
Thompson-sampling based reinforcement learning for
networked control of unknown linear systems

Borna Sayedana1

Joint work with: Mohammad Afshari2, Peter E. Caines1 , Aditya
Mahajan1

McGill University1, CIM1, GERAD1,Georgia Institute of Technology2

IEEE Conference on Decision and Control
December 2022

B Sayedana Thompson-sampling for networked control of linear systems 1 / 27 CDC 2022



Network Control Systems

ut xt
plantcontroller

The control loops are closed through wireless channel.

These channels can be between plant and controller / sensors and
controller.

Applications : Platooning of self-driving trucks, Smart grid, Robotics,
Wireless sensor networks

Question: How can we control unknown NCS?
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Literature review

Planning in NCS

[Sinopoli et al., 2005, Antsaklis and Baillieul, 2007, Sinopoli et al., 2004]

Reinforcement learning for NCS

[Jiang et al., 2017, Fan et al., 2019, Li et al., 2020]

Related Models : Switched Linear Systems

[Sarkar et al., 2019, Shi et al., 2023]
[Sattar et al., 2021, Sayedana et al., 2021]

In all these works, switching signal is known or controlled.

B Sayedana Thompson-sampling for networked control of linear systems 3 / 27 CDC 2022



Notation

J(θ) : performance of the optimal policy for paramter θ.

Given the prior over θ ∈ Θ, the Bayesian regret:

R(T ;π) = Eπ
[ T∑
t=1

c(xt , ut , νt)− TJ(θ)
]

an = O(bn), if there exists a positive constant K , such that:

‖an‖ ≤ Kbn

Õ(cn) means:
Õ(cn) = O(cn logk(n))
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Bayesian Reinforcement learning for linear systems

Regret bounds for Linear systems

[Abbasi-Yadkori and Szepesvari, 2014, Faradonbeh et al.,
2020b, Faradonbeh et al., 2020a, Simchowitz and Foster, 2020]

Thompson sampling

[Gagrani et al., 2021, Ouyang et al., 2020] for LQR problem :

R(T ; TSDE) ≤ Õ(σ2
w (n + m)

√
nT ).
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Contribution

Bayesian reinforcement learning for networked control system

Variation of TSDE algorithm [Ouyang et al., 2020]

Connection with Markov jump linear systems.

Achieve Bayesian regret bound of:

R(T ; TSDE) ≤ Õ(σ2
w (n + m)

√
nT ).

Show same regret bound is true for the NCS model.
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Networked Control Systems

System’s dynamics

xt+1 = Axt + νtBut + wt , t ≥ 1,

{wt}t≥1 : is an i.i.d. Gaussian process with wt ∼ N (0, σ2
w I ).

{νt}t≥1 : is an i.i.d. Bernoulli process with P(νt = 1) = q.

Switching per step cost

Per-step cost given by

c(xt , ut , νt) = x
ᵀ
t Qxt + νtu

ᵀ
t Rut , Q � 0,R � 0
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Optimization Setup

θ
ᵀ

= [A,B] : parameters of the system.

q : probability of successful transmission

Performance of policy π:

J(π; θ) = lim sup
T→∞

1

T
Eπ
[ T∑
t=1

c(xt , ut , νt)
]
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Planning Solution

Planning problem: [Sinopoli et al., 2005]: J(θ) = σ2
w tr(Sθ)

s(θ) � 0 solution to modified Riccati:

S(θ) = Q + A
ᵀ
S(θ)A− qA

ᵀ
S(θ)B(R + B

ᵀ
S(θ)B)−1B

ᵀ
S(θ)A

Optimal policy

Optimal control action:
ut = G (θ)xt ,

Gain:
G (θ) = −(R + B

ᵀ
S(θ)B)−1B

ᵀ
S(θ)A
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NCS as a switching system

xt

A

A+BG(.)

+
xt+1

wt

st

Switching between open/closed loop dynamics

If νt = 1 : closed loop dynamics

If νt = 0 : open loop dynamics
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Problem Formulation

Our setup

θ = (A,B) are unknown.

(q,Q,R) are known.

We have a prior on θ ∈ Θ.

Definition of regret:

R(T ;π) = Eπ
[ T∑
t=1

c(xt , ut , νt)− TJ(θ)
]

B Sayedana Thompson-sampling for networked control of linear systems 11 / 27 CDC 2022



Assumptions on the Model

Controllability : ∀θ ∈ Θ, pair (Aθ,Bθ) is controllable.

Sufficient condition for planning [Sinopoli et al., 2005] :

1− q ≤ 1

|λmax(Aθ)|2
, ∀θ ∈ Θ

λmax(Aθ) : Maximum eigen-value of Aθ

δ := sup
θ,φ∈Θ

‖Aθ + BθG (φ)‖, σ := sup
θ∈Θ
‖Aθ‖.

Assumption on the stability

Stability: δqσ1−q < 1.

Average contractivity of dynamical system
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Assumption on the prior

Assumption on prior

Distribution of prior:

p1(θ) =

[ n∏
i=1

ξi1(θi )

]∣∣∣∣
Θ

ξi1 = N (µi1,Σ1), µi1 ∈ Rd .

Given the assumption we get posterior, [Sternby, 1977]:

pt(θ) =

[ n∏
i=1

ξit(θ
i )

]∣∣∣∣
Θ

ξit(θ
i ) = N (µit ,Σt)
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Posterior distribution

Posterior distribution

Update rule for {µit}ni=1 and Σt :

µit+1 = µit +
Σtzt(x

i
t+1 − (µit)

ᵀ
zt)

σ2
w + zᵀt Σtzt

,

Σ−1
t+1 = Σ−1

t +
1

σ2
w

ztz
ᵀ
t ,

where zt = vec(xt , νtut), and xt = [x1
t , . . . , x

n
t ]
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TSDE

We present a variation of TSDE for NCS.
tk :start of episode, Tk :length of episode

Episodes restarts

tk+1 = min

{
t > tk

∣∣∣∣∣ t − tk > Tk−1 or

det Σt <
1
2 det Σtk

}
.
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TSDE

At the episode K :

1 θk is sampled from posterior ptk .

2 Control inputs are generated using θk :

ut = G (θk)xt , tk ≤ t ≤ tk+1 − 1
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TSDE

Thompson Sampling with Dynamic Episodes

1: input: Θ, θ̂, Σ1

2: initialization: t ← 1, t0 ← −Tmin, T−1 ← Tmin, k ← 0.
3: for t = 1, 2, . . . do
4: observe xt
5: update pt .
6: if

(
(t − tk > Tk−1) or (det Σt <

1
2 det Σtk )

)
then

7: Tk ← t − tk , k ← k + 1, tk ← t
8: sample θk ∼ µt
9: end if

10: Apply control ut = G (θk)xt
11: end for
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Main results

Theorem

The regret of TSDE is upper bounded by

R(T ; TSDE) ≤ Õ(σ2
w (n + m)

√
nT ).

n is dimension of state

m is dimension of control input
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Discussion on the Assumptions

Feasible region for planning : Qp(Θ) = [qp, 1]

qp = sup
θ∈Θ

[
1− 1

|λmax(Aθ)|2
]+
,

Feasible region for learning: Q`(Θ) = {q ∈ [0, 1] : δqσ1−q < 1}

Relation between Qp(Θ) and Ql(Θ)

Relation between Qp(Θ) and Ql(Θ) and is in general a function of Θ.

Both Qp(Θ) ⊂ Ql(Θ) and Ql(Θ) ⊂ Qp(Θ) might hold.
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Conclusion

Bayesian reinforcement learning for Networked control systems

Use variation of TSDE algorithm and show Bayesian regret of:

R(T ; TSDE) ≤ Õ(σ2
w (n + m)

√
nT ).

No partial ordering between Qp(Θ) and Ql(Θ) in general.

TSDE has the same regret bound as the the case of linear systems.
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Thank you!
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