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Abstract-In smart-metered systems, fine-grained time-series 
power usage data (load profile) is communicated from a user 
to the utility provider. The correlation of the load profile with a 
user's private activities leaves open the possibility of inference 
attacks. Using a rechargeable battery, the user can partially 
obscure its load profile and provide some protection to the 
private information using various strategies for charging and 
discharging the battery (battery management policies). Using 
mutual information as the privacy metric, we study optimal 
battery management policies for discrete alphabets. We show 
that the problem can be formulated as a Markov Decision 
Process, identify the associated state and action space, and 
using this framework characterize the optimal policy for the 
binary alphabet case. 

I. INTRODUCTION 

Smart electricity meters are becoming a critical part of 

modern electrical grids. They deliver find-grained household 

power usage measurements to utility providers. This infor

mation allows them to implement reforms to the efficiency 

of the electrical grid. For instance, the utility provider can 

use dynamic pricing and planned service delivery to shift 

power demand off of peak times [1]. However, despite the 

promise of savings in energy and money, there is potentially 

a loss of privacy. A utility provider may employ data 

mining algorithms to infer trends in the usage patterns [2]. 

Information about a user's private activities is invaluable to 

advertising agencies for designing targeted advertisements, 

insurance companies to determine health premiums, or even 

criminals looking for the best times to cOlmnit robbery etc. 

One possible solution is to use escrow-based data 

anonymization [3]; however then the privacy boundary is 

simply shifted to the escrow service. A complementary 

solution is to partially obscure the load profile using a 

rechargeable battery [4]. As rechargeable batteries become 

more commonplace (for example due to the proliferation 

of electric vehicles and renewable energy harvester), this 

approach becomes more practical and economically viable 

(as it can also be used to take advantage of dynamic pricing 

[5]). This approach to privacy provides absolute guarantees 

to how much private information is leaked. 

I Home I Xi 
Appliances I 

Battery Policy 
8i-1 = 8i-2 + Yi-1 - Xi-1 

qi(YiIXi, 8b-1, yi-1) 
Yi I Utility I I Provider 

Fig. 1. System Diagram. At each time i E {l, 2, ... , n}, the battery policy 
defines a with channel with memory from Xi to Yi. 

In this paper, we explore the structure of optimal privacy

preserving battery policies. Through a series of observations, 

we identify special structure in optimal policies that greatly 

simplifies the optimization. Then we give an equivalent for

mulation of the problem as a finite-horizon Markov Decision 

Problem, and identify the associated state and action space. 

Finally, we study the binary smart meters model for the case 

of an i.i.d. load sequence, previously considered in [4], and 

characterize the optimal policy in this special case. 

II. PROBLEM STATEMENT 

Consider an electricity consumer with an installed 

rechargeable battery. At each time i E {I, 2, . . .  , n}, let 

Si-l E S, Xi E .Y, and Yi E Y denote the battery state, 

the power demand, and the energy drawn from the grid 

respectively. We consider finite alphabets and that (Xi)i=l 
is a first-order Markov process. The battery may be charged 

and discharged without conversion losses according to 

(1) 

Let W(x , s ) = {y E Y : s + y - X ES}. A battery policy 

q ( y nl xn, So) is admissible if and only if it is causal 

n 
q (y nl xn, So) = Q9q i( YiIX i, sb-I, y i-l) (2) 

i=l 
and consistent with (1) i.e. 

q i( W(Xi, Si-d IXi, sb-I, y i-l) = 1, for i E {I, 2, ... , n}. 
(3) 

We denote the set of all admissible battery management 

policies by QA. A policy q E QA induces a joint distribution 
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We define the leakage rate as 

where the mutual information is evaluated according to the 

induced joint distribution. We are interested in the following 

optimization problem: 

Problem A In the model described above, find an optimal 

battery policy q * that minimizes the leakage rate 

L(q *) = min L(q ). 
qEQA 

III. THE MDP FORMULATION 

We identify simplifications to Problem A by observing 

that the optimal policies have certain special structure. 

These simplifications reduce the size of the optimization and 

ultimately lead to the MDP formulation. (The proof for some 

results are in the appendix.) 

A. Optimal Structure and Simplifications 

Using the properties of mutual information we can state 

the following lemmas. Define Z i := (Xi, Si- 1). 

Lemma 1. Problem A is a convex optimization problem: Let 

A E [0 , 1], {ql, q2} c QA, and q).. = A ql + (1- A)q2' then 

q >. E QA and 

We now identify a subset of QA that is optimal, let 

Now we define a new cost 

n 

B. Sufficient Statistics 

Let PYlz be the set of all stochastic kernels Z to y . Let 

the action space be Pw = { u  E PYlz : u( W( Z )I Z ) = I}. 
Let the state space be 1ii- 1 = yi- 1 X Ui- 1. A policy is a 

sequence I = (fi)': = 1 such that Ii : 1ii- 1 -7 Pw. The cost 

at each stage is If( Zi; Yil hi- 1). 
The MDP proceeds as follows at stage i, Ii observes state 

hi- 1 and selects Ui, a cost If ( Zi; Yi Ihi- 1) is incurred, a Yi 
is produced, then the transition hi = ( hi-I) U (Yi, Ui) occurs. 

A policy I induces a joint distribution on the vari

ables as follows. Let pf(Yilzi, y i-l, ui) := Ui(Yilzi) and 

Pf( I i -I i -I i -l ) ._ s: . ( )  th Ui z , Y , U .- u{j;(h,-l)} Ui , en 

n 
pf (y n, Zn, un) = Q9 pf (Yi, Zi, uily i-\ zi-l, ui- 1) 

i=l 
n 

= Q9 Ui (Yi IZi)P(Zi IZi-l, Yi-d J{j, (hi-l)} (Ui) 
i=l 

(6) 

where P(ziIYi- 1, zi-d = :ll. (Si- 1 = Si-2 + Yi- 1 -
Xi-l)P(Xilx i-d is given in the system definition. 

Consequently, the objective function for the n-stage prob

lem is defined as 

n 
Le(f):= L If( Zi;YiI Hi- 1) (7) 

i= 1 
and is evaluated according to the induced joint distribution. 

Problem C Find a policy 1* that minimizes (7) 

Le(f*) = min Le(f). 
f 

Lemma 3. Problems B and C are equivalent. 

Proof Since the policies I in Problem C are deterministic, 

If ( Zi; Yily i-l) = If ( Zi; YiI Hi-l), and it is clear that for 

every I there exists a q E QB such that LB(q ) = Le(f), 
and vice-versa. D 

LB(q ):= L I q( Zi;YilYi- 1), q E QB. (5) Note the resemblance of the problem to a POMDP with 
i= 1 

Lemma 2. In Problem A, the optimization over QA can be 

replaced by QB without loss of optimality such that 

Furthermore, 

min L(q ) = min L(q ). 
qEQA qEQB 

Lemma 1 implies that Problem A can have a simpler 

objective function and domain. 

Problem B Find a battery policy q * E QB such that 

In the next section, using the simplified Problem B, we 

will introduce an equivalent formulation using MDP. To do 

so, we identify suitable state and action spaces, policies, and 

cost function. We follow the convention in [6]. 

hidden state Z i, observation Yi and action Ui. The dis-

crepancy is that the objective cannot be expressed as a 

function c : Z x Pw -7 lR but rather, it is a function 

c : Pz X Pw -7 R However, we can show that we can 

formulate the problem directly as an MDP instead. 

Let us define a statistic 7ri, the receiver's estimate of the 

state and power demand Z i given all past observations and 

actions hi. We define 7rI[ 0](Zi) := P(zd and for each i, 

7r ;[hi- 1](Zi) := ¢(7ri-lW-2], Ui-l, Yi-d 
L P(Zi IYi-l, Zi-dUi-l (Yi-llzi-l) 7ri-l [hi-2] (Zi-l) 

Zi-l 

Zi-l 

Lemma 4. Given a policy I and 7ri as defined in (8) 

7r ;[hi- 1]( Zi) = pf( Zil hi-l) 

(8) 

holds true for almost all (hi-I) for each i. Note that given 

h i-I, the posterior is independent of the policy f. 
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Lemma S. (7ri)i=l is a u-controlled Markov process 

pf(7ri+llui, 7ri) = P(7ri+llui, 7ri) 
= L:n. (7ri+l = ¢(7ri' Ui, Yi)) L Ui(Yilzi) 7ri(Zi) (9) 

Yi Zi 
Note that the transitions are independent of the policy f. 

Now we define a new cost function C : Pz X Pw --+ lR as 

Lemma 6. (7ri)i=l is a sufficient statistic for (hi-l)i=l. In 

particular, the per-stage cost can be expressed as 

If ( Zi; Yil hi-l) = c(7r d hi-l], Ui) 

and is independent of the policy I given the action. 

The Markovian nature (7ri)i=l and the fact that it is a 

sufficient statistic implies Problem C can be recast as an 

MDP. We present this formulation in the next section. 

Remark: The sufficient statistic in problems with lID 

sources can be simplified to be the posterior of the battery 

state only. We show an example of that in Section IV. 

e. The MDP Formulation and Algorithms 

Problem D 

State space: 

Action space: 

Policy: 

Transition law: 

Per-stage cost: 

7ri E Pz 
Ui E Pw 

Ii: Pz --+ Pw 
P(7ril7ri-l, Ui-l) 

c( 7ri, Ui) 
The transition and cost functions are defined in (9) and (10). 

Theorem 7. Problem A can be reformulated as a Markov 

Decision Process defined in Problem D. 

1) Define the cost-to-go functions In+l(7rn+l) = 0 and 

Ji(7ri-l) = min {c(7ri' Ui) u.,E'Pw 

+ � Ui(Yilzi) 7ri(Zi)Ji+l(¢(7ri, Ui, Yi))} 
(11) 

for i E {I, 2, ... ,n }, where ¢ is defined in (8). 

2) The minimum leakage rate is obtained from Jl. 

L(q *) = �Jl(7rl) for 7rl = P(Xl)P( So) 
n 

Proof The proof for 1) is the dynamic programming recur

sion (see [8]) and 2) follows from Lennnas 4-6. D 

The main difficulty with evaluating the cost-to-go func

tions in Theorem 7 is due to the uncountability of the 

state and action spaces. To evaluate the dynamic program 

recursion numerically, it is necessary to employ some dis

cretization procedure. For instance, by discretizing the action 

x=l 
y=O 

x=O 

y=l 

Fig. 2. Finite-state-machine representation for binary smart meters model. 

space, Sondik's a-vector algorithm for POMDPs can be used 

[9]. Otherwise, by discretizing both the state and action 

spaces, the classical value iteration algorithm can be used. 

IV. THE BINARY SMART METERS MODEL 

We define the binary smart meters model as follows. Let 

X E {O, I}, Y E {O, I}, S E {O, I} and (Xi)i=l be an lID 

equiprobable Bernoulli process and P( So) = 1/2. 
Theorem 8. For the binary model, the minimum leakage 

rate is 1/2 the optimal action at each stage is 

The convexity of Problem A will reveal some structure 

in the set of optimal policies for Problem D. Given an 

admissible policy q , we define the "flipped" policy 

q(y n = y nl xn = x n, So = so) 
(12) := q ( y n = y nl xn = x n, So = so) 

where y n denotes the element-wise NOT operation. The 

following results pertain only to the binary model. 

Lemma 9. The "flipped" policy q is admissible. 

Proof It is clear that causality (2) is satisfied, then for (3) it 

is sufficient to show that q = 0 for any sequence (y n, x n, so) 
inconsistent with the FSM in Figure 2. Observe that if 

(y i, x i, SO ) is inconsistent, then by inspection, (y i, Xi, SO ) 
is inconsistent, so q(y i, xi, SO ) = q (y i, Xi, SO ) = O. D 

Lemma 10. 1) A policy q yields the same leakage as q 

L(q ) = L(q), for q E QA 
2) Without loss of optimality, we may optimize over symmet

ric policies 

QA,sym = {q E QA : q = q} . 

Now consider Jl in the DP (11). Lemma 10 implies 

that we may optimize over PW,sym = { u  E Pw : U = il} 
without loss of optimality. 

Lemma 11. For Ul E PW,sym, the following are true 

1) 7rl = ¢(7rl' Ul, Yl), 'V YI 
2) minuIE'Pw,sym C(7rl' ud = 1/2 
3) UH Yllzd = 1/2, if Xl = S o 

377 



2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 

Using Lemma 11, consider the following equalities: 

Jl(7rd = min { C(7rl, Ud + L P(7r217rl, Ul)J2(7r2)} u1EPw 
7r2 

= min c( 7rl, ud + h ( 7rd Ul EPW,syrn 
n 

2 
Using forward induction, we apply this argument to 

h, h, · . .  Then by Theorem 6, we have L(q *) 
�Jl(7rd = 1/2 where q *(y nl xn, So) = ®7= 1 Ui( YiI Zi). 

V. CONCLUSION 

In this paper, we consider the method of using a recharge

able battery to enhance privacy in smart metered systems. 

We cast the problem into an information theoretic framework 

and used it to find optimal battery management policies for 

minimizing information leakage. We simplify the optimiza

tion by finding the associated sufficient statistics for the poli

cies and then refonnulated the problem as a Markov decision 

process. We then studied the binary smart meters model and 

characterized the optimal policy that minimizes information 

leakage. For more complex versions of the problem (i.e. for 

sources with memory), the MDP formulation provided here 

allows one to use dynamic prograrmning techniques such 

as value-iteration to solve for optimal policies and leakage 

rates. 

In future work, we will extend the analysis to the infi

nite horizon case and consider complex models with more 

general alphabets and sources and characterize the effect of 

increasing battery size where we expect to see a connection 

with [10]. 

VI. ApPENDIX 

Proof of Lemma 1. If q).. satisfies (2) and (3), then q).. E QA. 
We first show causality (2). For each i, 

. Lyn q)..(yflxf, so) 
( In ,- 1 ) ,+" q).., i Yi X , Y , So = --:",=-'"-'--'---:-( -n-'-

I
-
n
--

)
:-

L.yr q).. Yl Xl ' So 
Lyr+1 A ql(yflxf, So) + (1 - A)q2(yflxf, so) 
LYi A ql(yflxf, so) + (1- A)q2(yflxf, so) 

(a) A ql (Yi IxL so) + (1 - A)q2(yi IxL so) 
A ql (y�-llxl- 1, so) + (1 - A)q2(yr llxl-l, so) 

. 

We have causality since (a) is independent of the future x i+!. 
Now we show (3) is satisfied. For each i, 

q)..,i ( W(Zi) IZi, y i-l )q).. (y i-llx i-l, so) 
= q).. ( Yi  E W(Zi)' y i-llx i, so) 
= A q2,i( W(Zi) Izi, y i-l )ql (y i-llx i-\ so) 

+ (1- A)q2,i( W(Zi)lzi, y i-l)q2(y i-llx i- 1, SO) 
= A ql (y i-llx i-\ so) + (1 - A)q2(y i-llx i-\ so) 
= q)..(y i-llx i-\ so) ===} q)..,i( W(Zi)lzi, y i-l) = l. 

Proof of Lemma 2. Consider this chain of inequalities: 

n 
1( S Xn. y n) <;2 '" 1( S X i. y,ly i-l) 0" � 0, , t  

i=l 
n 

� L 1( Z\ Yily i-l) 
i=l 
n (c) '" i-I 2: L..,,!( Zi ;  YiIY ). 

i=l 

For (a), use the chain rule of mutual information and the 

fact that ( Z i-2, y i-l) -+ Xi-l -+ Xi. For (b), note that 

the battery process is a deterministic function of the past 

variables (see (1)). For (c), q achieves the lower bound iff 

q E Q B. 
We will show that given any qA E QA, �qB E Q B  such 

that ", n 1qB( Z . ·Y: . l y i-l) = ", n 1qA( Z'Y,ly i-l) Lz=l 2, to L'l-=l z, 1., • 
A sufficient condition is if pqA(y n) = pqB(y n) and 
pqA ( Zil y i-l) = pqB ( Zil y i-l) for each i. We can obtain 
this qB by marginalizing 

qB,i(Yilzi, y i-l) = qA,i(Yilzi, y i-l) 
i 

L ® qA,i(Yjlzj, yj-l)P(zjIYj_ l, Zi _ l) 
Zi-1 j=l 

i 
L ® qA,i(Yjlzj, yj-l)P(zjIYj_ l, Zj_ l) Yi,Zi-l j= 1 

Using induction, let i = 1, then pqA (zd = pqB (zd, then 

Zi-l 

Zi-l 

Zi-l 

Zi-l 

Again using induction, let i = 1, then pqA (y I) 
LZ1 pqA (YllzdPqA (Zl) = LZ1 pqB (YllzdPqB (Zl) 
pqB (yd, then 

Zi 

Zi 

D 

For the convexity of mutual information, see [11]. D Proof of Lemma 4. By induction, pi (Zl) 
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i = 1, and then 

pf (hi)1fi+l [hi] (z Hd 

� ( � Ui(Yi IZi)1f;[hi- 1](Zi)OU(hi-l)} (ui)pf (hi- 1)) 
X ( LZi P(Z H1IYi, Zi) Ui(YiIZi)1f;[hi-l](Zi)) 

LZi Ui(Yilzi)1fd h,- 1](Zi) 

= L P(z HlIYi, Zi) Ui (Yi IZi)1f;[hi- 1] (Zi) 

x 0U(hi-1)} (Ui)pf(hi- 1) 

� L P(Zi+lIYi, Zi)pf(Zi, hi) 
Zi 

= pf (Z Hl, hi), for i E {I, 2, ... , n} 

where (a) is due to (6) and (8), while (b) is due to (6). 

Proof of Lemma 5. Consider this chain of equalities: 

pf (1fHllui, 1fi) = L pf (1fi+lIYi, ui, 1fi)pf (Yi lui, 1fi) 
Yi 

= L :n. (1fH1 = ¢(1fi, Ui, Yi)) L Ui(YiIZi)1fi(Zi) 
Yi 

= P(1fH1IUi, 1fi) 

where ¢ is defined in (8). 

Zi 

Proof of Lemma 6. Consider the per stage cost: 

If( Zi;YiW-l) 

= lEf [1 pf( YiI Zi, hi-I) I hi-l] og 
LZi Pf( Yilzi, hi- 1)Pf(Zil hi- 1) 

= lEf [lOg ui( YiI Zi) 
. I hi-l] 

LZi ui( Yilzi)1f;[h,-l] (Zi) 
= c(1fd hi- 1], Ui) 

where C is defined in (10). 

D 

D 

D 

where (a) is because we are summing over (y n, x n, so) and 

(b) is by (12). For Part 2), by Lemma 1, q)., may improve 

the leakage unless q was already symmetric (i.e. q = q). D 

Proof of Lemma 11. Note that for U E PW,sym, U is com

pletely characterized by a number a E [0 , 1] since by (3) 

U1(Y = li z = (1,0)) = U1(Y = Olz = (0,1)) = 1 and let 

U1(Y = li z = (0,0)) = U1(Y = Olz = (1,1)) = a and then 

Ul(Y = Olz = (0,0)) = Ul(Y = li z = (1,1)) = 1- a. 

Part 1): By Lemma 5, 1f2(sd = PU(sllyd, so it is 

sufficient to show S 1 ..1 Yl. Note that (l) and the definition 

of the joint distribution 

1 
P(Sl' Yl) = 4 L :n.{Sl = So - Xl + Yl} Ul (Yllzd 

Zl 
Let's consider each case. For Sl = Yl, 

1 
P(Sl, Yl) = 4(Ul(Yllzl = (0,0)) + Ul(Yllzl = (1,1)) = 1/4 

And for Sl i- Y1, 
1 

P(Sl, Y1) = 4 U1(Y1 1 z1 = (Y1, Sl)) = 1/4. 

Parts 2) and 3): Note that Lz u(Y lz ) = 2. Then 

1 "" 4 Ui(Yilzi) C(1fi, Ui) = - � Ui(Yilzi) log 
L ( I  ') 4 Z' U, y , zi Yi ,Z�i i 

1 
= 1 + 4 L Ui(Yilzi) log Ui(Yilzi) 

where Hb is the binary entropy function. Let a 

achieve the minimum. 
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