length of the i-th macro-
episode. Within a macro-episode, all but the last episode
must be triggered by the first stopping criterion. Thus, for
k ∈ {ni, ni + 1, · · · , ni+1 − 2}, Tk = Tk−1 + 1. Hence,
Tk ≥ (k − ni + 1). Hence,

T̃i =

[ni+1−2∑
k=ni

Tk

]
+ Tni+1−1

≥
ni+1−ni−1∑

j=1

(j + 1) + 1 ≥ 1
2 (ni+1 − ni)

2 (42)

Hence,

ni+1 − ni ≤
√

2T̃i, ∀i ∈ {1, · · · ,M}. (43)

Now, we know that

KT = nM+1 − 1 =

M∑
i=1

(ni+1 − ni)
(a)

≤
M∑
i=1

√
2T̃i

(b)

≤

√√√√M

M∑
i=1

2T̃i =
√
2MT (44)

where (a) uses (43) and (b) uses the Cauchy-Schwartz
inequality.

Now, observe that

detΣ−1
T

(c)

≥ detΣ−1
tnM

(d)

≥ 2 detΣ−1
tnM−1

≥ · · · ≥ 2M−1 detΣ−1
1 , (45)

where (c) follows because {detΣ−1
t }t≥1 is a non-decreasing

sequence (because Σ−1
1 ⪯ Σ−1

2 . . .) and (d) and subsequent
inequalities follow from the definition of the macro episode
and the second triggering condition.

Since Tr(Σ−1
T /d) ≥ (detΣ−1

T )1/d, we have

Tr(Σ−1
T ) ≥ d(detΣ−1

T )1/d
(e)

≥ d2(M−1)/d(detΣ−1
1 )1/d

≥ d2(M−1)/dλmin(Σ
−1
1 ),

where (e) comes from (45). Hence,

M ≤ 1 + d log
Tr(Σ−1

T )

dλmin(Σ
−1
1 )

(46)

From (11), we know that

Σ−1
T = Σ−1

1 +
1

σ2
w

T−1∑
t=1

ztz
⊺
t

Therefore,

Tr(Σ−1
T ) = Tr(Σ−1

1 ) +
1

σ2
w

T−1∑
t=1

z
⊺
t zt ≤ O(TX2

T /σ
2
w) (47)

where the last inequality uses the fact that ∥zt∥ =
∥[I, νtG⊺

k]
⊺xt∥ ≤ O(∥xt∥) because θk belongs to a compact

set and, by definition, ∥xt∥ ≤ XT .
Substituting (47) in (46), we get

M ≤ O(d log(TX2
T /σ

2
wd)).

Combining this with (44), we get the result.
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