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Abstract. A discrete time stochastic feedback control system consisting of a nonlinear plant,
a sensor, a controller, and a noisy communication channel between the sensor and the controller
is considered. The sensor has limited memory and, at each time, it transmits an encoded symbol
over the channel and updates its memory. The controller receives a noise-corrupted copy of the
transmitted symbol. It generates a control action based on all its past observations and all its past
actions. This control action is fed back to the plant. At each time instant the system incurs an
instantaneous cost depending on the state of the plant and the control action. The objective is to
choose encoding, memory update, and control strategies to minimize an expected total cost over a
finite horizon, or an expected discounted cost over an infinite horizon, or an average cost per unit
time over an infinite horizon. A solution methodology for obtaining a sequential decomposition of
the global optimization problem is developed. This solution methodology is extended to the case
when the sensor makes an imperfect observation of the state of the plant.
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1. Introduction.

1.1. Preliminaries and literature overview. Recent advances in network
and communication technologies have led to an increasing interest in NCS (networked
control systems), in particular in understanding the interaction between control and
communication components of the system (see [1, 2, 9]). Many researchers have looked
at traditional control systems with a communication component and tried to under-
stand the limitations imposed by the communication component in the feedback loop.

Stability analysis of a plant with finite data rate feedback has been investigated
under different modeling assumptions in [4, 5, 7, 10, 12, 15, 17, 23, 25, 26, 27, 28, 30,
45]. A unified overview of stabilization with finite data rate feedback was provided in
[29]. Linear quadratic Gaussian (LQG) stability under different plant models (linear,
deterministic, stochastic, stable, unstable) and different channel models (rate limited
noiseless or noisy additive white Gaussian noise (AWGN)) was investigated in [6, 35,
36, 37, 38]. Mean square stability of a linear plant over noisy forward and reverse
channels was considered in [46]. Asymptotic limitations of arbitrary time-invariant
feedback for a linear time-invariant plant were investigated in [21, 22]. Most of the
results for stability of NCS have found some kind of relationship between the unstable
plant dynamics and some notion of capacity of the communication channel. Plant
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stability and channel capacity are both asymptotic concepts so, in retrospect, the
connection between them is not surprising.

Performance analysis of NCS has received less attention that stability analysis
in the literature. Optimal performance of a linear plant with a rate-limited noiseless
communication channel was considered in [24, 33]: in [24] the plant disturbance is
Gaussian and the controller is memoryless; in [33] the plant is undisturbed and the
controller has perfect recall. Optimal performance of a linear plant with Gaussian
disturbance, either a rate-limited noiseless channel or a Gaussian memoryless channel,
and various information structures at the encoder was considered in [38]. Optimal
performance of a nonlinear plant and a noisy channel with noiseless feedback from
the output of the channel to the encoder was considered in [39].

The nature of results on performance analysis of NCS depends on the information
structure of the problem, in particular, on whether or not the encoder/sensor knows
the information at the receiver/controller. When the encoder knows the information
available at the receiver, as is the case in the models of [24, 33, 39] and the instances
in [38] with noiseless channel or information structure A (defined in [38, p. 1550]),
optimal encoding and control strategies have been determined. When the encoder
does not know the information at the receiver, as is the case in the model of [38]
with information pattern B (defined in [38, p. 1550]), only suboptimal encoding and
control strategies have been proposed.

The former case (when the encoder knows the receiver’s information) has a par-
tially nested information structure, while the latter case has a strictly nonclassical
information structure. Problems with strictly nonclassical information structures are
considerably harder to analyze than problems with partially nested information struc-
tures. This is reflected in the nature of results in performance analysis of NCS.

In this paper we consider a model of a simple NCS where the encoder does not
know the receiver’s information (and hence, the model has a strictly nonclassical infor-
mation structure). We model the performance analysis of NCS as a stochastic control
problem and determine a method to sequentially identify optimal encoding and con-
trol strategies. For the finite horizon problem, optimal encoding and control strategies
are determined by the solution of nested optimality equations; for the infinite horizon
problems, optimal strategies are determined by the fixed point of functional equations.

1.2. Features of the problem. We consider a discrete time feedback control
system with a communication channel between the sensor and the controller, as shown
in Figure 2.1. Such problems arise when the plant and the controller are geographically
separated. We assume that there is a noisy discrete memoryless channel between the
sensor and the controller. (The rate-limited communication channel is the degenerate
case where the channel is noiseless.) We model problems in which the sensor has
limited resources in terms of the power at which it can transmit and the data it
can store and process. The encoder connected with the sensor is assumed to have
a finite memory, and thus it cannot remember all its past observations and actions,
and at each stage must selectively shed some information. At each time, the sensor
generates a symbol, using its current observation and the contents of its memory, and
transmits it over the noisy channel to the controller. We assume that there is no
resource constraint at the controller. It has infinite memory and infinite power. Thus
we assume that the controller has perfect recall—it remembers everything that it has
seen and done in the past—and the communication channel between the controller
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and the plant is noiseless.1 At each stage t the system incurs an instantaneous cost
depending on the state of the plant at t and the control action at t. The objective is to
choose globally optimal encoding, memory update, and control strategies to minimize
the expected total cost over a finite horizon, or the expected discounted cost over an
infinite horizon, or the expected average cost per unit time over an infinite horizon.

The problem has two decision-makers, the sensor and the controller. Due to the
noise in the communication channel, the sensor and the controller observe different
information about what is happening in the system. Due to the finite memory at the
sensor, the sensor forgets information and at any given time instant the sensor may
not know what actions it took in the past and why it took those actions. These two
considerations, the noise in the channel and the finite memory at the sensor, result in
a decentralized control problem. There is no known solution methodology for solving
infinite horizon decentralized stochastic control problems.

Markov decision theory [16] provides a solution methodology for centralized
stochastic control problems. For centralized problems with imperfect observations,
Markov decision theory shows that there is no loss of optimality in taking a control
action based on the controller’s belief about the state of the plant, which is obtained
using all the data available at the controller. Centralization of information and perfect
recall at the controller are crucial for this idea to work. Consequently this idea does
not extend to decentralized control problems: decentralization of information implies
that one decision-maker cannot infer the data available with the other decision-makers
and therefore cannot infer their beliefs. So if all decision-makers act according to their
beliefs about the state of the plant, they will act in an inconsistent manner, and the
system will not achieve globally optimal performance. Hence, Markov decision theory
is not appropriate for this problem.

Orthogonal search techniques [32] provide a solution methodology for decentral-
ized stochastic control problems. There are different variations of the orthogonal
search algorithm, but the key idea is the following. Initialize by arbitrarily choosing
the decision strategies of all agents; then pick an agent, say i, and determine the best
response of agent i to the strategies of the other agents. Fix this best response as
agent i’s strategy. Next pick another agent j, j �= i, and update agent j’s strategy
by its best response to the other agents’ strategies. Continue in this way. If this
procedure converges, the resultant strategies are member by member optimal; i.e.,
unilateral deviations by a single agent do not improve the system’s performance. Fic-
titious play techniques [8, 31, 34] are philosophically similar to orthogonal search and
result in member by member optimal solutions. Since decentralized stochastic control
problems are, in general, nonconvex in strategy space, the above procedure may not
converge to globally optimal strategies; that is, it does not guarantee that there do not
exist any other tuple of strategies for all agents that outperform the member by mem-
ber optimal strategies found by the above procedure. Thus, orthogonal search cannot
be used to obtain globally optimal strategies for the problem under consideration.

Witsenhausen’s standard form [42] is the only known solution methodology for
general sequential decentralized stochastic control problems. It proceeds by first con-
verting the problem into a standard form and then obtaining a sequential decompo-
sition for the standard form. The standard form is a finite horizon stochastic control
problem whose state evolution satisfies some properties, the cost is a stopping cost
incurred at the last time step, and the cost has certain measurability properties. Since

1In what follows we show that assuming a noiseless feedback channel does not entail any loss of
generality.
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all the cost is incurred at the last time step in the standard form, infinite horizon prob-
lems cannot be converted into the standard form. Hence the solution methodology
of [42] is not appropriate for the problem under consideration.

1.3. Contributions of this paper. The main contribution of this paper is
identifying information states sufficient for performance analysis (or sufficient statis-
tics for control) for a simple model of NCS with a nonclassical information structure.
We show that an optimal choice of information states converts the design of NCS into
a centralized problem and enables us to use analytic and computational tools from
Markov decision theory.

In contrast to conditional probability measures, which are used as information
states in centralized stochastic control problems, we use unconditional probability
measures as information states. This is similar to the choice of information states in
Witsenhausen’s standard form [44]. However, in the standard form the domain of the
information state increases with time, which restricts the results of the standard form
to finite horizon problems. In contrast, the domain of the information states used
in this paper does not increase with time, which allows us to extend our results to
infinite horizon problems.

We would like to emphasize that identifying information states is nontrivial. De-
centralized control problems have been investigated since the 1970s, but even now
there is no general method for obtaining information states that work for both finite
and infinite horizon problems. This paper identifies information states for a partic-
ular decentralized control problem and explains why these information states work.
This explanation may provide some insights for choosing information states for other
classes of decentralized stochastic control problems.

1.4. Organization of the paper. The remainder of this paper is organized
as follows. We formulate the performance analysis of feedback control systems with
limited communication over a noisy channel as a decentralized stochastic optimization
problem. To illustrate the key concepts associated with our solution methodology we
first consider the finite horizon problem. In section 2, we establish structural results
of an optimal controller and obtain a methodology for sequential global optimization
of the encoding, memory update, and control strategies for the finite horizon problem.
We provide an explanation of the methodology in section 3. In section 4 we extend
the methodology to infinite horizon problems. In section 5 we consider the case of
uncountable state space. In section 6 we consider the feedback control problem when
the encoder has imperfect observation of the state of the plant, and we extend the
results of sections 2 and 4 to this problem. We conclude in section 7.

1.5. Notation. Throughout this paper we use the following notation. Upper-
case letters (X, Y, Z) denote random variables, lowercase letters (x, y, z) denote their
realizations, and calligraphic letters (X ,Y,Z) denote their alphabets. For random
variables and functions, xt is shorthand for x1, . . . , xt. E { · } denotes the expectation
of a random variable, Pr (·) denotes the probability of an event, and 1l[ · ] denotes
the indicator function of a statement. To denote the expectation or probability of
a random variable or an event that depends on a function ϕ, we use E { · | ϕ } and
Pr (· |ϕ), respectively. We have chosen this slightly unusual notation because we want
to keep track of all the functional dependencies and because the conventional notation
of E

ϕ { · } and Prϕ(·) is too cumbersome.
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Plant Encoder

Memory ×
Controller

Xt

Mt−1

Zt

YtUt

Sensor

Nt

Fig. 2.1. Feedback control system with noisy communication.

2. The finite horizon problem.

2.1. Problem formulation. Consider the discrete time feedback control system
of Figure 2.1 which operates for a horizon T . The state evolution is given by

(2.1) Xt+1 = f(Xt, Ut, Wt),

where f is the plant evolution function and the variables Xt, Ut, Wt denote the state
of the plant, the control action, and the plant disturbance respectively, at time t. We
assume that all variables are finite valued. For all t, Xt takes values in a finite set X ,
Ut takes values in a finite set U , and Wt takes values in a finite set W . The initial
state X1 is a random variable with the probability mass function (PMF) PX1 . The
random variables W1, . . . , WT are i.i.d. (independent and identically distributed) with
PMF PW and are also independent of X1.

The sensor, consisting of an encoder and a memory, makes perfect observations
of the state of the plant. At each time instant t the encoder generates an encoded
symbol Zt, taking values in a finite set Z, as follows:

(2.2) Zt = ct(Xt, Mt−1),

where ct is the encoding function at time t and Mt−1 denotes the content of the
sensor’s memory at t− 1. Mt takes values in a finite set M and is updated according
to

(2.3) Mt = lt(Xt, Mt−1),

where lt is the memory update function at time t. Observe that the sensor has a finite
size memory, and, although it makes perfect observations of the state of the plant, it
cannot store all the past observations. Thus, it does not have perfect recall, and at
each stage it must selectively shed information.

The encoded symbol Zt is transmitted over a noisy communication channel, and
a channel output Yt is generated according to

(2.4) Yt = h(Zt, Nt),

where h is the channel function and Nt denotes the channel noise. Yt takes values in
a finite set Y and Nt takes values in a finite set N . The sequence of random variables
N1, . . . , NT is i.i.d. with given PMF PN and is also independent of X1, W1, . . . , WT .
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The controller observes the channel outputs and generates a control action Ut as
follows:

(2.5) Ut = gt(Y t, U t−1),

where gt is the control law at time t. Ut takes values in a finite set U . A uniformly
bounded cost function ρ : X × U → [0, K], where K < ∞, is given. At each t, an
instantaneous cost ρ(Xt, Ut) is incurred.

The collection (X , W , M, Z, N , Y, U , PX1 , PW , PN , f , h, ρ, T ) is called a perfect
observation system. The choice of (C, L, G), C := (c1, . . . , cT ), L := (l1, . . . , lT ),
G := (g1, . . . , gT ), is called a design.

The performance of a design is quantified by the expected total cost under that
design and is given by

(2.6) JT (C, L, G) := E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ C, L, G

}
,

where the expectation in (2.6) is with respect to a joint measure on (X1, . . . , XT ,
U1, . . . , UT ) generated by PW , PN , f, h and the choice of design (C, L, G). We are
interested in the following optimization problem.

Problem 2.1. Given a perfect observation system (X , W, M, Z, N , Y, U ,
PX1 , PW , PN , f , h, ρ, T ), choose a design (C∗, L∗, G∗) such that

(2.7) JT (C∗, L∗, G∗) = J ∗
T := min

C,L,G∈CT ×LT ×GT
JT (C, L, G),

where CT := C × · · · × C (T times), C is the space of functions from X × M to
Z, LT := L × · · · × L (T times), L is the space of functions from X × M to M,
GT := G1 × · · · × GT , and Gt is the space of functions from Yt × U t−1 to U .

Remarks.
1. There is no loss of generality in assuming a noiseless channel between the

controller and the plant. Suppose that the channel between the controller
and the plant is noisy. Let the input Ût to the plant be a noise-corrupted
version of Ut given by

(2.8) Ût = ĥ(Ut, N̂t),

where ĥ is the feedback channel and N̂t denotes the noise in the feedback
channel. N̂1, . . . , N̂T is a sequence of independent variables that is also in-
dependent of X1, W1, . . . , WT and N1, . . . , NT .2 Then this model can be
transformed into one equivalent to (2.1)–(2.5) by setting

Ŵt = (Wt, N̂t),(2.9)

Xt+1 = f
(
Xt, ĥ(Ut, N̂t), Wt

)
:= f̂(Xt, Ut, Ŵt).(2.10)

Thus, without any loss of generality we can assume a noiseless feedback
channel.

2We only require Ŵ1, . . . , ŴT , where Ŵt = (Wt, N̂t), to be an independent process. So, N̂t need
not be independent of Wt.
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2. A globally optimal design for Problem 2.1 always exists because there are
finitely many designs, and we can always choose one with the best performance.

2.2. Salient features of the problem. Problem 2.1 is a decentralized multi-
agent stochastic optimization problem. There are two agents, the sensor and the
controller, having different information about the system but a common objective
of minimizing an expected total cost over a finite horizon. Multi-agent problems in
which the agents have a common objective are called team problems [20]. Team
problems are further classified as static teams or dynamic teams on the basis of their
information structure. See [41] for a definition of information structure (also called
information pattern). In static teams the actions taken by one agent do not affect the
information structure of the other agents; in dynamic teams they do. In Problem 2.1,
the actions taken by the sensor affect the observations of the controller and the actions
taken by the controller affect the observations of the sensor; furthermore, the sensor
and the controller have different information about the system. Moreover, due to the
finite memory at the sensor and the noise in the channel, Problem 2.1 has a strictly
nonclassical information structure; thus Problem 2.1 is a dynamic team.

Determining globally optimal strategies for dynamic teams is difficult because
they are, in general, nonconvex functional optimization problems having a complex
interdependence among their decision rules [14]. As pointed out in the introduction,
Markov decision theory, orthogonal search, and standard form are not appropriate for
solving infinite horizon dynamic team problems.

The solution concept that we are looking for is to decompose the global opti-
mization problem into a sequence of nested optimization subproblems, where each
subproblem is easier to solve than the original problem. This is called sequential de-
composition, and it exponentially reduces the search complexity of finding an optimal
strategy. A crucial step in obtaining a sequential decomposition of the global opti-
mization problem is to identify information states that are sufficient for performance
evaluation. Properties that such states must satisfy are explained in [19, 18]. All the
known techniques of identifying appropriate information states, viz., Markov decision
theory, orthogonal search, and standard form, are not appropriate for infinite horizon
dynamic team problems. The information states in Markov decision theory—the con-
ditional probability densities of the state given all the past observations and all the
past control actions—works only when there is a single controller with perfect recall,
so they are inappropriate for dynamic teams. The information states in orthogo-
nal search are obtained under the assumption that the strategies of other agents are
fixed. These information states determine only member by member optimal strategies,
so they are not appropriate for determining globally optimal strategies for dynamic
teams. The information states in Witsenhausen’s standard form belong to a space
that increases with time; hence, it is not appropriate for infinite-horizon problems.
Thus a new methodology for identifying information states is needed for the problem
under consideration. We provide one such methodology in this paper.

The sequential order in which the system variables are generated is the key to
understanding the solution methodology that we present in this paper. For this pur-
pose we need to refine the notion of time. We call each step of the system a stage. At
any stage t, we consider three time instants3 t+, (t + 1/2), and (t + 1)−. For ease of
notation, we will denote these time instants by t, t, and t, respectively. From now on,

3The actual values of these time instants are not important; we just need three values in increasing
order.
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t+t+ (t + 1/2)(t + 1/2) (t + 1)(t + 1)

tt tt tt

Wt 1Wt 1 XtXt ZtZt NtNt YtYt MtMt UtUt

ctct ltlt gtgt
ItIt ItIt ItIt

BtBt BtBt BtBt

tt tt tt

actual time

time notation

System
Variables

Design Laws

Information at
the controller

Beliefs

Information
States

Stage t

Fig. 2.2. Problem 2.1 as a sequential stochastic optimization problem. This figure shows the
ordering relation between the system variables, design rules, and information states.

we will assume that the system has three agents—the encoder, the memory update,
and the controller—even though the encoder and the memory update are located in
the same device and have the same information. We assume that the sensor encodes
just after t, the sensor’s memory is updated just after t, and the controller takes a
control action just after t. The order in which the variables are generated in the
system is shown in Figure 2.2. Since the ordering of the decision-makers can be done
independently of the realization of the system variables, the problem is a sequential
stochastic optimization problem [43].

To obtain a sequential decomposition of Problem 2.1, we proceed in two steps.
In step one, we derive structural properties of optimal controllers. In step two, we
use the structural results of step one to identify an information state sufficient for
performance evaluation, transform Problem 2.1 into an equivalent deterministic opti-
mization problem, and obtain a sequential decomposition for this equivalent problem.
This sequential decomposition gives an algorithm for obtaining an optimal design for
Problem 2.1.

As pointed out in the introduction, step two is the crucial step. The key difficulty
in step two is to identify an information state appropriate for performance evalu-
ation. Even when the structural results of step one are available, identifying such
an information state is a highly nontrivial task. Once an appropriate information
state is identified, the transformation to a deterministic problem and the sequential
decomposition follow.

2.3. Structure of optimal controllers. In this section we present structural
properties of optimal controllers. We first define random variables that capture the
information available just before the decision rules ct, lt, and gt act on the system.

Definition 2.1. Let It, It, and It denote the information available at the con-
troller at time t, t, and t, respectively. Specifically

1. It := (Y t−1, U t−1, ct−1, lt−1, gt−1).
2. It := (Y t, U t−1, ct, lt−1, gt−1).
3. It := (Y t, U t−1, ct, lt, gt−1).
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We have included the past decision rules in the definition of information because
the distribution of the random variables depends on the choice of the past decision
rules. Observe that

(2.11) It = (It−1, Ut−1, gt−1), It = (It, Yt, ct), and It = (It, lt).

Next we define the belief of the controller about the state of the plant and the
memory contents of the sensor at times t−, t−, and t−.

Definition 2.2. Let Bt, Bt, and Bt be random vectors defined as follows:
1. Bt(x, m) := Pr (Xt = x, Mt−1 = m | It).
2. Bt(x, m) := Pr (Xt = x, Mt−1 = m | It).
3. Bt(x, m) := Pr (Xt = x, Mt = m | It).

For any particular realization it of It, that is, for any particular realization
yt−1, ut−1 of Y t−1, U t−1 and arbitrary (but fixed) choice of ct−1, lt−1, and gt−1, the
realization bt of Bt is a PMF on X ×M. If It is a random vector, then Bt is a random
vector belonging to PX×M, the space of PMFs on X × M. Similar interpretations
hold for Bt and Bt.

The random vectors Bt, Bt, and Bt represent the belief of the controller about the
state of the plant and the encoder’s memory content at t, t, and t, respectively. The
sequential ordering of these beliefs with respect to the other variables in the system
is shown in Figure 2.2. The time evolution of these beliefs is coupled as follows.

Lemma 2.3. For each stage t, there exist deterministic functions F , F , and F
such that

1. Bt = F (Bt−1, Ut−1).
2. Bt = F (Bt, Yt, ct).
3. Bt = F (Bt, lt).

Proof.
1. Consider a component of bt,

(2.12) bt(xt, mt−1) = Pr (Xt = xt, Mt−1 = mt−1 | it)
= Pr (Xt = xt, Mt−1 = mt−1 | it−1, ut−1, gt−1)

=
Pr (Xt = xt, Mt−1 = mt−1, Ut−1 = ut−1 | it−1, gt−1)∑

(x′
t,m

′
t−1)∈X×M Pr

(
Xt = x′

t, Mt−1 = m′
t−1, Ut−1 = ut−1

∣∣ it−1, gt−1

) .

Now consider

Pr (Xt = xt, Mt−1 = mt−1, Ut−1 = ut−1 | it−1, gt−1)
= Pr (xt, mt−1, ut−1 | it−1, gt−1)

=
∑

xt−1∈X
Pr (xt−1, mt−1 | it−1, gt−1)

× Pr (ut−1 |xt−1, mt−1, it−1, gt−1)(2.13)
× Pr (xt |xt−1, mt−1, ut−1, it−1, gt−1)

(a)
=

∑
xt−1∈X

Pr (xt−1, mt−1 | it−1)1l
[
ut−1 = gt−1(yt−1, ut−2)

]
× Pr (xt |xt−1, ut−1)

= 1l
[
ut−1 = gt−1(yt−1, ut−2)

]
×

∑
xt−1∈X

bt−1(xt−1, mt−1) Pr (xt |xt−1, ut−1),(2.14)
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where equality (a) follows from (2.1) and (2.5) and 1l[·] is the indicator func-
tion. Substitute (2.14) into (2.12) and cancel 1l[ut−1 = gt−1(yt−1, ut−2)] from
the numerator and the denominator, giving
(2.15)

bt(xt, mt−1) =

∑
xt−1∈X bt−1(xt−1, mt−1) Pr (xt |xt−1, mt−1)∑

(x′
t,x′

t−1,m′
t−1)∈X×X×M bt−1(x′

t−1, m
′
t−1) Pr

(
x′

t

∣∣ x′
t−1, m

′
t−1

) .

Hence,

(2.16) bt = F (bt−1, ut−1),

where F is determined by (2.15).
2. Consider a component of bt,

(2.17) bt(xt, mt−1) = Pr (Xt = xt, Mt−1 = mt−1 | it)
= Pr (Xt = xt, Mt−1 = mt−1 | it, yt, ct)

=
Pr (Xt = xt, Mt−1 = mt−1, Yt = yt | it, ct)∑

(x′
t,m

′
t−1)∈X×M Pr

(
Xt = x′

t, Mt−1 = m′
t−1, Yt = yt

∣∣ it, ct

) .

Now consider

Pr (Xt = xt, Mt−1 = mt−1, Yt = yt | it, ct)
= Pr (xt, mt−1, yt | it, ct)
= Pr (xt, mt−1 | it, ct) Pr (yt |xt, mt−1, it, ct)
(b)
= Pr (xt, mt−1 | it) Pr (yt |xt, mt−1, ct)
= bt(xt, mt−1) Pr (yt |xt, mt−1, ct),

(2.18)

where equality (b) follows from (2.1)–(2.4). Combining (2.17) and (2.18), we
have

(2.19) bt(xt, mt−1) =
bt(xt, mt−1) Pr (yt |xt, mt−1, ct)∑

(x′
t,m

′
t−1)∈X×M bt(x′

t, m
′
t−1) Pr

(
yt

∣∣ x′
t, m

′
t−1, ct

) .

Hence,

(2.20) bt = F (bt, yt, ct),

where F is given by (2.19).
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3. Consider a component of bt,

bt(xt, mt) = Pr (xt, mt | it) = Pr (xt, mt | it, lt)
=

∑
mt−1∈M

Pr (xt, mt, mt−1 | it, lt)

=
∑

mt−1∈M
Pr (xt, mt−1 | it, lt) Pr (mt |xt, mt−1, it, lt)

(c)
=

∑
mt−1∈M

Pr (xt, mt−1 | it) Pr (mt |xt, mt−1, lt)

=
∑

mt−1∈M
bt(xt, mt−1)1l [mt = lt(xt, mt−1)] ,

(2.21)

where equality (c) follows from (2.1) and (2.3), and 1l[·] is the indicator func-
tion. Hence,

(2.22) bt = F (bt, lt),

where F is given by (2.21).
The above relationships between the controller’s beliefs lead to the structural

results of the optimal controllers.
Theorem 2.4. Consider Problem 2.1 for any arbitrary (but fixed) encoding and

memory update strategies C := (c1, . . . , cT ) and L := (l1, . . . , lT ), respectively. Then,
without loss of optimality, we can restrict our attention to control laws of the form

(2.23) Ut = gt(Bt).

Proof. The plant dynamics (2.1) and sensor dynamics (2.3) imply that for any
fixed encoding and memory update strategies the process {(Xt, Mt−1), t = 1, . . . , T}
is a controlled Markov process with control actions Ut. The observations Yt of the
controller can be written as

Yt = ht(ct(Xt, Mt−1), Nt) =: ĥt((Xt, Mt−1), Nt).

So, the controller partially observes the state (Xt, Mt−1). The instantaneous cost is
also a function of the state (Xt, Mt−1) and the control action Ut (this function does
not depend on Mt−1). Moreover, the controller has perfect recall. Thus, for any
fixed encoding and memory update strategies, the design of an optimal controlled is
a partially observed centralized stochastic control problem. From Markov decision
theory [16] we know that there is no loss of optimality in restricting our attention to
control laws of the form (2.23).

2.3.1. Implication of the structural results. Theorem 2.4 implies that at
each stage t, without loss of optimality, we can restrict our attention to controllers
belonging to the family Ĝ of functions from PX×M to U . With this modification
Problem 2.1 is equivalent to the following problem.

Problem 2.2. Given a perfect observation system (X , W, M, Z, N , Y, U ,
PX1 , PW , PN , f , h, ρ, T ), choose a design (C∗, L∗, G∗) that is optimal with respect
to the performance criterion of (2.6), i.e.,

(2.24) JT (C∗, L∗, G∗) = J ∗
T := min

C,L,G∈CT ×LT ×Ĝ
T
JT (C, L, G),
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where Ĝ
T

:= Ĝ × · · · × Ĝ (T times).
Using the structural results results of Theorem 2.4, we can transform Problem 2.1

into an equivalent problem, Problem 2.2, in which the domain of all the decision
rules—the encoding rules, the memory update rules, and the control rules—is not
changing with time. This is in contrast to Problem 2.1, where the domain of the
control rules was increasing with time. This reduction to a time-invariant domain is
necessary for extending the solution methodology for the finite horizon problems to
infinite horizon.

In the next section we provide a sequential decomposition of Problem 2.2.

2.4. Global optimization. As explained in section 2.2, Problems 2.1 and 2.2
are dynamic teams with a strictly nonclassical information structure. To obtain a
sequential decomposition we need to identify information states sufficient for perfor-
mance evaluation, or equivalently, find sufficient statistics for performance evaluation.
The sequential nature of the problem suggests choosing an information state for each
decision rule. Suppose πt, πt, and πt are information states at time t for the encoder,
memory update, and the controller, respectively. Due to the decentralization of infor-
mation, these information states should depend only on the decision rules (which are
common knowledge) and not on the observation of any agent. For πt, πt, and πt to be
information states in the sense of [16], at each instant of time, πt must be determined
from πt and ct; πt must be determined from πt and lt; and πt+1 must be determined
from πt and gt. However, a system can have more than one information state, and
not all of them are sufficient for performance evaluation (see [44]). To be sufficient
for performance evaluation, the information states must absorb/summarize the effect
of past decision rules on the expected future cost;4 that is, they should satisfy

E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ C, L, G

}
= E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ πt, c
T
t , lTt , gT

t

}

= E

{
T∑

s=1

ρ(Xs, Us)

∣∣∣∣∣ πt, c
T
t+1, l

T
t , gT

t

}

= E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ πt, c
T
t+1, l

T
t+1, g

T
t

}
,

(2.25)

or equivalently,

(2.26) E { ρ(Xt, Ut) | C, L, G } = E { ρ(Xt, Ut) | πt, gt } .

These properties, which must be satisfied by information states that are sufficient for
performance evaluation, are explained in more detail in [19].

For sequential problems, one way to obtain information states satisfying the above
properties is by converting the model to Witsenhausen’s standard form [42]. However,
in the standard form the space in which information states belong increases with time,
so such a transformation to the standard form does not lead to a formulation that can

4Note that in problems with classical information structure, we can find an information state that
is independent of the control law [16]. For problems with strictly nonclassical information structures
it is not always possible to find information states that are independent of the control law. However,
as long as the expected future cost conditioned on the information state is conditionally independent
of the past control laws, a sequential decomposition can be obtained using that information state.
See [42] for a proof.
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be extended to infinite horizon problems. We want information states that will be
appropriate for both finite and infinite horizon problems. This is possible only when
the space in which the information states belong is time-invariant.

Thus information states sufficient for performance evaluation should satisfy the
following properties:

(P1) They must be states, that is, at each instant of time, πt should be a function
of πt and ct; πt should be a function of πt and lt; and πt+1 should be a function
of πt and gt.

(P2) They must be sufficient for performance evaluation, that is, they should sat-
isfy (2.25) or (2.26).

(P3) They should take values in a time-invariant space.
Next we present information states that have the above properties and show how

these information states lead to a sequential decomposition of Problem 2.2. We want
to re-emphasize that the hardest part in our solution methodology is to identify the
appropriate information states; there are no known solution methodologies for identi-
fying information states for decentralized stochastic control problems like Problem 2.2.

The information states defined below have all the above-mentioned desired fea-
tures.

Definition 2.5. Let Π be the space of probability measure on X ×M×PX×M,
and let B(·) denote the Borel σ-algebra. For any x ∈ X , m ∈ M, and AB , AB ,
AB ∈ B(PX×M), define πt, πt, πt, t = 1, . . . , T , as follows.

1. πt(x, m, AB) := Pr
(
Xt = x, Mt−1 = m, Bt ∈ AB

∣∣ ct−1, lt−1, gt−1
)
.

2. πt(x, m, AB) := Pr
(
Xt = x, Mt−1 = m, Bt ∈ AB

∣∣ ct, lt−1, gt−1
)
.

3. πt(x, m, AB) := Pr
(
Xt = x, Mt = m, Bt ∈ AB

∣∣ ct, lt, gt−1
)
.

Here πt, πt, and πt are probability measures (or probability laws) on the prob-
ability space

(X × M × PX×M, 2X×MB(PX×M)
)
, where B(PX×M) is the Borel

σ-algebra on PX×M. These probability measures are information states sufficient for
the performance evaluation of Problem 2.2. Specifically, they satisfy the following
properties.

Lemma 2.6. πt, πt, πt are information states for the encoder, the memory update,
and the controller respectively, i.e.,

1. there is a linear transformation Q(ct) such that

(2.27) πt = Q(ct)πt.

2. there is a linear transformation Q(lt) such that

(2.28) πt = Q(lt)πt.

3. there is a linear transformation Q(gt) such that

(2.29) πt+1 = Q(gt)πt.

4. the conditional expected instantaneous cost can be expressed as

(2.30) Eρ(Xt, Ut)|ct, lt, gt = ρ̃(πt, gt),

where ρ̃ is a deterministic function.
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Proof.
1. Consider a component of πt,

πt(x, m, db) =
∑
y∈Y

∫
A(b,y,ct)

πt(x, m, b)PN

(
n ∈ N : y = h(ct(x, m), n)

)
db

=: Q
t
(ct)πt,

(2.31)

where A(b, y, c) = {b ∈ PX×M : b = F (b, y, c)}.
2. Consider a component of πt,

πt(x, m, db) =
∑

{m′∈M:m′=lt(x,m)}

∫
A(b,lt)

πt(x, m′, b)db

=: Q(lt)πt,

(2.32)

where A(b, l) = {b ∈ PX×M : b = F (b, l)}.
3. Consider a component of πt+1,

πt+1(x, m, db) =
∑

xt∈X

∫
A(b,gt)

πt(xt, m, b)

× PW

(
w ∈ W : x = f(xt, gt(bt, w)

)
=: Q(gt)πt,

(2.33)

where A(b, g) = {b ∈ PX×M : b = F
(
b, g(b)

)}.
4. Consider E { ρ(Xt, Ut) | ct, lt, gt }. By the problem formulation, π1 is known

to all agents. For specified ct, lt, and gt−1, the information state πt can be
evaluated using the transformations of previous steps of this lemma. Thus,

(2.34) E
{

ρ(Xt, Ut)
∣∣ ct, lt, gt

}
= E

{
ρ(Xt, Ut)

∣∣ ct, lt, gt, πt

}
=

∑
xt∈X

∫
PX×M

πt(xt, bt)ρ
(
xt, gt(bt)

)
dbt := ρ̃(πt, gt),

where πt(xt, bt) is the marginal of πt(xt, mt, bt).
Points 1, 2, and 3 of Lemma 2.6 shows that the information states πt, πt, and

πt satisfy property (P1); point 4 shows that these information states satisfy property
(P2). Property (P3) is satisfied by definition. Thus, πt, πt, and πt are information
states sufficient for performance evaluation. In order to obtain a sequential decom-
position, first reconsider the performance criterion of (2.6), which can be rewritten
as

(2.35) E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ C, L, G

}
=

T∑
t=1

E
{

ρ(Xt, Ut)
∣∣ ct, lt, gt

}
=:

T∑
t=1

ρ̃(πt, gt),

where the sequence {π1, . . . , πT } depends on the choice of (C, L, G). Hence, Prob-
lem 2.2 is equivalent to the following deterministic problem.

Problem 2.3. Consider a deterministic system with states πt, πt, πt. The initial
state π1 is known, and, for t ≥ 1, the system evolves as follows.

(2.36) πt = Q(ct)πt, πt = Q(lt)πt, and πt+1 = Q(gt)πt,
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where ct, lt, gt belong to C, L, Ĝ, respectively, and Q, Q, Q are known linear transfor-
mations given by Lemma 2.6. At time t, an instantaneous cost ρ̃(πt, gt) is incurred.

The optimization problem is to determine design (C, L, G), where C := (c1, . . . , cT ),
L := (l1, . . . , lT ), and G := (g1, . . . , gT ), to minimize the total cost over horizon T ,
i.e.,

(2.37) min
(C,L,G)∈CT×LT ×Ĝ

T

T∑
t=1

ρ̃(πt, gt).

This is a classical deterministic optimal control problem in function space; optimal
functions (C∗, L∗, G∗) can be determined as follows.

Theorem 2.7. An optimal design (C∗, L∗, G∗) for Problem 2.3 (and consequently
for Problem 2.2 and thereby for Problem 2.1) is given the following nested optimality
equations:

V T (π) = inf
gT ∈Ĝ

ρ̃(π, gT ),(2.38)

and for t = 1, . . . , T ,

V t(π) = min
ct∈C

Vt

(
Q(ct)π

)
,(2.39)

Vt(π) = min
lt∈L

V t

(
Q(lt)π

)
,(2.40)

V t(π) = inf
gt∈Ĝ

{
ρ̃(π, gt) + V t+1

(
Q(gt)π

)}
.(2.41)

The arg min (or arg inf) at each step determines the corresponding optimal design for
that stage. Furthermore, the optimal performance is given by

(2.42) J ∗
T = V 1(π1).

Proof. This is a standard result; see [16, Chapter 2].

2.5. Discussion of Problem 2.3. We present an alternative look at Prob-
lem 2.3 which will be useful when we study the infinite-horizon version of Problem 2.1.
As pointed out in section 2.4, Problem 2.3 is a deterministic control problem with
state space Π and action space alternating between C, L, and Ĝ. We now introduce a
sequence of metafunctions Δt, Δt, and Δt, t = 1, . . . , T , where Δt is a function from
Π to C, Δt is a function from Π to L, and Δt is a function from Π to Ĝ. These meta-
functions describe the rationale used to select the “action” (i.e., the design ct, lt, gt) at
time t. The choice of all metafunctions for horizon T is called metadesign. Problem 2.3
is equivalent to the following feedback control problem.

Problem 2.4. Consider a deterministic system with states πt, πt, πt ∈ Π, and
“control actions” ct ∈ C, lt ∈ L, and gt ∈ Ĝ. The initial state π1 is known, and, for
t ≥ 1, the system evolves as follows:

(2.43) πt = Q(ct)πt, πt = Q(lt)πt, and πt+1 = Q(gt)πt,

where Q, Q, and Q are known transformations given by Lemma 2.6. The “control
actions” ct, lt, and gt are chosen according to the metafunctions Δt, Δt, and Δt as
follows:

(2.44) ct = Δt(πt), lt = Δt(πt), and gt = Δt(πt).
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At each time, an instantaneous cost ρ̃(πt, gt) is incurred. The optimization problem
is to determine the metadesign Δ̃T := (Δ1, Δ1, Δ1, . . . ,ΔT , ΔT , ΔT ) to minimize
the total cost over horizon T , i.e.,

(2.45) min
T∑

t=1

ρ̃(πt, gt)

where the minimization is over the choice of Δ̃T .
The nested optimality equations of Theorem 2.7 determine the globally optimal

metafunctions Δt, Δt, Δt for t = 1, . . . , T , i.e., the optimal feedback laws for Prob-
lem 2.4. Since Problem 2.4 is a deterministic control problem with a known initial
state, we need only specify the control “actions” ct, lt, gt for t = 1, . . . , T . This is why
we have considered Problem 2.3 instead of Problem 2.4. Nevertheless, Problem 2.4
will be useful in clarifying the nature of the solution of the infinite horizon problem
corresponding to Problem 2.1.

3. Explanation of the solution methodology. The sequential decomposition
obtained above can be interpreted as follows. Suppose that before the system is started
the sensor and the controller get together to determine an optimal design that they
will use. Instead of testing the performance of each design one by one, they decide
to choose the designs sequentially. So, they need to agree on a mechanism (or an
algorithm) that will, at each time instant and for any choice of past design rules,5

determine the future design rules optimally. To do so, for any choice of past design
rules, the sensor and the controller must be able to consistently evaluate the optimal
future performance. To be consistent in their evaluation, each agent must “know”
what the other agent is “thinking.” Suppose the design rules until time t, denoted by
γt := (c1, c2,. . . ,ct, l1, l2,. . . ,lt−1, g1, g2,. . . ,gt−1), have been agreed upon (by some
mechanism) and the sensor and the controller want to determine the next design rule
lt. If they allow the system to run until time t, the sensor will know the values of Xt

and Mt−1, while the controller will know the values of Y t and U t−1. However, they do
not know the other agent’s observations. They can form a belief on the other agent’s
observations, but then they do not know the other agent’s belief on their observations.
If they form a belief on the other agent’s belief on their observation, they will not
know the former belief on the latter belief. This process of forming a belief on what
the other agent is “thinking” will continue until the sensor and the controller agree
upon what they are thinking.

In [3] Aumann showed that such an agreement will occur in the “common knowl-
edge” between the two agents. Formally, suppose (Ω,F , P ) is the probability space
of the primitive random variables of the system. For any fixed γt, (Xt, Mt−1) and
(Y t, U t−1) are random vectors on (X × M, 2X×M) and (Yt × U t−1, 2Y×Ut−1

), re-
spectively. Let σ(Xt, Mt−1) and σ(Y t, U t−1) denote the smallest subfields of F with
respect to which (Xt, Mt−1) and (Y t, M t−1) are, respectively, measurable. Then the
common knowledge between (Xt, Mt−1) and (Y t, U t−1) is σ(Xt, Mt−1)∩σ(Y t, U t−1) =:
Kt(γt). Thus, to do a sequential decomposition, the agents should decide what to do
for all Kt(γt) obtained by varying γt over all possible values. However, it is difficult
to identify the space of all possible realizations of Kt(γt). So instead of using Kt(γt)
as an (information) state, the agents can use σ(Xt, Mt−1, Bt) =: K̂t(γt), which is a

5In this description, we use design rule to refer to either the encoding rule, the memory update,
rule, or the control law.
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superfield of Kt(γt) (see Appendix A for proof). K̂t(γt) also depends on γt, and it is
difficult to evaluate the space of realization of K̂t(γt) obtained by varying γt over all
possible values. However, if we go to the image space of the random variables, we can
obtain an “overapproximation” of K̂t(γt). Consider the image space of the random
vectors (Xt, Mt−1, Bt) : (Ω,F , P ) → (X ×M×B(R2), B(2X×M×B(R2)), P̂t(γt)

)
=:

Λt(γt), where B(·) denotes the Borel set. In Λt(γt) only the measure P̂t(γt) depends
on the choice of past design rules. Although it is difficult to evaluate all reach-
able realizations of P̂ (γt) obtained by varying γt over all possible values, the space
of all realizations of P̂t(γt) is known and is equal to all probability measures on(X ×M× B(R2), B(2X×M × B(R2))

)
. So the sensor and the controller can decide

on what action to take for each probability measure P̂t, that is, for any probability
space Λt :=

(X × M × B(R2), B(2X×M × B(R2)), P̂t

)
, and not worry whether the

space is reachable or not. Notice that the information state πt is equivalent to Λt

defined here. In the definition of πt the sample space and the σ-algebra are implicitly
specified. Similar interpretations hold for πt and πt.

If the rules for breaking ties are made common knowledge, the nested optimality
equations of Theorem 2.7 allow the sensor and the controller (or anyone who knows
the model and rules for breaking ties, henceforth referred to as the designer) to se-
quentially and consistently determine optimal design rules in two stages. In the first
stage, for each time instant and for each realization of the information state determine
an optimal design rule to be used if that information state is actually realized. In the
second stage, sequentially determine, for every t, the optimal design rules ct, lt, gt,
to be implemented as follows. For the first time instant using the information state
π1, which is part of the model, the sensor and the controller (and the designer) can
determine an optimal c∗1. This choice of c∗1 is common knowledge between the sensor
and the controller since the model and the rule for breaking ties are common knowl-
edge. For these values of π1 and c∗1, Lemma 2.6 gives the value of the realization of
π1. This value is common knowledge between the sensor and the controller (and the
designer). Now, using the result of the first stage, an optimal l∗1 can be determined,
which in turn gives the realization of π1. This realization is common knowledge be-
tween the sensor and controller (and the designer). This processes can be continued
until all the design rules c∗1, l∗1 , g∗1 ,. . . ,c∗T , l∗T , g∗T are determined. This design is optimal
and common knowledge between the sensor and the controller (and the designer).

In view of the discussion in section 2.5 the first stage corresponds to determin-
ing optimal metafunctions Δt, Δt, and Δt, t = 1, . . . , T , while the second stage
corresponds to determining optimal design rules ct, lt, gt, t = 1, . . . , T , that are imple-
mented. These design rules correspond to the control actions in Problem 2.4; since
the problem is deterministic, they can be specified before the system starts running.

The nested optimality equations of Theorem 2.7 are functional optimization prob-
lems: for each realization of the information state we need to determine an optimal
design rule (a function) to be used if that state is actually realized. Contrast this
with the centralized stochastic optimization problems where the dynamic program-
ming equations result in parameter optimization problems: for each realization of the
information state we need to determine an optimal control action (a parameter) to be
taken if that state is actually realized. Functional optimization problems are an order
of magnitude harder to solve than parameter optimization problems. The cardinality
of the function space (e.g., C) increases exponentially with a linear increase in the
cardinality of the “action” space (Z). Moreover the function space (e.g., Ĝ) can be
uncountable even when the action space (U) is finite because the size of the function
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space is determined by both its domain and range. This increase in complexity makes
decentralized stochastic control problems harder to solve than centralized stochastic
optimization problems.

We believe that this is a fundamental feature of decentralized optimization prob-
lems and not something specific to our solution. Since an agent does not know an-
other agent’s observations, in order to consistently interpret the other agent’s action,
it should know the design rule of the other agent. So, in any sequential decomposition,
at each instant of time an agent needs to determine its design rule and not just its
control action. So any sequential decomposition will result in functional optimization
problems.

Our solution is “simpler” than the only other known methodology for sequentially
solving dynamic teams—Witsenhausen’s standard form [42]. In [42] Witsenhausen
showed how to convert any sequential optimization problem into “standard form”
and showed how to obtain a sequential decomposition for the standard form. Similar
to our result, the information states in the standard form are unconditional probability
measures which evolve in a linear manner. If Problem 2.1 is converted into standard
form, the information state at time t will be σ(Xt, Mt−1, Y

t, U t−1) =: K̃t(γt). Observe
that K̂t(γt) ⊂ K̃t(γt). So, our information state is a subfield of the information state
in the standard form, and a sufficient statistic for the decomposition presented in
standard form. However, the image space Λt(γt) in our decomposition is bigger than
the corresponding image space in the standard form. But the image space in the
standard form increases with time, so the standard form cannot be used to solve the
infinite horizon problem. The image space in our decomposition does not change
with time, which enables us to tackle infinite horizon problems, as shown in the next
section.

4. The infinite horizon problem. In this section we extend the model of sec-
tion 2.1 to an infinite horizon (T → ∞) using two performance criteria: the expected
discounted cost and the average cost per unit time. Let (C, L, G), C := (c1, c2, . . . ),
L := (l1, l2, . . . ), G := (g1, g2, . . . ) denote an infinite horizon policy. The two perfor-
mance criteria that we consider are as follows:

1. The expected discounted cost, where the performance of a design is
determined by

(4.1) J β(C, L, G) = E

{ ∞∑
t=1

βt−1ρ(Xt, Ut)

∣∣∣∣∣ C, L, G

}
,

where 0 < β < 1 is called the discount factor.
2. The average cost per unit time, where the performance of a design is

determined by

(4.2) J (C, L, G) = lim sup
T→∞

1
T

E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ C, L, G

}
.

We take the lim sup, rather than lim, as for some designs (C, L, G) the limit
may not exist.

Ideally, while implementing a solution for infinite horizon problems, we would like to
use time-invariant designs. This motivates the following definitions.

Definition 4.1. A design (C, L, G), C := (c1, c2, . . . ), L := (l1, l2, . . . ), G :=
(g1, g2, . . . ) is called stationary (or time-invariant) if c1 = c2 = · · · = c, l1 = l2 =
· · · = l, g1 = g2 = · · · = g.
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Definition 4.2. Let Δ̃t := (Δt, Δt, Δt). A metadesign Δ̃∞ := (Δ̃1, Δ̃2, . . . ) is
called stationary (or time-invariant) if Δ̃1 = Δ̃2 = · · · = Δ̃.

In centralized stochastic control problems with time-homogenous evolution and
time-homogenous cost function, one can restrict attention to stationary designs with-
out any loss of optimality. This greatly simplifies the search for an optimal design. It is
natural to wonder if such a result also holds for dynamic teams. It is not known
whether, in general, restricting attention to stationary designs is optimal or not in
dynamic teams. In this section we show that for the problem under consideration, sta-
tionary designs may not be optimal. However, there exist stationary metadesigns that
are optimal: for the expected discounted cost problem one can restrict attention to
stationary metadesigns without any loss of optimality; for the average cost per unit
time problem, under a technical condition, one can restrict attention to stationary
metadesigns. The optimal design corresponding to an optimal stationary metadesign
is, in general, time-varying.

4.1. The expected discounted cost problem. Consider the infinite horizon
problem with expected discounted cost criterion given by (4.1). For this problem the
relations of Lemma 2.3 hold, hence the structural result of Theorem 2.4 is valid, and
we can restrict our attention to controllers belonging to Ĝ. Consider πt, πt, πt as in
Definition 2.5. Lemma 2.6 can be proved as before. The transformations Q, Q, Q
and the expected instantaneous cost ρ̃ are the same as in the finite horizon case.
Let γt := (ct, lt, gt) denote the design at time t, and let Γ denote the function space
C × L × Ĝ. We can combine (2.43) and (2.44) as

(4.3) πt+1 = Q̃(γt)πt, γt = Δ̃t(πt),

where Q̃(γt) := Q(gt) ◦ Q(lt) ◦ Q(ct) and Δ̃t(πt) = (Δ(πt),Δt(πt), Δt(πt)). The
instantaneous cost at time t can be rewritten as

(4.4) ρ̄(πt, γt) := ρ̂
((

Q(lt) ◦ Q(ct)
)
πt, gt

)
.

Hence, the infinite horizon problem with the expected discounted cost criterion given
by (4.1) is equivalent to the following deterministic optimization problem.

Problem 4.1. Consider a deterministic system with state space Π and action
space Γ. The system dynamics are given by

(4.5) πt+1 = Q̃(γt)πt, γt = Δ̃t(πt),

where Q̃ is a known transformation and Δ̃ : Π → Γ for all t. At each instant of time
an instantaneous cost ρ̄(πt, γt) is incurred. The objective is to choose metadesign
Δ̃∞ := (Δ̃1, Δ̃2, . . . ) so as to minimize the infinite horizon cost given by

(4.6) J β(Δ̃∞) :=
∞∑

t=1

βt−1ρ̄(πt, γt).

Problem 4.1 is a standard infinite horizon discounted cost feedback control prob-
lem. Since we have assumed that 0 ≤ ρ < K, where K < ∞, which in turn implies
0 ≤ ρ̄ < K, an optimal metadesign is guaranteed to exist, and we have the following
result.

Theorem 4.3. For Problem 4.1, and consequently for the infinite horizon ex-
pected discounted cost problem with the performance criterion given by (4.1), one can
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restrict attention to stationary metadesigns without any loss of optimality. Specifically
there exists a stationary metadesign Δ̃∗,∞ := (Δ̃∗, Δ̃∗, . . . ), and a corresponding infi-
nite horizon design (C∗, L∗, G∗), C∗ := (c∗1, c

∗
2, . . . ), L := (l∗1 , l

∗
2, . . . ), G := (g1, g2, . . . )

such that

(4.7) J β(Δ̃∗,∞) = V (π1),

where V is the unique uniformly bounded fixed point of

(4.8) V (π) = min
γ∈Γ

{
ρ̄(π, γ) + βV

(
Q̃(γ)(π)

)}
,

and Δ̃∗ satisfies

(4.9) V (π) = ρ̄
(
π, Δ̃∗(π)

)
+ βV

(
Q̃

(
Δ̃∗(π)

)
(π)

)
.

An optimal design (c∗t , l
∗
t , g∗t ) to be implemented at time t is given by

(4.10) (c∗t , l
∗
t , g∗t ) =: γ∗

t = Δ̃∗(πt).

Proof. This is a standard result; see [11, Chapter 6].

4.2. The average cost per unit time problem. Consider the infinite horizon
problem with average cost per unit time criterion given by (4.2). Using the argument
of the first paragraph of section 4.1, this problem is equivalent to the following deter-
ministic problem.

Problem 4.2. Consider a deterministic system with state space Π and action
space Γ. The system dynamics are given by

(4.11) πt+1 = Q̃(γt)πt, γt = Δ̃t(πt),

where Q̃ is a known transformation and Δ̃t : Π → Γ for all t. At each instant of time
an instantaneous cost ρ̄(πt, γt) is incurred. The objective is to choose metadesign
Δ̃∞ := (Δ̃1, Δ̃2, . . . ) so as to minimize the infinite horizon cost given by

(4.12) J (Δ̃∞) := lim sup
T→∞

1
T

T∑
t=1

ρ̄(πt, γt).

For this problem an optimal metadesign may not exist. However, under suitable
conditions, we can guarantee the existence of ε-optimal metadesigns. Specifically, we
have the following result.

Theorem 4.4. For Problem 4.2, and consequently for the infinite horizon average
cost per unit time problem with the performance criterion given by (4.2), assume the
following:

(A1) For any ε > 0 there exist bounded measurable functions v(·) and r(·) and
meta-function Δ̃∗ : Π → Γ such that for all π,

(4.13) v(π) = min
γ∈Γ

v
(
Q̃(γ)π

)
= v

(
Q̃

(
Δ̃∗(π)

)
π
)

and

(4.14)

min
γ∈Γ

{
ρ̄(π, γ)+r

(
Q̃(γ)π

)} ≤ v(π)+r(π) ≤ ρ̄
(
π, Δ̃∗(π)

)
+r

(
Q̃

(
Δ̃∗(π)

)
π
)
+ε.
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Then for any horizon T and any metadesign Δ̃T := (Δ̃1, . . . , Δ̃T ), the stationary
metadesign Δ̃∗,T := (Δ̃∗, . . . , Δ̃∗) (T -times) satisfies

(4.15) JT (Δ̃∗,T ) = r(π1) + Tv(π1) ≤ JT (Δ̃T ) + Tε.

Further, the stationary metadesign Δ̃∗,∞ := (Δ̃∗, Δ̃∗, . . . ) is ε-optimal. That is, for
any infinite horizon metadesign Δ̃∞ := (Δ̃1, Δ̃2, . . . ) we have

(4.16) J (Δ̃∗,∞) = v(π1) ≤ J (Δ̃∞) + ε,

where

(4.17) J (Δ̃∗,∞) := lim sup
T→∞

1
T

T∑
t=1

ρ̄
(
πt, Δ̃

∗(πt)
)

with πt+1 = Q̃
(
Δ̃∗(πt)πt

)
and

(4.18) J (Δ̃∞) := lim inf
T→∞

1
T

T∑
t=1

ρ̄
(
πt, Δ̃t(πt)

)

with πt+1 = Q̃
(
Δ̃t(πt)πt

)
.

Proof. This is a standard result; see [11, Chapter 7].

4.3. Discussion of the results. The results of this section show that for infinite
horizon problems stationary designs are not necessarily optimal (or ε-optimal). In
view of the discussion in section 2.5, this result is not surprising. The design rules
ct, lt, gt of the problems under consideration correspond to the control actions and
the metafunctions correspond to the control law in classical deterministic optimization
problems. In classical infinite horizon deterministic optimization problems, restricting
attention to stationary control laws does not entail any loss of optimality; however,
even for a stationary control law, control actions change with time. By analogy,
in the infinite horizon problems considered in this section, restricting attention to
stationary metadesigns does not entail any loss of optimality; however, even for a
stationary metadesign, optimal design rules change with time. In the absence of
a systematic framework, the task of finding and implementing an optimal infinite
horizon design is intractable. Conveniently, the methodology and results presented in
this section suggest a method for obtaining and implementing time-varying optimal
designs, i.e., obtaining and implementing optimal stationary metadesigns. The offline
problem simplifies to obtaining the fixed point of a functional equation, which also
gives an optimal stationary metadesign. This metadesign can be implemented at the
sensor and the controller. When the system is running, the sensor and the controller
need to keep track of the information state of the system and to use the metadesign
and the current information state to determine the current optimal design rules. This
greatly simplifies the online implementation of a time-varying optimal design.

4.4. Some additional remarks.
1. In Theorem 4.3 the fixed point equation (4.8) can be simplified as

V (π) = min
c∈C

V ′(Q(c)π
)
,(4.19)

V ′(π) = min
l∈L

V
(
Q(l)π

)
,(4.20)

V (π) = inf
g∈Ĝ

{
ρ̃(π, g) + V t+1

(
Q(g)π

)}
,(4.21)
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with V being equivalent to V of (4.8). Here we are further decomposing the
problem into its “natural” sequential form. This system of equations (4.19)–
(4.21) is the infinite horizon analogue of the optimality equations (2.39)–(2.41)
of Theorem 2.7. The system (4.19)–(4.21) may be easier to solve (numerically)
than (4.8).

2. If the ergodicity conditions of [13, section 3.3] are satisfied, then assumption
(A1) of Theorem 4.4 is satisfied for all ε, and an optimal average cost per
unit time exists.

5. Uncountable state space. Consider the model of section 2.1 with the fol-
lowing differences: the state of the plant Xt, the plant disturbance Wt, and the control
action Ut belong to uncountable spaces, i.e., X = R

dX , W = R
dW , and U = R

dU ,
where dX , dW , and dU are positive integers. The initial state X1 is a random vari-
able belonging to (RdX , B(RdX ), μX1), where B(RdX ) is the Borel σ-algebra on R

dX

and the probability law μX1 is given. The plant disturbances W1, . . . , WT are i.i.d.
random variables belonging to (RdW , B(RdW ), μW ) where the probability law μW is
given. The rest of the model is the same as that of section 2.1. The sensor has finite
memory M, and the channel is a discrete memoryless channel with input Z and out-
put Y. The plant function f , the design (C, L, G), C := (c1, . . . , cT ), L := (l1, . . . , lT ),
G := (g1, . . . , gT ) and the cost ρ are Borel measurable with respect to appropriate
σ-algebras. The objective is to choose a design (C, L, G) that minimizes the total
expected cost under that design.

The fact that the state of the plant, the plant disturbance, and the control ac-
tion belong to uncountable spaces does not change the problem fundamentally. The
methodology of section 2 applies here—the technical details are a bit more involved.
Notice that the existence of an optimal design is not guaranteed for this problem.
However, since the function spaces are compact, there exist ε-optimal designs.

5.1. Solution methodology. For a fixed encoder, the design of an optimal
controller is a centralized stochastic control problem as in the case of Problem 2.1. We
need to modify the definition of beliefs, given by Definition 2.2, to take the uncountable
state space into account.

Definition 5.1. For any AX ∈ B(RdX ), AM ∈ 2M, where 2M denotes the
power set of M, define the measurable transforms Bt, Bt, and Bt as follows:

1. Bt(AX , AM ) := Pr (Xt ∈ AX , Mt−1 ∈ AM | It).
2. Bt(AX , AM ) := Pr (Xt ∈ AX , Mt−1 ∈ AM | It).
3. Bt(AX , AM ) := Pr (Xt ∈ AX , Mt ∈ AM | It).

Lemma 2.3 can be proved as before by using Bayes rule for continuous valued
random variables. Lemma 2.3 implies that Theorem 2.4 also holds in this case. Thus
without loss of optimality, we can restrict our attention to controllers of the form

(5.1) Ut = gt(Bt),

that is, the controller belonging to GS , the family of B(PX×M)/B(RdU ) measurable
functions from PX×M to R

dU . Thus, at each stage we can optimize over a fixed
(rather than a time-varying) domain.

With this reduction, we can define information states πt, πt, πt as in Definition 2.5,
with the beliefs given by Definition 5.1. It is easy to show that these information states
satisfy Lemma 2.6. Thus they are sufficient for performance evaluation and lead to a
sequential decomposition of the problem. An ε-optimal design can be obtained by the
nested optimality equations (2.38)–(2.41). Similar results extend to infinite horizon
problems using the ideas of section 4.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NCS WITH NONCLASSICAL INFORMATION STRUCTURES 1399

5.2. Computational issues. Numerically, problems where the state space is
uncountable are much harder than problems with finite state space. This increase
in complexity does not arise from the increase in dimensionality of the information
state; as a matter of fact, the information states for finite and uncountable state
space problems belong to isomorphic spaces. The uncountable state space problems
are harder to solve due to the increase in the complexity of the action space. Let us
first consider some results from probability theory [11, Appendices 1–5] to show that
these information states belong to isomorphic spaces.

Definition 5.2 (Borel space). A measurable space B is called Borelian or a
Borel space if it is isomorphic to a measurable subset of a Polish (i.e., a complete
separable metric) space E.

Consider the following Borel spaces:
1. A finite or countable space D, with the σ-algebra of all subsets.
2. The unit interval J with the σ-algebra of all open subintervals.

Theorem 5.3. Every Borel space is isomorphic to either D or J .
Theorem 5.4. Suppose that PE is the set of all probability measures on the space

E. If E is a Borel space, then PE is also a Borel space.
For the finite state space problem, let E denote the space X ×M with σ-algebra

2X×M; for the uncountable state space problem, let E denote the space R
dX × M

with σ-algebra B(RdX ) × 2M. Then E is Borelian, and, by Theorem 5.4, the space
PE of probability measures on E is a Borel space. By the same argument, the space
Π of probability measures on

(
E × PE, B(E × PE)

)
is a Borel space. Thus the

information state for the finite state space problem and the information state for the
infinite state space problem are isomorphic; each is isomorphic to J , the unit interval
with σ-algebra of all open subintervals.

The dimensionality of the information state is only one component that deter-
mines the complexity of the numerical solution; the dimensionality of the action space
is another. In our problem the action spaces alternate between C, L, and Ĝ. For the
finite state space problem, C, L, and Ĝ are the family of functions from X ×M to
Z, X ×M to M, and Π to U , respectively. For the uncountable state space problem,
C, L, and Ĝ are the family of functions from R

dX ×M to Z, R
dX ×M to M, and Π

to R
dU , respectively. Thus the complexity of all three function spaces increases when

we go to the uncountable state space problems; this increase in complexity makes it
harder to obtain numerical solutions in the case of uncountable state space problems.

5.3. Unstable systems. Consider a system with uncountable (and unbounded)
state and action spaces with average cost per unit time as the performance criterion.
Suppose the instantaneous cost equals ρmax whenever the Lp norm of the state is
greater than some constant; further, the plant dynamics and the channel are such
that the system is unstable under any communication and control strategy (see the
papers on stability of NCS mentioned in the introduction for various conditions under
which this can happen). Then, all policies would asymptotically incur the maximum
cost, and the average cost per unit time would be equal to ρmax. Thus, if a system
with uncountable state and action spaces cannot be stabilized under any policy and
the cost satisfies the above property, then all policies are optimal or ε-optimal for the
average cost per unit time criterion.

6. Imperfect observations. So far we have assumed that the sensor perfectly
observes the state of the plant. However, in many practical systems, the sensor
observations are noisy due to external disturbances and the intrinsic noise in the
measurement hardware. In this section we model this scenario and show that noisy



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1400 ADITYA MAHAJAN AND DEMOSTHENIS TENEKETZIS
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Fig. 6.1. Feedback control system with noisy communication and imperfect observations.

observations by the sensor do not alter the nature of the problem. We first consider
the finite horizon case.

6.1. Problem formulation. Consider a discrete time imperfect observation
system, as shown in Figure 6.1, which operates for T time steps. The state of the
plant Xt evolves according to (2.1). The observations St made by the observer at
time t are a noise-corrupted version of the state of the plant and are given by

(6.1) St = ĥ(Xt, N̂t),

where N̂t denotes the observation noise and ĥ is the observation channel. St takes
values in S := {1, . . . , |S|} and N̂t takes values in N̂ := {1, . . . , |N̂ |}. The sequence of
random variables N̂1, . . . , N̂T is i.i.d. with PMF PN̂ . The sequence N̂1, . . . , N̂T is also
independent of X1, W1, . . . , WT , N1, . . . , NT .

The sensor is modeled as in section 2.1 and operates as follows:

Zt = ct(St, Mt−1),(6.2)
Mt = lt(St, Mt−1).(6.3)

All other components of the system (the channel, the controller, and the performance
metric) are modeled as in section 2.1. The collection of (X ,W , N̂ ,S,M,Z,N ,Y,U ,

PX1 , PW , PN̂ , PN , f, h, ĥ, ρ, T ) is called an imperfect observation system. The choice
of (C, L, G), C := (c1, . . . , cT ), L := (l1, . . . , lT ), G := (g1, . . . , gT ) is called a design.
The performance of a design, quantified by the expected total cost under that design,
is given by (2.6). We are interested in the following optimization problem.

Problem 6.1. Given an imperfect observation system (X ,W , N̂ ,S,M,Z,N ,Y,

U , PX1 , PW , PN̂ , PN , f, h, ĥ, ρ, T ), choose a design (C∗, L∗, G∗) such that

(6.4) JT (C∗, L∗, G∗) = J ∗
T := min

C,L,G∈CT ×LT ×GT
JT (C, L, G),

where CT := C × · · · × C (T times), C is the space of functions from S × M to
Z, LT := L × · · · × L (T times), L is the space of functions from S × M to M,
GT := G1 × · · · × GT , and Gt is the space of functions from Yt × U t−1 to U .

Although in Problem 6.1 the encoder does not know the state of the plant, the
problem is conceptually the same as Problem 2.1, and the solution methodology of
Problem 2.1 works for Problem 6.1 with very minor changes.
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6.2. Solution methodology. First, we present structural properties of optimal
controllers. Then we use these structural properties to obtain a sequential decompo-
sition of Problem 6.1. For this purpose, define the following.

Definition 6.1. Let Bt and Bt be defined as in Definition 2.5. Define Bt as
follows:

Bt(x, s, m) := Pr (Xt = x, St = s, Mt−1 = m | It).

These beliefs are related, as in Lemma 2.3, which implies that the structural
results of Theorem 2.4 also hold for Problem 6.1. Thus, without loss of optimality, we
can restrict our attention to controllers of the form (2.23). These structural results
imply that we can formulate a problem similar to Problem 6.1 with a time-invariant
action space.

Now define πt, πt, and πt as in Definition 2.5, with Bt defined as in Definition 6.1.
These information states πt, πt, and πt satisfy Lemma 2.6. Hence, Problem 6.1 is
equivalent to a deterministic problem similar to that of Problem 2.3 with the trans-
formations Q, Q, and Q appropriately defined. The solution of this deterministic
problem is given by nested optimality equations similar to those of Theorem 2.7.
Hence, we obtain a sequential decomposition of Problem 6.1. Similar results extend
to infinite horizon problems using the ideas of section 4.

7. Conclusion. We have presented a methodology for determining globally op-
timal (or globally ε-optimal) encoding and control strategies for networked control
systems (NCS) with nonclassical information structure. The methodology is applica-
ble to finite horizon problems with an expected total cost criterion, to infinite horizon
problems with an expected discounted cost criterion, and to infinite horizon problems
with an average cost per unit time criterion. We have extended this methodology to
problems where the encoder/sensor makes imperfect observations about the state of
the system. The resulting optimality equations can be viewed as partially observed
Markov decision problems (POMDPs) where the state space is a real-valued vector
and the action space is uncountable. There are very few results on efficient compu-
tational techniques for this class of POMDPs. We hope that the problem of optimal
control over a noisy communication channel will motivate researchers to investigate
numerical methods for optimization problems that are of the type in Problem 2.3.

For the problems considered in this paper, the action space is uncountable be-
cause of the assumption of perfect recall at the controller’s site. In light of the
sequential decomposition for decentralized team problems presented in this paper,
this assumption of perfect recall needs to be reconsidered. For most applications,
the assumption of perfect recall, that is, the assumption that an agent remembers
everything that it has seen and everything that it has done in the past, is impractical.
Nevertheless, in centralized stochastic control problems perfect recall is assumed since
it implies a classical information structure, and it simplifies the solution methodology.
In decentralized problems, the information structure is nonclassical, and it remains
nonclassical even with the unrealistic assumption of perfect recall at each agent’s site.
Further, the assumption of perfect recall makes it harder to obtain a numerical solu-
tion of the resultant nested optimality equations. In the problems considered in this
paper, the sensor/encoder has finite memory, while the controller has perfect recall.
In the nested optimality equations of Theorem 2.7, to obtain an optimal encoder and
memory update rule in (2.39) and (2.40) we need to choose ct and lt belonging to C
and L, respectively; both C and L are finite spaces. On the other hand, to obtain
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an optimal controller in (2.41) we need to choose gt belonging to Ĝ, which is an un-
countable space; even though the action space U is finite, to choose an optimal gt we
have to search over an uncountable space. If we had assumed a finite memory at the
controller, we would have obtained equations in which we need to choose a control
law and a memory update rule at the controller from a finite set, and this problem
is similar to a POMDP with finite action space. Thus, the unrealistic assumption of
perfect recall at any agent’s site does not simplify the analysis but rather makes the
problem numerically more difficult to solve, while the realistic assumption of a finite
memory at all agents’ sites results in a solution algorithm that is easier to solve.

It is important to identify special cases in which the information states πt, πt, and
πt can be restricted to a parametric family of distributions. In centralized stochastic
control problems, linear quadratic Gaussian (LQG) systems possess such a property—
the information state can be restricted to Gaussian distributions. This is because in
LQG systems with a classical information pattern, without any loss of optimality
we can restrict our attention to affine control laws, which implies that the state of
the plant is always Gaussian. Thus the information state—which is the conditional
probability of the state of the plant, conditioned on all the past observations and all the
past control actions of the controller—is also Gaussian. This simplifies the search for
an optimal design. Unfortunately, in decentralized systems (more precisely, in systems
with a nonclassical information structure) nonlinear control laws can outperform affine
control laws even in linear systems where all primitive random variables are Gaussian,
as illustrated by the Witsenhausen counterexample [40]. So, the state of the plant may
not be Gaussian, and hence the information state need not be Gaussian. However,
there may be other special cases for which information states in a decentralized system
belong to a parametric family of distributions. Finding such special cases remains a
challenging open problem.

The results of section 4 show that for infinite horizon problems stationary designs
are not optimal, and in order to implement a time-varying optimal design, we need
to implement an optimal stationary metadesign. Thus, implementing optimal designs
for decentralized systems is an order of magnitude more complicated as compared to
centralized systems. Traditionally, for infinite horizon decentralized control problems,
performance limitations of only stationary designs is considered. It will be worthwhile
to characterize the performance difference between an optimal time-varying design and
the best stationary design. It will also be important to obtain performance limitations
of time-varying optimal designs.

Appendix. Nested σ-algebras. We first present a general lemma and then
use its result to justify the statement made in the discussion in section 3.

Lemma A.1. Consider a probability space (Ω,F , P ). Let X and Y be real-
valued random variables defined on (Ω,F , P ), and let g : (R, B(R)) → (R, B(R)) be
a measurable real-valued function. Then

(A.1) σ(X) ∩ σ(Y ) ⊆ σ(X, g(Y )).

Proof. Consider any set A belonging to σ(X) ∩ σ(Y ). Then, there exist sets B1

and B2 belonging to B(R) such that A = X−1(B1) and A = Y −1(B2). Define a
real-valued random variable Z on (Ω,F , P ) by Z(ω) = g

(
Y (ω)

)
. Let B3 := g(B2).

Now, g−1(B3) ⊇ B2, so Z−1(B3) := Y −1
(
g−1(B3)

) ⊇ Y −1(B2) = A. Thus,

(A.2) X−1(B1) ∩ Z−1(B3) = A.
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Hence, A ∈ σ(X, Z), and thus

(A.3) σ(X) ∩ σ(Y ) ⊆ σ(X, Z) = σ
(
X, g(Y )

)
.

Now, in the discussion in section 3, we claimed that

(A.4) Kt(γt) := σ(Xt, Mt−1) ∩ σ(Y t, U t−1) ⊆ σ(Xt, Mt−1, Bt) =: K̂t(γt).

This follows by taking

X = (Xt, Mt−1), Y = (Y t, U t−1) and g(Y t, U t−1) = Pr
(
Xt, Mt−1

∣∣ Y t, U t−1, γt
)

in Lemma A.1.

Acknowledgments. We are grateful to the referees and the associate editor for
their comments which helped us to significantly improve the presentation of the paper.

REFERENCES

[1] P. J. Antsaklis and J. Baillieul, eds., Special issue on networked control systems, IEEE
Trans. Automat. Control, 49 (2004), pp. 1424–1603.

[2] P. J. Antsaklis and J. Baillieul, eds., Special issue on technology of networked control
systems, Proc. IEEE, 95 (2007) pp. 1–317.

[3] R. J. Aumann, Agreeing to disagree, Ann. Statist., (1976), pp. 1236–39.
[4] J. Baillieul, Feedback design in information based control, in Proceedings of the Workshop in

Stochastic Theory and Control, B. Pasik-Duncan, ed., Springer-Verlag, New York, 2001,
pp. 35–27.

[5] J. Baillieul, Feedback coding for information based control—operating near the data-rate limit,
in Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Piscataway,
NJ, 2002, pp. 3229–3236.

[6] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, Feedback stabilization over
signal-to-noise ratio constrained channels, IEEE Trans. Automat. Control, 52 (2007),
pp. 1391–1403.

[7] R. W. Brockett and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE
Trans. Automat. Control, 45 (2000), pp. 1279–1289.

[8] G. W. Brown, Iterative solutions of games by fictictious play, in Activity Analysis of Produc-
tion and Allocation, T. C. Koopmans, ed., Wiley, New York, 1951, pp. 374–376.

[9] L. G. Bushnell, ed., Special section on networks and control, IEEE Control Systems Mag.,
21 (2001), pp. 22-99.

[10] D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans.
Automat. Control, 35 (1990), pp. 916–924.

[11] E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Grundlehren. Math. Wiss.
23, Springer-Verlag, Berlin, 1979.

[12] N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE
Trans. Automat. Control, 46 (2001), pp. 1384–1400.

[13] O. Hernández-Lerma, Adaptive Markov Control Processes, Springer-Verlag, New York, 1989.
[14] Y.-C. Ho, Team decision theory and information structures, Proc. IEEE, 68 (1980), pp. 644–

654.
[15] H. Ishii and B. A. Francis, Quadratic stabilization of sampled-data systems with quantization,

Automatica, 39 (2003), pp. 1793–1800.
[16] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation Identification and Adaptive

Control, Prentice–Hall, Englewood Cliffs, NJ, 1986.
[17] D. Liberzon, On stabilization of linear systems with limited information, IEEE Trans.

Automat. Control, 48 (2003), pp. 304–307.
[18] A. Mahajan, Sequential Decomposition of Sequential Dynamic Teams: Applications to Real-

Time Communication and Networked Control Systems, Ph.D. thesis, University of Michi-
gan, Ann Arbor, MI, 2008.

[19] A. Mahajan and D. Teneketzis, Optimal design of sequential real-time communication sys-
tems, submitted. Available as Control Group Report CGR-06-03, Department of EECS,
University of Michigan, Ann Arbor, MI 48109-2122.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1404 ADITYA MAHAJAN AND DEMOSTHENIS TENEKETZIS

[20] J. Marschak and R. Radner, Economic Theory of Teams, Yale University Press, New Haven,
CT, 1972.

[21] N. C. Martins and M. A. Dahleh, Feedback control in the presence of noisy channels: “Bode-
like” fundamental limitations of performance, IEEE Trans. Automat. Control, 53 (2008),
pp. 1604–1615.

[22] N. C. Martins, M. A. Dahleh, and J. C. Doyle, Fundamental limitations of disturbance
attenuation in the presence of side information, IEEE Trans. Automat. Control, 52 (2007),
pp. 56–66.

[23] N. C. Martins, M. A. Dahleh, and N. Elia, Feedback stabilization of uncertain systems in
the presence of a direct link, IEEE Trans. Automat. Control, 51 (2006), pp. 438–447.

[24] A. S. Matveev and A. V. Savkin, Problem of LQG optimal control via a limited capacity
communication channel, System Control Lett., (2004), pp. 51–64.

[25] G. N. Nair and R. J. Evans, Stabilization with data-rate limited feedback: Tightest attainable
bounds, Systems Control Lett., 41 (2000), pp. 304–307.

[26] G. N. Nair and R. J. Evans, Exponential stabilisability of finite-dimensional linear systems
with limited data rates, Automatica, 39 (2003), pp. 585–593.

[27] G. N. Nair and R. J. Evans, Stabilizability of stochastic linear systems with finite feedback
data rates, SIAM J. Control Optim., 43 (2004), pp. 413–436.

[28] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran, Topological feedback entropy
and nonlinear stabilization, IEEE Trans. Automat. Control, 49 (2004), pp. 1585–1597.

[29] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, Feedback control under data rate
constraints: An overview, Proc. IEEE, 95 (2007), pp. 108–137.

[30] I. R. Peterson and A. V. Savkin, Multi-rate stabilization of multivariable discrete-time linear
systems via a limited capacity communication channel, in Proceedings of the 40th IEEE
Conference on Decision and Control, 2001, IEEE, Piscataway, NJ, pp. 304–309.

[31] J. Robinson, An iterative method for solving a game, Ann. Math., 54 (1951), pp. 296–301.
[32] N. R. Sandell, Jr., Control of Finite-State, Finite-Memory Stochastic Systems, Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, MA, 1974.
[33] A. V. Savkin, Analysis and synthesis of networked control systems: Topological entropy, ob-

servability, robustness and optimal control, Automatica, 42 (2006), pp. 51–62.
[34] L. S. Shapley, Some topics in two-person games, in Advances in Game Theory, M. Dresher,

L. S. Shapley, and A. W. Tucker, eds., Ann. Math. Stud. 52, Princeton University Press,
Princeton, NJ, 1964, pp. 1–28.

[35] S. Tatikonda, Control under Communication Constraints, Ph.D. thesis, Department of EECS,
Massachusetts Institute of Technology, Cambridge, MA, 2000.

[36] S. Tatikonda and S. K. Mitter, Control over noisy channels, IEEE Trans. Automat. Control,
49 (2004), pp. 1196–1201.

[37] S. Tatikonda and S. K. Mitter, Control under communication constraints, IEEE Trans.
Automat. Control, 49 (2004), pp. 1056–1068.

[38] S. Tatikonda, A. Sahai, and S. K. Mitter, Stochastic linear control over a communication
channel, IEEE Trans. Automat. Control, 49 (2004), pp. 1549–1561.

[39] J. C. Walrand and P. Varaiya, Causal coding and control of Markov chains, System Control
Lett., 3 (1983), pp. 189–192.

[40] H. S. Witsenhausen, A counterexample in stochastic optimum control, SIAM J. Control, 6
(1968), pp. 131–147.

[41] H. S. Witsenhausen, Separation of estimation and control for discrete time systems, Proc.
IEEE, 59 (1971), pp. 1557–1566.

[42] H. S. Witsenhausen, A standard form for sequential stochastic control, Math. Systems Theory,
7 (1973), pp. 5–11.

[43] H. S. Witsenhausen, The intrinsic model for discrete stochastic control: Some open problems,
in Control Theory, Numerical Methods and Computer System Modelling, A. Bensoussan
and J. L. Lions, eds., Lecture Notes in Econom. and Math. Systems 107, Springer, Berlin,
1975, pp. 322–335.

[44] H. S. Witsenhausen, Some remarks on the concept of state, in Directions in Large-Scale
Systems, Y. C. Ho and S. K. Mitter, eds., Plenum Press, New York, 1976, pp. 69–75.

[45] W. S. Wong and R. W. Brockett, Systems with finite communcation bandwidth constraints
II: Stabilization with limited information feedback, IEEE Trans. Automat. Control, 44
(1999), pp. 1049–1053.
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