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Abstract—We consider a setup where a rechargeable battery is
used to partially mask the load profile of a user from the utility
provider in a smart-metered electrical system. Using mutual
information as the privacy metric, a prior work by Li, Khisti
and Mahajan has considered the case of i.i.d. input load and
established the optimal battery charging policy as well as the
associated leakage rate. In this work we consider the case when
the input distribution is also sampled independently at each time,
but from a periodically time-varying distribution. We propose
upper and lower bounds on the optimal leakage rate by extending
techniques developed by for the i.i.d. case. Numerical results
suggest that the upper and lower bounds are close for examples
involving binary and ternary inputs .

I. INTRODUCTION

Smart meters are becoming a critical part of modern elec-
trical grids. They deliver fine-grained household power usage
measurements to utility providers. This information allows
them to implement changes to improve the efficiency of the
electrical grid. However, despite the promise of savings in
energy and money, there is potentially a loss of privacy.
Anyone with access to the load profile may employ data
mining algorithms to infer details about the private activities
of the user [1]–[6].

One possible solution to the privacy problem involves using
a rechargeable battery. The user can distort the load profile
generated by the appliances by charging and discharging the
battery. Due to the proliferation of rechargeable batteries,
energy harvesting devices and electric vehicles, the strategy
of using these devices to partially obfuscate the user’s load
profile is becoming more feasible.

We consider a setup similar to [7]–[10] which consider
using mutual information as a privacy metric. Reference [7]
considers an instance of the problem with binary alphabets.
The setup is extended in [8]–[10] where the multi-letter mutual
information optimization problem is reformulated. A single
letter solution for the case when the inputs are independent
and identically distributed (i.i.d.) is presented in [10]. For other
related works, see [11]–[15].

The present work extends previous results by considering
the case of a periodically time-varying input distribution. For
sake of convenience we limit our discussion to the case when
the period equals two i.e., for all odd time-instants the input
load distribution is sampled i.i.d. from a given distribution say

Q1(·) and for all even-time instants it is sampled i.i.d. from
another distribution say Q2(·). We show that this is a non-
trivial extension of the i.i.d. case treated in [10] and develop
new upper and lower bounds on the optimal leakage rate.

II. PROBLEM DEFINITION

We consider a smart metering system as shown in Fig. 1
where at each time a residence generates an aggregate demand
that must either be satisfied by charges in the battery or
by drawing power from the grid. {Xt}t≥1, Xt ∈ X where
X := {0, 1, 2, . . . ,mx} denotes the power demand process.
We assume that Xt is sampled independently at each time
and from a distribution Q1(·) for odd values of t and from a
distribution Q2(·) for even values of t. The sequence {Yt}t≥1,
Yt ∈ Y , denotes the energy consumed from the grid where
Y := {0, 1, 2, . . . ,my} and {St}t≥1, St ∈ S denotes the
energy stored in the battery where S := {0, 1, 2, . . . ,ms} and
the initial charge S1 of the battery is distributed according to
probability mass function PS1

.
We assume that mx ≤ my so that the system is guaranteed

to be able to satisfy the demand at any time by drawing solely
from the grid i.e. Yt = Xt, ∀t. While in general, the alphabets
X and Y can be any finite subset of the integers – where
negative values of X and Y would model a situation where
energy (possibly generated from an alternative energy source)
is sold back to the utility provider – it is more realistic to for
them to be a contiguous interval. In this case, without further
assumptions on the battery size, the alphabets would have to
satisfy X ⊂ Y in order to guarantee that energy is not wasted
and the power demand can always be satisfied. Nonetheless,
our results generalize to these cases.

We assume an ideal battery that has no conversion losses
or other inefficiencies. Therefore, the following conservation
equation must be satisfied at all time instances:

St+1 = St −Xt + Yt. (1)

The energy management system observes the power demand
and battery charge and consumes energy from the grid ac-
cording to a randomized charging policy q = (q1, q2, . . . ).
In particular, at time t, given (xt, st, yt−1), the history of
demand, battery charge, and past consumption, the battery
policy chooses the level of current consumption Yt to be
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Fig. 1: System Diagram. The user demand is denoted by Xt, the grid
consumption by Yt, and the battery state by St. The battery policy
is denoted by the conditional distribution q(Yt|Xt, St, Y t−1). The
battery policy effectively defines a channel with memory from the
residence to the utility provider.

y with probability qt(y | xt, st, yt−1). For a randomized
charging policy to be feasible, it must satisfy the conservation
equation (1), so given the current power demand and battery
charge (xt, st), the feasible values of grid consumption are
defined by

Y◦(st − xt) = {y ∈ Y : st − xt + y ∈ S}.
Thus, we require that

qt(Y◦(st − xt) | xt, st, yt−1)

:=
∑

y∈Y◦(st−xt)

qt(y | xt, st, yt−1)

= 1.

The set of all such feasible strategies is denoted by QA.
A battery policy effectively defines a channel with memory
between a residence and the utility provider (as portrayed in
Fig. 1).

The quality of a charging policy depends on the amount of
information leaked under that policy. This notion is captured
by mutual information Iq(S1, X

T ;Y T ) evaluated according
to the joint probability distribution on (ST , XT , Y T ) induced
by the sequence q:

Pq(ST = sT , XT = xT , Y T = yT )

= PS1
(s1)PX1

(x1)q1(y1 | x1, s1)

×
T∏

t=2

[
1st{st−1 − xt−1 + yt−1}

Qt(xt)qt(yt | xt, st, yt−1)

]
,

(2)

where Qt ≡ Q1 for odd values of t and Qt ≡ Q2 for even
values of t.

Given a policy q = (q1, q2, . . . ) ∈ QA, we define the worst
case information leakage rate as follows:

L∞(q) := lim sup
T→∞

1

T
Iq(S1, X

T ;Y T ). (3)

Remark II.1. The random variable S1 in the mutual infor-
mation terms do not affect the asymptotic rate. However its
inclusion often simplifies the analysis.

We are interested in the following optimization problem:

Problem A. Given the alphabet X and distributions {Q1, Q2}
of the power demand, the alphabet S of the battery, and the
alphabet Y of the demand: find a battery charging policy

q = (q1, q2, . . . ) ∈ QA and the initial distribution PS1
of the

battery state, that minimizes the leakage rate L∞(q) given
by (3).

III. STATE INVARIANT BATTERY POLICIES

A. State Invariant Policy: I.I.D. Inputs

We first briefly summarize the results in [10] for i.i.d. inputs
i..e, when Q1(x) = Q2(x) = QX(x). The simplest class of
policies are stationary and memoryless, conditioning only on
the current battery state and power demand:

q(y|x, s). (4)

As such evaluating the leakage rate (3) even for this simplified
class of policies requires numerical approaches, see e.g., [7],
[13]. Instead if one imposes a certain invariance condition we
can obtain a closed form expression for the leakage rate. Our
proposed class preserves the following property:

P(S2 = s2|Y1 = y1) = P(S1 = s2), ∀s2 ∈ S, y1 ∈ Ŷ (5)

where Ŷ := {y : PY1
(y1) > 0} for some initial battery

state distribution PS1
. This invariance condition implies that

St ⊥ Yt−1 and also that PSt
= PS1

, ∀t. By exploiting this
property, we can obtain single-letter achievable leakage rates
as follows [10]:

Lemma III.1. ( [10]) Given an instance of Problem A with
i.i.d. power demand Q1(x) = Q2(x) = QX(x) and initial bat-
tery state distribution PS1

, if the stationary memoryless policy
q = (q, q, . . .) ∈ QA satisfies the invariance property (5), then

L∞(q) = I(S1, X1;Y1),

where (S1, X1, Y1) ∼ PS1
(s1)Q(x1)q(y1|x1, s1).

While the restriction to the invariance class may appear
restrictive, interestingly for the case of i.i.d. inputs it was
shown in [10] that the optimal policy belongs to this class. In
particular the optimal policy was shown to be of the following
form

q∗(y|x, s) =
{

QX(y)PS1
(y+s−x)

PW1
(s−x) if y ∈ X ∩ Y◦(s− x)

0 otherwise
(6)

where recall that QX(·) = Q1(·) = Q2(·) for the case of i.i.d.
inputs, and W1 = S1 − X1. Furthermore the optimal choice
for PS1(·) was also characterized in [10] as follows

P ?
S1

= argmin
PS1

I(S1 −X1;X1) (7)

where the term on the right hand side corresponds to the
minimum achievable leakage rate associated with the policy
in (6).
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B. State Invariant Policy: Periodic Case

We propose a simple extension of the state invariant policy
to the case when the input is sampled from distribution Q1(x)
at the odd times and Q2(x) at the even times. In this exten-
sion we assume two stationary memoryless battery policies:
q1(yt|xt, st) for odd times and q2(yt|xt, st) at even times.
Thus the overall policy is of the form q = (q1, q2, q1, q2, . . .).
We further require that the choice of q1 and q2 satisfy the
following conditions:

P (S2 = s2|Y1 = y1) = P (S1 = s2),∀(s2, y1) ∈ S × Ŷ
P (S3 = s3|Y2 = y2) = P (S1 = s3),∀(s3, y2) ∈ S × Ŷ

(8)

Note that condition (8) and the choice of q immediately lead
to P(St = s) = P(S1 = s) for all t ≥ 1 as required by
the state invariance condition. Furthermore notice that St is
independent of Yt−1, i.e., St ⊥ Yt−1, which can be further
generalized to show that:

Y t−1
1 ⊥ (St, Yt, Xt), ∀t > 1. (9)

As a specific example of a policy that achieves the invariance
condition in (8) consider a natural generalization of (6) as
follows:

q∗t (y|x, s) =
{

Qt(y)PS1
(y+s−x)

PS1−Xt (s−x)
if y ∈ X ∩ Y◦(s− x)

0 otherwise
(10)

where recall that Xt ∼ Qt(·), Qt(·) = Q1(·) for odd values
of t and Qt(·) = Q2(·) for even values of t and PS1

(·) is the
desired distribution on the state. It is straightforward to verify
that the policy in (10) satisfies the invariance conditions (8)
and furthermore the output distribution is memoryless and
satisfies P(Yt = y) = Qt(y) for each t i.e., the output
sequence has the same distribution as the input sequence.
Furthermore the policy in (10) achieves the following leakage
rate.

Lemma III.2. Given a fixed PS1
the leakage rate achieved

by the policy in (10) is given by:

L1 =
1

2
I(S1 −X1;X1) +

1

2
I(S1 −X2;X2) (11)

where (S1, Xt) ∼ PS1(s1)Qt(xt) for t = 1, 2.

Proof. Consider the following:

1

T
I(S1, X

T ;Y T )

(a)
=

T∑
t=1

1

T
I(St, XT ;Yt|Y t−1)

(b)
=

T∑
t=1

1

T
I(St, Xt;Yt|Y t−1)

(c)
=

T∑
t=1

1

T
I(St, Xt;Yt)

=

T∑
t=1,t:odd

1

T
I(St, Xt;Yt) + I(St+1, Xt+1;Yt+1)

(d)
=

1

2
I(S1, X1;Y1) +

1

2
I(S1, X2;Y2)

where (a) follows from the fact that St is a deterministic
function of S1, Xt

1 and Y t−1
1 based on the battery update

equation, (b) follows is due to the memoryless structure of
the battery policy in (10), (c) is from (9), (d) follows from the
state invariance condition and the fact that PSt

= PS1
for all

t ≥ 1.
Finally for the choice of the policy in (10) the equivalence

between the expression in (d) and (11) can be established by
following the analysis in [10]. We skip the steps due to space
constraints.

While Lemma (III.2) recovers the optimal leakage rate for
the I.I.D. case, it is not the best possible that can be achieved in
the time-varying setup. The constraint of state invariance turns
out to be too restrictive. We next describe one generalization
that can lead to lower leakage rate.

C. Alternating State Invariance

In this section we propose a more relaxed condition on state
invariance which can lead to lower leakage rates than (11).
Instead of imposing the same marginal distribution of the state
at each time, we allow the state distribution to alternate at odd
and even times.

Consider a set of memoryless battery policies q1(yt|xt, st)
for odd times and q2(yt|xt, st) for even times. These policies
are said to satisfy alternating state invariance condition if the
following holds. Given distributions PS1

(·) and PS2
(·) on S:∑

s1,x1,y1

PS1
(s1)Q1(x1)q1(y1|x1, s1)Is2=s1−x1+y1

= PS2
(s2),∑

s2,x2,y2

PS2
(s2)Q2(x2)q2(y2|x2, s2)Is3=s2−x2+y2

= PS1
(s3)

(12)

for all s2, s3 ∈ S where Ix=y is the indicator function which
equals 1 is x = y and zero otherwise. The left hand side
expressions in (12) are the marginal distributions on state
induced by the associated battery policies. The right hand side
guarantees that these distributions are consistent with the pre-
specified choice.

Note that the state invariance constraint (8) enforces
PS1(·) = PS2(·) and St ⊥ Yt−1. While it belongs to the class
of policies in (12), the class of policies in (12) is more general
than (8) leads to a lower leakage rate, as will be confirmed in
the numerical results section. We next provide an expression
for the leakage rate for the policies in (12)

Lemma III.3. Given a fixed PS1
and PrS2

the leakage rate
achieved by any policy satisfying (12) is upper bounded by:

L2 =
1

2
I(S1, X1;Y1) +

1

2
I(S2, X2;Y2) (13)

where (St, Xt) ∼ PSt(s1)Qt(xt) for t = 1, 2.
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Proof. Consider the following:

1

T
I(S1, X

T ;Y T )
(a)
=

T∑
t=1

1

T
I(St, XT ;Yt|Y t−1)

(b)
=

T∑
t=1

1

T
I(St, Xt;Yt|Y t−1)

(c)

≤
T∑

t=1

1

T
I(St, Xt;Yt)

(d)
= L2.

where (a) is due to the chain rule of mutual information and
the fact that St is a deterministic function of (S1, X

t−1, Y t−1)
given by the battery update equation (1), (b) and (c) are due
to the memoryless policy, and (d) is due to the alternating
invariance condition in (12).

Remark III.1. The advantage of Lemma III.3 over Lemma III.2
is that we have a larger set of state distributions to minimize
over, which can lead to a lower leakage rate in general.

IV. LOWER BOUND

We now provide a lower bound on the leakage rate that
applies to any feasible battery charging policy . Consider the
following inequalities: for any admissible policy q ∈ QA and
defining Wt = St −Xt, we have

I(S1, X
T ;Y T ) ≥

T∑
t=1

I(St, Xt;Yt|Y t−1) ≥
T∑

t=1

I(Wt;Yt|Y t−1)

= H(W1)−H(W1|Y1) +H(W2|Y1)−H(W2|Y 2) + · · ·
(a)
= H(W1)−H(S2|Y1) +H(S2 −X2|Y1)−H(S3|Y 2) + · · ·

= H(W1) +

T∑
t=2

I(Wt;Xt|Y t−1)−H(WT |Y T )

where (a) is because St+1 is an invertible function of Wt given
Yt. Now, taking the limit T →∞ to obtain a lower bound to
the leakage rate we have

L∞(q) = lim
T→∞

1

T
I(S1, X

T ;Y T )

≥ lim
T→∞

1

T

[
H(W1) +

T∑
t=2

I(Wt;Xt|Y t−1)−H(WT |Y T )

]
(a)
= lim

T→∞
1

T

[
T∑

t=2

I(Wt;Xt|Y t−1)

]
(b)
≥ min

PS1
∈PS

1

2
I(S1 −X1;X1) + min

PS2
∈PS

1

2
I(S2 −X2;X2).

Note that (a) is because the entropy of any discrete random
variable is bounded and (b) follows from the observation
that every term in the summation is only a function of the
posterior P (St|Y t−1). Therefore, minimizing each term over
a PS ∈ PS results in a lower bound to the optimal leakage rate.
Furthermore since Xt is sampled from the stated periodically
time-varying distribution the result follows.

V. NUMERICAL RESULTS

A. Binary Case
We consider the case when X = Y = {0, 1} and the state

alphabet S = {0, 1, . . . , C} where C ≥ 2 denotes the battery
capacity. We assume Q1(x = 1) = 0.3 and Q2(x = 1) =
0.7. We numerically computed the achievable leakage rates
for the state invariance policy (policy 1) in section III-B and
the alternating state policy (policy 2) in section III-C. We also
evaluate the lower bound presented in section IV. We vary
C ∈ [1, 6] and the results are presented Table II.

TABLE I: Leakage Rates for binary case

Capacity 1 2 3 4 5 6
Policy 1 0.4406 0.2682 0.1812 0.1309 0.099 0.0776
Policy 2 0.4391 0.2675 0.1809 0.1307 0.0989 0.0775

Lower Bound 0.4354 0.2646 0.1788 0.1292 0.0979 0.0767

We note that the extra flexibility provided by the alternating
state invariance policy (12) does in fact lead to lower leakage
rate as shown in Table II. Thus the straightforward extension of
the policy for i.i.d. inputs stated in (10) is no longer optimal.
Also interestingly the lower bound presented in Section IV
appears very close to the proposed scheme. The gap between
the bounds is largest when C = 1 and seems to vanish quickly
as C increases.

B. Ternary Case
We also consider the ternary case when X = Y = {0, 1, 2}.

We assume that Q1(x) = 1/3 for x ∈ {0, 1, 2} and Q2(0) =
Q2(2) = 1/4 while Q2(1) = 1/2. Numerically we obtained
the following upper and lower bounds:

TABLE II: Leakage Rates for ternary case

Capacity 2 3 4 5 6
Policy 2 0.5602 0.3950 0.2943 0.2281 0.1822

Lower Bound 0.5597 0.3947 0.2941 0.2280 0.1821

We again note that the upper and lower bounds are very
close with the largest gap when C = 2 and the gap decreases
monotonically.

VI. CONCLUSIONS

We study information theoretic privacy in a smart metering
system with a rechargeable battery. We extend previous results
on the case of i.i.d. inputs to the case of periodically time-
varying inputs. Although we only consider the case when the
period equals two, the techniques presented here can be easily
extended to arbitrary periods. We show that a straightforward
extension of the state invariant policy for i.i.d. inputs is
not optimal and propose another scheme, alternating state
invariance, that results in a lower leakage rate. We also develop
an information theoretic lower bound that appears to be very
close to the proposed scheme in numerical results. Future
work will focus on analytically characterizing the battery
policies that optimize the alternating state invariance scheme
and establishing the gap between upper and lower bounds.
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