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Information-Theoretic Privacy for Smart Metering
Systems with a Rechargeable Battery

Simon Li, Ashish Khisti , and Aditya Mahajan

Abstract— Smart-metering systems report electricity usage of
a user to the utility provider on almost real-time basis. This could
leak private information about the user to the utility provider.
In this paper, we investigate the use of a rechargeable battery
in order to provide privacy to the user. We assume that the
user load sequence is a first-order Markov process, the battery
satisfies ideal charge conservation, and that privacy is measured
using normalized mutual information (leakage rate) between the
user load and the battery output. We study the optimal battery
charging policy that minimizes the leakage rate among the class
of battery policies that satisfy causality and charge conservation.
We propose a series reduction on the original problem and
ultimately recast it as a Markov Decision Process (MDP) that
can be solved using a dynamic program. In the special case of
i.i.d. demand, we explicitly characterize the optimal policy and
show that the associated leakage rate can be expressed as a single-
letter mutual information expression. In this case, we show that
the optimal charging policy admits an intuitive interpretation of
preserving a certain invariance property of the state. Interestingly
an alternative proof of optimality can be provided that does not
rely on the MDP approach, but is based on purely information
theoretic reductions.

Index Terms— Information theoretic privacy, smart meters,
dynamic programming.

I. INTRODUCTION

SMART meters are a critical part of modern power distri-
bution systems because they provide fine-grained power

consumption measurements to utility providers. These fine-
grained measurements improve the efficiency of the power grid
by enabling services such as time-of-use pricing and demand
response [1]. However, this promise of improved efficiency is
accompanied by a risk of privacy loss. It is possible for the util-
ity provider—or an eavesdropper—to infer private information
including load taxonomy from the fine-grained measurements

Manuscript received August 26, 2016; revised September 13, 2017; accepted
January 25, 2018. Date of publication February 23, 2018; date of current
version April 19, 2018. This paper was presented in part at the 2015 Sig-
nal Processing for Advanced Wireless Communications, in part at the
2016 International Zurich Seminar, and in part at the 2016 American Control
Conference.

S. Li was with the Department of Electrical Engineering and Computer
Science, University of Toronto, Toronto, ON M5S3G4, Canada (e-mail:
yb.li90@gmail.com).

A. Khisti is with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S3G4, Canada (e-mail:
akhisti@comm.utoronto.ca).

A. Mahajan is with the Department of Electrical and Computer
Engineering, McGill University, Montreal, QC H3A2A7, Canada (e-mail:
aditya.mahajan@mcgill.ca).

Communicated by H. Permuter, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2809005

provided by smart meters [2]–[4]. Such private information
could be exploited by third parties for the purpose of targeted
advertisement or surveillance. Traditional techniques in which
an intermediary anonymizes the data [5] are also prone to
privacy loss to an eavesdropper. One possible solution is to
partially obscure the load profile by using a rechargeable
battery [6]. As the cost of rechargeable batteries decreases
(for example, due to proliferation of electric vehicles), using
them for improving privacy is becoming economically viable.

In a smart metering system with a rechargeable battery,
the energy consumed from the power grid may either be
less than the user’s demand—the rest being supplied by the
battery; or may be more than the user’s demand—the excess
being stored in the battery. A rechargeable battery provides
privacy because the power consumed from the grid (rather
than the user’s demand) gets reported to the electricity utility
(and potentially observed by an eavesdropper). In this paper,
we focus on the mutual information between the user’s demand
and consumption (i.e., the information leakage) as the privacy
metric. Mutual information is a widely used metric in the
literature on information theoretic security, as it is often analyt-
ically tractable and provides a fundamental bound on the prob-
ability of detecting the true load sequence from the observa-
tion [7]. Our objective is to identify a battery management pol-
icy (which determine how much energy to store or discharge
from the battery) to minimize the information leakage rate.

We briefly review the relevant literature. The use of a
rechargeable battery for providing user privacy has been stud-
ied in several recent works, e.g., [6] and [8]-[11]. Most of the
existing literature has focused on evaluating the information
leakage rate of specific battery management policies. These
include the “best-effort” policy [6], which tries to maintain a
constant consumption level, whenever possible; and battery
conditioned stochastic charging policies [8], in which the
conditional distribution on the current consumption depends
only on the current battery state (or on the current battery state
and the current demand). In [6], the information leakage rate
was estimated using Monte-Carlo simulations; in [8], it was
calculated using the BCJR algorithm [12]. The methodology
of [8] was extended by [9] to include models with energy
harvesting and allowing for a certain amount of energy waste.
Bounds on the performance of the best-effort policy and hide-
and-store policy for models with energy harvesting and infinite
battery capacity were obtained in [10]. The performance of
the best effort algorithm for an individual privacy metric was
considered in [11]. None of these papers address the question
of choosing the optimal battery management policy.
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Rate-distortion type approaches have also been used to study
privacy-utility trade-off [13]–[15]. These models allow the user
to report a distorted version of the load to the utility provider,
subject to a certain average distortion constraint. Our setup
differs from these works as we impose a constraint on the
instantaneous energy stored in the battery due to its limited
capacity. Both our techniques and the qualitative nature of the
results are different from these papers.

Our contributions are two-fold. First, when the demand is
Markov, we show that the minimum information leakage rate
and optimal battery management policies can be obtained by
solving an appropriate dynamic program. These results are
similar in spirit to the dynamic programs obtained to compute
capacity of channels with memory [16]–[18]; however, the
specific details are different due to the constraint on the battery
state. Second, when the demand is i.i.d., we obtain a single
letter characterization of the minimum information leakage
rate; this expression also gives the optimal battery management
policy. We prove the single letter expression in two steps.
On the achievability side we propose a class of policies with a
specific structure that enables a considerable simplification of
the leakage-rate expression. We find a policy that minimizes
the leakage-rate within this restricted class. On the converse
side, we obtain lower bounds on the minimal leakage rate and
show that these lower bound match the performance of the best
structured policy. We provide two proofs. One is based on the
dynamic program and the other is based purely on information
theoretic arguments.

After the present work was completed, we became aware
of [19], where a similar dynamic programming framework is
presented for the infinite horizon case. However, no explicit
solutions of the dynamic program are derived in [19]. To the
best of our knowledge, the present paper is the first work that
provides an explicit characterization of the optimal leakage
rate and the associated policy for i.i.d. demand.

A. Notation

Random variables are denoted by uppercase letters
(X , Y , etc.), their realization by corresponding lowercase
letters (x , y, etc.), and their state space by corresponding script
letters (X , Y , etc.). PX denotes the space of probability distrib-
utions on X ; PX |Y denotes the space of condition distributions
from Y to X . Xb

a is a short hand for (Xa, Xa+1, . . . , Xb) and
Xb = Xb

1 . For a set A, 1A(x) denotes the indicator function
of the set that equals 1 if x ∈ A and zero otherwise. If A is
a singleton set {a}, we use 1a(x) instead of 1{a}(x).

Given random variables (X,Y ) with joint distribution
PX,Y (x, y) = PX (x)q(y|x), H (X) and H (PX ) denote the
entropy of X , H (Y |X) and H (q|PX) denote conditional
entropy of Y given X and I (X; Y ) and I (q; PX ) denote the
mutual information between X and Y .

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Model and Problem Formulation

Consider a smart metering system as shown in Fig. 1.
At each time, the energy consumed from the power grid
must equal the user’s demand plus the additional energy that

Fig. 1. A smart metering system.

is either stored in or drawn from the battery. Let {Xt }t≥1,
Xt ∈ X , denote the user’s demand; {Yt }t≥1, Yt ∈ Y , denote
the energy drawn from the grid; and {St }t≥1, St ∈ S, denote
the energy stored in the battery. All alphabets are finite.
For convenience, we assume X := {0, 1, . . . ,mx}, Y :=
{0, 1, . . . ,my}, and S := {0, 1, . . . ,ms}. Here ms corresponds
to the size of the battery. We note that such a restriction is for
simplicity of presentation; the results generalize even when
X and Y are not necessarily contiguous intervals or integer
valued. To guarantee that user’s demand is always satisfied,
we assume mx ≤ my or that X ⊆ Y holds more generally.

The demand {Xt }t≥1 is a first-order time-homogeneous
Markov chain1 with transition probability Q. We assume
that Q is irreducible and aperiodic. The initial state X1 is
distributed according to probability mass function PX1 . The
initial charge S1 of the battery is independent of {Xt }t≥1 and
distributed according to probability mass function PS1 .

The battery is assumed to be ideal and has no conversion
losses or other inefficiencies. Therefore, the following conser-
vation equation must be satisfied at all times:

St+1 = St + Yt − Xt . (1)

Given the history of demand, battery charge, and consump-
tion, a randomized battery charging policy q = (q1, q2, . . . )
determines the energy consumed from the grid. In particular,
given the histories (xt , st , yt−1) of demand, battery charge,
and consumption at time t , the probability that current con-
sumption Yt equals y is qt (y | xt , st , yt−1). For a randomized
charging policy to be feasible, it must satisfy the conservation
equation (1). So, given the current power demand and battery
charge (xt , st ), the feasible values of grid consumption are
defined by

Y◦(st − xt ) = {y ∈ Y : st − xt + y ∈ S}. (2)

Thus, we require that

qt (Y◦(st −xt) | xt , st , yt−1) :=
∑

y∈Y◦(st−xt )

qt (y | xt , st , yt−1)=1.

The set of all such feasible policies is denoted by QA.2 Note
that while the charging policy qt (·) can be a function of the
entire history, the support of qt (·) only depends on the present

1In practice, the energy demand is periodic rather than time homogeneous.
We are assuming that the total demand may be split into a periodic predictable
component and a time-homogeneous stochastic component. In this paper,
we ignore the predictable component because it does not affect privacy.

2With a slight abuse of notation, we use QA to denote the battery policy
for both the infinite and finite-horizon problems
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value of xt and st through the difference st − xt . This is
emphasized in the definition in (2).

The quality of a charging policy depends on the amount
of information leaked under that policy. There are different
notions of privacy; in this paper, we use mutual information
as a measure of privacy. Intuitively speaking, given random
variables (Y, Z), the mutual information I (Y ; Z) measures the
decrease in the uncertainty about Y given by Z (or vice-versa).
Therefore, given a policy q, the information about (X T , S1)
leaked to the utility provider or eavesdropper is captured by
I q(X T , S1; Y T ), where the mutual information is evaluated
according to the joint probability distribution on (X T , ST ,Y T )
induced by the distribution q as follows:

Pq(ST = sT , X T = x T ,Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏

t=2

[
1st {st−1−xt−1+yt−1}

× Q(xt |xt−1)qt (yt | xt , st , yt−1)

]
.

We use information leakage rate as a measure of the quality
of a charging policy. For a finite planning horizon, the infor-
mation leakage rate of a policy q = (q1, . . . , qT ) ∈ QA is
given by

LT (q) := 1

T
I q(X T , S1; Y T ), (3)

while for an infinite horizon, the worst-case information leak-
age rate of a policy q = (q1, q2, . . . ) ∈ QA is given by

L∞(q) := lim sup
T →∞

LT (q). (4)

We are interested in the following optimization problems:
Problem A: Given the alphabet X of the demand, the initial

distribution PX1 and the transistion matrix Q of the demand
process, the alphabet S of the battery, the initial distrib-
ution PS1 of the battery state, and the alphabet Y of the
consumption:

1) For a finite planning horizon T , find a battery charging
policy q = (q1, . . . , qT ) ∈ QA that minimizes the
leakage rate LT (q) given by (3).

2) For an infinite planning horizon, find a battery charging
policy q = (q1, q2, . . . ) ∈ QA that minimizes the
leakage rate L∞(q) given by (4).

The above optimization problem is difficult because we
have to optimize a multi-letter mutual information expression
over the class of history dependent probability distributions.
In the spirit of results for feedback capacity of channels
with memory [16]–[18], we show that the above optimization
problem can be reformulated as a Markov decision process
where the state and action spaces are conditional probability
distributions. Thus, the optimal policy and the optimal leakage
rate can be computed by solving an appropriate dynamic
program. We then provide an explicit solution of the dynamic
program for the case of i.i.d. demand.

Remark 1: We note that the class of policies we consider
in QA are randomized policies i.e., the output at any given time
is governed by the conditional distribution qt (yt | xt , st , yt−1).

Fig. 2. Binary System model. The battery can be either in s = 0 or s = 1.
The set of feasible transitions from each state are shown in the figure.

The class of deterministic policies where yt = ht (xt , st , yt−1)
is a deterministic function of the past inputs, state and outputs
is a special case of randomized policies where qt (·) is an
atomic distribution. As will be apparent from out results,
deterministic policies do not suffice to minimize the leakage
rate and hence we focus on the class of randomized policies.

B. Example: Binary Model

We illustrate the special case when X = Y = S = {0, 1}
in Fig. 2. The input, output, as well as the state, are all
binary valued. When the battery is in state st = 0, there
are three possible transitions. If the input xt = 1 then we
must select yt = 1 and the state changes to st+1 = 0.
If instead xt = 0, then there are two possibilities. We can
select yt = 0 and have st+1 = 0 or we can select yt = 1 and
have st+1 = 1. In a similar fashion there are three possible
transitions from the state st = 1 as shown in Fig. 2. We will
assume that the demand (input) sequence is sampled i.i.d. from
an equiprobable distribution, i.e., PX (0) = PX (1) = 1

2 .
Consider a simple policy that sets yt = xt and ignores the

battery state. It is clear that such a policy will lead to maximum
leakage LT = 1. Another feasible policy is to set yt = 1 − st .
Thus whenever st = 0, we will set yt = 1 regardless of the
value of xt , and likewise st = 1 will result in yt = 0. It turns
out that the leakage rate for this policy also approaches 1.
To see this note that the eavesdropper having access to yT also
in turn knows sT . Using the battery update equation (1) the
sequence xT −1 is thus revealed to the eavesdropper, resulting
in a leakage rate of at least 1 − 1/T .

In [8], a probabilistic battery charging policy is intro-
duced that only depends on the current state and input

i.e., qt(yt |xt , st )
�= qt (yt |xt , st ). Furthermore the policy makes

equiprobable decisions between the feasible transitions i.e.,

qt (yt = 0|xt , st ) = q(yt = 1|xt , st ) = 1/2, if xt = st (5)

and qt (yt |xt , st ) = 1xt (yt ) otherwise. The leakage rate for
this policy was numerically evaluated in [8] using the BCJR
algorithm and it was shown numerically that L∞ = 0.5. Such
numerical techniques seem necessary in general even for the
class of memoryless policies and i.i.d. inputs, as the presence
of the battery adds memory into the system.

As a consequence of our main result it follows that the
above policy admits a single-letter expression for the leakage
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rate3 L∞ = I (S∗ − X; X), thus circumventing the need for
numerical techniques. Furthermore it also follows that this
leakage rate is indeed the minimum possible one among the
class of all feasible policies. Thus it is not necessary for the
battery system to use more complex policies that take into
account the entire history. We note that a similar result was
shown in [20] for the case of finite horizon policies. However
the proof in [20] is specific to the binary model. In the present
paper we provide a complete single-letter solution to the case
of general i.i.d. demand, and a dynamic programming method
for the case of first-order Markovian demands, as discussed
next.

C. Main Results for Markovian Demand

We identify two structural simplifications for the battery
charging policies. First, we show (see Proposition 1 in
Section III-A) that there is no loss of optimality in restricting
attention to charging policies of the form

qt (yt |xt , st , yt−1). (6)

The intuition is that under such a policy, observing yt gives
partial information only about (xt , st ) rather than about the
whole history (xt , st ).

Next, we identify a sufficient statistic for yt−1 when the
charging policies are of the form (6). To do so, we use an
approach inspired by [16]–[18] and formulate a sequential
optimalization problem with partial observations where the
state at time t is (Xt , St ), the observation is Yt−1 and the
action takes values in a set A given by

A = {
a ∈ PY |X,S : a(Y◦(s − x) | x, s) = 1,

∀(x, s) ∈ X × S}. (7)

The set A is convex and compact.4

Based on action at ∈ A, the next observation Yt is chosen
according to the conditional distribution at (·|xt , st ), the state
evolves according to (1), and the system incurs a per-step cost
given by

log
at (yt |xt , st )

P(Yt = yt |Y t−1 = yt−1)
.

We show that Problem A is equivalent to minimizing
the total expected cost for the above sequential optimization
problem (see Proposition 2 in Sec. III-B), which, in turn,
is similar to a partially observable Markov decision process
(POMDP) (but with some differences; see Sec. III-C) and may
be solved using dynamic programming. For that matter, given
a policy q and any realization yt−1 of Y t−1, define the belief
state πt ∈ PX,S as follows: for all x ∈ X , s ∈ S,

πt (x, s) = Pq(Xt = x, St = s|Y t−1 = yt−1). (8)

3The random variable S∗ is an equiprobable binary valued random variable,
independent of X . See Sec. II-E.

4If a1, a2 ∈ A, then any linear combination a′ of them, where a′ = λa1 +
(1 − λ)a2 with λ ∈ (0, 1), also satisfies a′(Y◦(s − x | x, s) = 1 for all
(x, s) ∈ X × S and, therefore, belongs to A. Hence A is convex. Moreover,
it is easy to see that A is closed and PY |X,s is compact. Therefore, A is also
compact.

Then, we show (see Theorems 1 and 2 below) that there is no
loss of optimality in restricting attention to charging policies
of the form

qt (yt |xt , st , πt ). (9)

Such a charging policy is Markovian in the belief state πt

and the optimal policies of such form can be searched using
a dynamic program.

To succinctly write the dynamic program, for any a ∈ A,
we define the Bellman operator Ba : [PX,S → R] →
[PX,S → R] as follows: for any V : PX,S → R and any
π ∈ PX,S ,

[Ba V ](π) = I (a;π)
+

∑

x∈X ,s∈S,
y∈Y

π(x, s)a(y | x, s)V (ϕ(π, y, a)) (10)

where the function ϕ is a non-linear filtering equation defined
in Sec. III-C.

Our main results are the following:
Theorem 1: We have the following for Problem A with a

finite planning horizon T :
1) Value functions: Iteratively define value functions

Vt : PX,S → R as follows. For any π ∈ PX,S,
VT +1(π) = 0, and for t ∈ {T, . . . , 1},

Vt (π) = min
a∈A

[BaVt+1](π), ∀π ∈ PX,S. (11)

Then, Vt (π) is continuous and concave in π .
2) Optimal policy: Let f ∗

t (π) denote the arg min of the
right hand side of (11). Then, optimal policy q∗ =
(q∗

1 , . . . , q∗
T ) is given by

q∗
t (yt | xt , st , πt ) = at (yt | xt , st ), where at = f ∗

t (πt ).

Thus, there is no loss of optimality in restricting atten-
tion to charging policies of the form (9).

3) Optimal leakage rate: The optimal (finite horizon) leak-
age rate is given by V1(π1)/T , where π1(x, s) =
PX1(x)PS1(s). �

See Section III for proof.
Theorem 2: We have the following for Problem A with an

infinite planning horizon:
1) Value function: Consider the following fixed point equa-

tion

J + v(π) = min
a∈A

[Bav](π), ∀π ∈ PX,S, (12)

where J ∈ R is a constant and v : PX,S → R.
2) Optimal policy: Suppose there exists (J, v) that sat-

isfy (12). Let f ∗(π) denote the arg min of the right
hand side of (12). Then, the time-homogeneous optimal
policy q∗ = (q∗, q∗, . . . ) given by

q∗(yt | xt , st , πt ) = a(yt | xt , st ), where a = f ∗(π)

is optimal. Thus, there is no loss of optimality in restrict-
ing attention to charging time-homogeneous policies of
the form (9).

3) Optimal leakage rate: The optimal (infinite horizon)
leakage rate is given by J . �
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Proof: Given the result of Theorem 1, the result of
Theorem 2 follows from standard dynamic programming argu-
ments. See, for example, [21, Th. 5.2.4 and eq. (5.2.18)]. �

There are various conditions that guarantee the existence of
a (J, v) that satisfies (12). Most of these conditions require the
ergodicity of the process {�t }t≥1 for every stationary Markov
policy f : PX,S → A. We refer the reader to [22, Ch. 3]
and [23, Ch. 10] for more details.

The dynamic program above resembles the dynamic pro-
gram for partially observable Markov decision processes
(POMDP) (see [24, Ch. 5]) with hidden state (Xt , St ), obser-
vation Yt , and action At . However, in contrast to POMDPs, the
expected per-step cost I (a;π) is not linear in π . Nonetheless,
one could use computational techniques from POMDPs to
approximately solve the dynamic programs of Theorems 1
and 2. See Section III-D for a brief discussion.

Remark 2: Although the above results assume that the
demand is a first-order Markov chain, they extend naturally
to the case when the demand is higher-order Markov. In
particular, suppose the demand {Xt }t≥1 is a k-th order Markov
chain. Then, we can define another process {X̃t }t≥1 where
X̃t = (Xt−k+1, . . . , Xt ), and use X̃t in Theorems 1 and 2.

D. Main Result for i.i.d. Demand

Assume the following:
Assumption 1: The demand {Xt }t≥1 is i.i.d. with probabil-

ity distribution PX .
We provide an explicit characterization of optimal policy and
optimal leakage rate for this case.

Define an auxiliary state variable Wt = St − Xt that takes
values in W = {s − x : s ∈ S, x ∈ X }. For any w ∈ W ,
define:

D(w) = {(x, s) ∈ X × S : s − x = w}. (13)

Then, we have the following.
Theorem 3: Define

J ∗ = min
θ∈PS

I (S − X; X) = min
θ∈PS

{
H (S − X)− H (S)

}
(14)

where X and S are independent with X ∼ PX and
S ∼ θ . Let θ∗ denote the arg min in (14). Define ξ∗(w) =∑
(x,s)∈D(w) PX (x)θ∗(s). Then, under Assumption 1

1) J ∗ is the optimal (infinite horizon) leakage rate.
2) Define b∗ ∈ PY |W as follows:

b∗(y|w) =
{

PX (y)
θ∗(y+w)
ξ∗(w) if y ∈ X ∩ Y◦(w)

0 otherwise .
(15)

We call b∗ as a structured policy with respect
to (θ∗, ξ∗). Then, the memoryless charging policy
q∗ = (q∗

1 , q∗
2 , . . . ) given by

q∗
t (y | x, s, πt ) = b∗(y | s − x) (16)

is optimal and achieves the optimal (infinite horizon)
leakage rate. �

Note that the optimal charging policy is time-invariant and
memoryless, i.e., the distribution on Yt does not depend on πt

(and, therefore on yt−1).

The proof, which is presented in Section IV, is based
on the standard arguments of showing achievability and a
converse. On the achievability side we show that the policy
in (15) belongs to a class of policies that satisfies a certain
invariance property. Using this property the multi-letter mutual
information expression can be reduced into a single-letter
expression. For the converse we provide two proofs. The
first is based on a simplification of the dynamic program of
Theorem 2. The second is based on purely probabilistic and
information theoretic arguments.

E. Binary Model (Revisited)

We revisit the binary model in Section II-B, where the
demand has equiprobable distribution, i.e., PX (x) = 1

2 for
x ∈ {0, 1}. Consider θ(0) = p, θ(1) = 1− p. Let W = S − X .
Then,

P(W = w) =

⎧
⎪⎨

⎪⎩

1
2 p, if w = −1
1
2 , if w = 0
1
2 (1 − p), if w = 1.

(17)

Thus,

I (W ; X) = H (W )− H (S) = 1 − 1
2 h(p)

where h(p) is the binary entropy function:

h(p) = −p log p − (1 − p) log(1 − p).

Thus, the value of p that minimizes I (W ; X) is p∗ = 1
2 and

the optimal leakage rate is I (W ; X) = 1
2 .

The corresponding ξ∗ is obtained by substituting p = 1
2

in (17). For ease of notation, we denote b∗(·|w) as
[b∗(0|w), b∗(1|w)]. Then,

b∗(·| − 1) = [0, 1], b∗(·|0) = [ 1
2 ,

1
2 ], b∗(·| + 1) = [1, 0].

It can be shown that this strategy is the same as (5), which
was proposed in [8]. This yields an analytical proof of the
result in [8].

F. Salient Features of the Result for i.i.d. Demand

Theorem 3 shows that even if consumption could take larger
values than the demand, i.e., Y ⊃ X , under the optimal policy,
Yt takes values only in X . This agrees with the intuition that
a consumption larger that mx reveals that the battery has low
charge and that the power demand is high. In extreme cases,
a large consumption may completely reveal the battery and
power usage thereby increasing the information leakage.

We now show some other properties of the optimal policy.
Property 1: The mutual information I (S − X; X) is strictly

convex in the distribution θ and, therefore, θ∗ ∈ int(PS).
See Appendix I for proof.

As a consequence, the optimal θ∗ in (14) may be obtained
using the Blahut-Arimoto algorithm [25], [26].

Property 2: Under the battery charging policy specified
in Theorem 3, the power consumption {Yt }t≥1 is i.i.d. with
marginal distribution PX . Thus, {Yt }t≥1 is statistically indis-
tinguishable from {Xt }t≥1.
See Remarks 3 and 5 in Section IV-B for proof.
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Property 3: If the power demand has a symmetric PMF,
i.e., for any x ∈ X , PX (x) = PX (mx − x), then the optimal
θ∗ in Theorem 3 is also symmetric, i.e., for any s ∈ S, θ∗(s) =
θ∗(ms − s).

Proof: For θ ∈ PS , define θ̄ (s) = θ(ms − s). Let X ∼ PX ,
S ∼ θ and S̄ ∼ θ̄ . Then, by symmetry

I (S − X; X) = I (S̄ − X; X). (18)

For any λ ∈ (0, 1), let θλ(s) = λθ(s)+ (1 −λ)θ̄(s) denote the
convex combination of θ and θ̄ . Let Sλ ∼ θλ. By Property 1,
if θ �= θ̄ , then

I (Sλ − X; X) < λI (S − X; X)+ (1 − λ)I (S̄ − X; X)

= I (S − X; X),

where the last equation uses (18).
Thus, if θ �= θ̄ , we can strictly decrease the mutual

information by using θλ. Hence, the optimal distribution must
have the property that θ∗(s) = θ∗(ms − s). �

Given a distribution μ on some alphabet M, we say that
the distribution is almost symmetric and unimodal around
m∗ ∈ M if

μm∗ ≥ μm∗+1 ≥ μm∗−1 ≥ μm∗+2 ≥ μm∗−2 ≥ . . .

where we use the interpretation that for m �∈ M,
μm = 0. Similarly, we say that the distribution is symmetric
and unimodal around m∗ ∈ M if

μm∗ ≥ μm∗+1 = μm∗−1 ≥ μm∗+2 = μm∗−2 ≥ . . .

Note that a distribution can be symmetric and unimodal only
if its support is odd.

Property 4: If the power demand is symmetric and uni-
modal around �mx/2�, then the optimal θ∗ in Theorem 3 is
almost symmetric and unimodal around �ms/2�. In particular,
if ms is even, then

θ∗
m∗ ≥ θ∗

m∗+1 = θ∗
m∗−1 ≥ θ∗

m∗+2 = θ∗
m∗−2 ≥ . . .

and if ms is odd, then

θ∗
m∗ = θ∗

m∗+1 ≥ θ∗
m∗−1 = θ∗

m∗+2 ≥ θ∗
m∗−2 = . . .

where m∗ = �ms/2�.
Proof: Let X̄ = −X . Then, I (S − X; S) = H (S − X)−

H (S) = H (S + X̄) − H (S). Note that PX̄ is also symmetric
and unimodal around �mx/2�.

Let S◦ and X̄◦ denote the random variables S −�ms/2� and
X̄ −�mx/2�. Then X̄◦ is also symmetric and unimodal around
the origin and

I (S − X; X) = H (S◦ + X̄◦)− H (S◦).

Now given any distribution θ◦ of S◦, let θ+ be a permutation
of θ◦ that is almost symmetric and unimodal with a positive
bias around origin. Then by [27, Corollary III.2], H (PX∗θ◦) ≥
H (PX ∗ θ+). Thus, the optimal distribution must have the
property that θ◦ = θ+ or, equivalently, θ is almost unimodal
and symmetric around �ms/2�.

Combining this with the result of Property 3 gives the
characterization of the distribution when ms is even or
odd. �

Fig. 3. A comparison of the performance of qeq ∈ QB as defined in (19)
with the optimal leakage rate for i.i.d. Binomial distributed demand Binomial
(mx , 0.5) for mx = {5, 10, 20}.

G. Numerical Example: i.i.d. Demand

Suppose there are n identical devices in the house and each
is on with probability p. Thus, X ∼ Binomial(n, p). We derive
the optimal policy and optimal leakage rate for this scenario
under the assumption that Y = X . We consider two specific
examples, where we numerically solve (14).

Suppose n = 6 and p = 0.5.
1) Consider S = [0:5]. Then, by numerically solving (14),

we get that the optimal leakage rate J ∗ is is 0.4616 and
the optimal battery charge distribution θ∗ is

{0.1032, 0.1747, 0.2221, 0.2221, 0.1747, 0.1032}.
2) Consider S = [0:6]. Then, by numerically solving (14),

we get that the optimal leakage rate J ∗ is is 0.3774 and
the optimal battery charge distribution θ∗ is

{0.0773, 0.1364, 0.1847, 0.2031, 0.1847, 0.1364, 0.0773}.
Note that both results are consistent with Properties 3 and 4.

We next compare the performance with the following time-
homogeneous benchmark policy qeq ∈ QB : for all y ∈ Y,
w ∈ W ,

qt (yt |wt ) = 1Y◦(wt ){yt}
|Y◦(wt )| . (19)

This benchmark policy chooses all feasible values of Yt with
equal probability. For that reason we call it equi-probable
policy and denote its performance by Jeq .

In Fig. 3, we compare the performance of q∗ and qeq as a
function of battery sizes for different demand alphabets.

Under qeq , the MDP converges to a belief state that is
approximately uniform. Hence, in the low battery size regime,
Jeq is close to optimal but its performance gradually worsens
with increasing battery size.

H. Numerical Example: Continuous Valued Alphabets

Although our setup assumes discrete alphabets, it can shown
that Theorem 3 can be extended to continuous alphabets under
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mild technical conditions assuming that the density function
for X , say fX (x) exists; see [28] for details. As such we
provide two achievability proofs for Theorem 3. The weak
achievability in Section IV-B assumes that the distribution
of the initial state S1 can be selected by the user. The
strong achievability in Section IV-C assumes that the initial
state S1 can be arbitrary. The proof of the weak achiev-
ability extends immediately to continuous valued alphabets.
Furthermore the proof of the converse based on information
theoretic arguments in Section IV-E also extends to continuous
valued alphabets. We provide a numerical example involving
a continuous valued input.

Let X = [0, 1] be continuous valued, and let fX (x) = 1 for
x ∈ [0, 1]. We assume that S = [0, B] where B denotes the
storage capacity. We will assume that B ≥ 2 for convenience.
Following Theorem 3, it suffices to take the output alphabet
to be Y = [0, 1]. Note that for W = S − X , we have that
W = [−1, B] and that the support of the output for any given
w is given by:

Y◦(w) =

⎧
⎪⎨

⎪⎩

[−w, 1], −1 ≤ w ≤ 0,

[0, 1], 0 ≤ w ≤ B − 1,

[0, B −w], B − 1 ≤ w ≤ B.

(20)

Let θ∗(·) be the density function that minimizes (14) and
S∗ denote the random variable with this density, independent
of X . Let W = S∗ − X and ξ∗(w) be the associated density.
Then it follows from (15) that the optimal policy is given by

b∗(y|w) = θ∗(y +w)

ξ∗(w)
, y ∈ Y◦(w). (21)

Instead of computing θ∗(·) numerically, which is cumbersome
due to the density functions, we provide an analytical lower
bound on the leakage rate. Note that the objective in (14) can
be expressed as:

I (S − X; X) = h(S − X)− h(S) (22)

where h(·) is the differential entropy. Using the entropy power
inequality [29], since S and X are independent, we have for
any density fS(·) that:

22h(S−X) ≥ 22h(S) + 22h(X), (23)

where we use the fact that h(−X) = h(X). Substituting
in (22) we have

I (S − X; X) ≥ 1

2
log2

(
22h(S) + 22h(X)

)
− h(S)

= 1

2
log2

(
1 + 22h(X)−2h(S)

)

= 1

2
log2

(
1 + 2−2h(S)

)
(24)

≥ min
S

1

2
log2

(
1 + 2−2h(S)

)

= 1

2
log2

(
1 + 2−2{maxS h(S)}) (25)

= 1

2
log2

(
1 + 1

B2

)
(26)

where we use the fact that when X ∼ Unif[0, 1], we have
that h(X) = 0, see e.g., [30] in (24) and the fact that the

expression in (25) is decreasing in h(S). Finally in (26)
we use the fact that a uniform distribution maximizes the
differential entropy when S = [0, B] is fixed and the
maximum value is h(S) = log2 B .

For the achievability, we evaluate the leakage rate by
selecting θ∗(s) to be a uniform distribution over [0, B] and
using (21). The resulting leakage rate is given by

L+ = h(W )− h(S) = h(ξ)− log2(B) (27)

where the density ξ(w) for W = S − X is as follows:

ξ(w) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +w

B
, −1 ≤ w ≤ 0

1

B
, 0 ≤ w ≤ B − 1

B −w

B
, B − 1 ≤ w ≤ B

and we use that when θ(s) is a uniform density over [0, B],
it follows that h(S) = log2(B). Through straightforward
computations it can be shown that

h(ξ) = 1

2B ln 2
+ log2(B) (28)

and thus it follows that

L+ = 1

2B ln 2

is achievable with a uniform distribution on the state. We note
that the analytical lower bound on the leakage rate in (26)
decays as 1/B2 for large B while the achievable rate decays as
1/B . It will be interesting in future to determine the structure
of the optimal input distribution and study the associated
leakage rate.

III. PROOF OF THEOREM 1

One of the difficulties in obtaining a dynamic programming
decomposition for Problem A is that the objective function
is not of the form

∑T
t=1 cost(statet , actiont ). We show that

there is no loss of optimality to restrict attention to a class of
policies QB and for any policy in QB , the mutual information
may be written in an additive form.

A. Simplification of Optimal Charging Policies

Let QB ⊂ QA denote the set of charging policies that
choose consumption based only on the consumption history,
current demand, and battery state. Thus, for q ∈ QB , at any
time t , given history (xt , st , yt−1), the consumption Yt is y
with probability qt (y | xt , st , yt−1). Then the joint distribution
on (X T , ST ,Y T ) induced by q ∈ QB is given by

Pq(ST = sT , X T = x T ,Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏

t=2

[
1st {st−1−xt−1+yt−1}

× Q(xt |xt−1)qt (yt | xt , st , yt−1)

]
.

Proposition 1: In Problem A, there is no loss of optimality
in restricting attention to charging policies in QB. Moreover,
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for any q ∈ QB, the objective function takes an additive
form:

LT (q) = 1

T

T∑

t=1

I q(Xt , St ; Yt | Y t−1)

where

I q(Xt , St ; Yt | Y t−1)

=
∑

xt∈X ,st∈S
yt∈Y t

Pq(Xt = xt , St = st ,Y t = yt )

× log
qt(yt | xt , st , yt−1)

Pq(Yt = yt | Y t−1 = yt−1)
.

See Appendix II for proof. The intuition behind why
policies in QB are no worse that others in QA is as follows.
For a policy in QA, observing the realization yt of Y t gives
partial information about the history (xt , st ) while for a policy
in QB , yt gives partial information only about the current state
(xt , st ). The dependence on (xt , st ) cannot be removed because
of the conservation constraint (1).

Proposition 1 shows that the total cost may be written in an
additive form. Next we use an approach inspired by [16]–[18]
and formulate an equivalent sequential optimization problem.

B. An equivalent sequential optimization problem
Consider a system with state process {Xt , St }t≥1 where

{Xt }t≥1 is an exogenous Markov process as before and {St }t≥1
is a controlled Markov process as specified below. At time t ,
a decision maker observes Y t−1 and chooses a distribution
valued action At ∈ A, where A is given by (7), as follows:

At = ft (Y
t−1) (29)

where f = ( f1, f2, . . . ) is called the decision policy.
Based on this action, an auxiliary variable Yt ∈ Y is chosen

according to the conditional probability at (· | xt , st ) and the
state St+1 evolves according to (1).

At each stage, the system incurs a per-step cost given by

ct (xt , st , at , yt ; f) := log
at (yt | xt , st )

Pf (Yt = yt | Y t−1 = yt−1)
. (30)

The objective is to choose a policy f = ( f1, . . . , fT ) to
minimize the total finite horizon cost given by

L̃T (f) := 1

T
Ef

[
T∑

t=1

ct (Xt , St , At ,Y t ; f)

]
(31)

where the expectation is evaluated with respect to the proba-
bility distribution Pf induced by the decision policy f .

Proposition 2: The sequential decision problem described
above is equivalent to Problem A. In particular,

1) Given q = (q1, . . . , qT ) ∈ QB, let f = ( f1, . . . , fT ) be

ft (y
t−1) = qt (· | ·, ·, yt−1).

Then L̃T (f) = LT (q).
2) Given f = ( f1, . . . , fT ), let q = (q1, . . . , qT ) ∈ QB be

qt (yt | xt , st , yt−1)=at (yt | xt , st ), where at = ft (y
t−1).

Then LT (q) = L̃T (f).

Proof: For any history (xt , st , yt−1), at ∈ A, and
st+1 ∈ S,

P(St+1 = st+1 | Xt = xt , St = st ,Y t = yt , At = at )

=
∑

yt ∈Y
1st+1 {st + yt − xt} at (yt | xt , st )

= P(St+1 = st+1 | Xt = xt , St = st , At = at ). (32)

Thus, the probability distribution on (X T , ST ,Y T ) induced by
a decision policy f = ( f1, . . . , fT ) is given by

Pf (ST = sT , X T = x T ,Y T = yT )

= PS1(s1)PX1(x1)q1(y1 | x1, s1)

T∏

t=2

[
1st {st−1−xt−1+yt−1}

× Q(xt |xt−1)at (yt |xt , st )

]
.

where at = ft (yt−1). Under the transformations described
in the Proposition, Pf and Pq are identical probability
distributions. Consequently, Ef [ct (Xt , St , At ,Y t ; f)] =
I q(St , Xt ; Yt | Y t−1). Hence, LT (q) and L̃T (f) are
equivalent. �

Eq. (32) implies that {Xt , St }t≥1 is a controlled Markov
process with control action {At}t≥1. In the next section,
we obtain a dynamic programming decomposition for this
problem. For the purpose of writing the dynamic program,
it is more convenient to write the policy (29) as

At = ft (Y
t−1, At−1). (33)

Note that these two representations are equivalent. Any policy
of the form (29) is also a policy of the form (33) (that simply
ignores At−1); any policy of the form (33) can be written as
a policy of the form (29) by recursively substituting At in
terms of Y t−1. Since the two forms are equivalent, in the next
section we assume that the policy is of the form (33).

C. A Dynamic Programming Decomposition

The model described in Section III-B above is similar to a
POMDP (partially observable Markov decision process): the
system state (Xt , St ) is partially observed by a decision maker
who chooses action At . However, in contrast to the standard
cost model used in POMDPs, the per-step cost depends on
the observation history and past policy. Nonetheless, if we
consider the belief state as the information state, the problem
can be formulated as a standard MDP.

For that matter, for any realization yt−1 of past observations
and any choice at−1 of past actions, define the belief state
πt ∈ PX,S as follows: For s ∈ S and x ∈ X ,

πt (x, s) = Pf (Xt = x, St = s|Y t−1 = yt−1, At−1 = at−1).

If Y t−1 and At−1 are random variables, then the belief state
is a PX,S-valued random variable.

The belief state evolves in a state-like manner as follows.
Lemma 1: For any realization yt of Yt and at of At , πt+1

is given by

πt+1 = ϕ(πt , yt , at ) (34)
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where ϕ is given by

ϕ(π, y, a)(x ′, s′)

=
∑

x∈X Q(x ′|x)a(y|x, s′ − x + y)π(x, s′ − x + y)∑
(x,s)∈X×S a(y|x, s − x + y)π(x, s − x + y)

.

Proof: For ease of notation, we use P(xt , st |yt−1, at−1)
to denote P(Xt = xt , St = st |Y t−1 = yt−1, At−1 = at−1).
Similar interpretations hold for other expressions as well.
Consider

πt+1(xt+1, st+1) = P(xt+1, st+1|yt , at )

= P(xt+1, st+1, yt , at |yt−1, at−1)

P(yt , at |yt−1, at−1)
(35)

Now, consider the numerator of the right hand side.

P(xt+1, st+1, yt , at |yt−1, at−1)

= P(xt+1, st+1, yt , at |yt−1, at−1, πt )

=
∑

(xt ,st )∈X×S
P(xt+1|xt )1st+1(st + xt − yt )

×at (yt |xt , st )1at ( ft (y
t−1, at−1))πt (xt , st ) (36)

Substituting (36) in (35) (and observing that the denom-
inator of the right hand side of (35) is the marginal of
the numerator over (xt+1, st+1)), we get that πt+1 can be
written in terms of πt , yt and at . Note that if the term
1at ( ft (yt−1, at−1)) is 1, it cancels from both the numerator
and the denominator; if it is 0, we are conditioning on a null
event in (35), so we can assign any valid distribution to the
conditional probability. �

Note that an immediate implication of the above result is
that πt depends only on (yt−1, at−1) and not on the policy f .
This is the main reason that we are working with a policy of
the form (33) rather than (29).

Lemma 2: The cost L̃T (f) in (31) can be written as

L̃T (f) = 1

T
E

[ T∑

t=1

I (At ;�t )

]

where I (at ;πt) does not depend on the policy f and is
computed according to the standard formula

I (at ;πt) =
∑

x∈X ,s∈S,
y∈Y

πt (x, s)at (y | x, s)

× log
at (y|x, s)∑

(x̃,s̃)∈X×S
πt (x̃, s̃)at (y | x̃, s̃)

.

Proof: By the law of iterated expectations, we have

L̃T (f)= 1

T
E

[ T∑

t=1

E[ct (Xt , St , At ,Y t ; f)|Y t−1, At−1]
]

(37)

Now, from (30), each summand may be written as

Ef [ct(Xt , St , At ,Y t ; f) | Y t−1 = yt−1, At = at ]
=

∑

x∈X ,s∈S,
y∈Y

πt (x, s)at (y | x, s)

× log
at (y|x, s)∑

(x̃,s̃)∈X×S
πt (x̃, s̃)at (y | x̃, s̃)

= I (at ;πt ).

Thus, Ef [ct (Xt , St ,Y t ; f | Y t−1, At ] = I (At ,�t ). Substitut-
ing this back in (37), we get the result of the Lemma. �

Proof of Theorem 1: Lemma 1 implies that {�t }t≥1 is a
controlled Markov process with control action At . In addition,
Lemma 2 implies that the objective function can be expressed
in terms of the state �t and the action At . Thus, one can use
Markov decision theory [21] to identify the optimal policy.
Since both the state space and the action space are continuous
valued, we need to verify the standard technical conditions.

Define the stochastic kernel K : PX,S × A → PX,S as
follows. For any Borel subset B of PX,S and any π ∈ PX,S

and a ∈ A,

K (B | π, a) =
∑

x∈X ,s∈S,
y∈Y

π(x, s)a(y | x, s)1B{ϕ(π, y, a))}.

The sequential model of Sec. III-B has the following
properties.

1) Based on (32), we can write the controlled dynamics of
the state (Xt , St ) as follows:

P(Xt+1 = x+, St+1 = s+ | Xt = x, St = s, At = a)

=
∑

y∈Y
Q(x+|x)a(y)1s+{s + y − x},

which is continuous in a.
2) The observations are given by

P(Yt = y|Xt = x, St = s, At = a) = a(y)

which is continuous in a.
3) The observations Yt are discrete.

Therefore, from [22, Sec 4.4 and Lemma 4.1], we get the
following:

4) The stochastic kernel K (dπ+ | π, a) is weakly continu-
ous.

In addition, the model has the following properties:
5) The action set A is compact.
6) The per-step cost I (a, π) is continuous and bounded

below. (In fact, the per-step cost is also bounded above).
Properties 4)–6) imply [21, Condition 3.3.3], which
by [21, Th. 3.3.5], implies the measurable selection
condition [21, Assumption 3.3.1]. Under the measurable
selection condition, the “inf” in the dynamic program can be
replaced by a “min”.

The continuity of the value function in π follows from
the continuity of the per-step cost I (a, π) and the controlled
stochastic kernel K (dπ+ | π, a). The concavity of the value
functions is proved in Appendix III.
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From standard results in Markov decision theorem (e.g.,
see [21, Th. 3.2.1]), it follows that the policy given in
part 2) of the Theorem is optimal for the sequential model of
Sec III-B. Proposition 2 implies that this policy is also optimal
for Problem A. �

D. Remarks About Numerical Solution

The dynamic programs of Theorems 1 and 2, both state
and action spaces are distribution valued (and, therefore,
subsets of Euclidean space). Although, an exact solution of
the dynamic program is not possible, there are two approaches
to obtain an approximate solution. The first is to treat it as a
dynamic program of an MDP with continuous state and action
spaces and use approximate dynamic programming [24], [31].
The second is to treat it as a dynamic program for a POMDP
and use point-based methods [32]. The point-based methods
rely on concavity of the value function, which was established
in Theorem 1.

IV. PROOF OF THEOREM 3

We follow the standard approach and show that the pro-
posed leakage rate is optimal by showing achievability and
a converse. As a preliminary step, we first show that under
Assumption 1, the objective can be rewritten in a simpler
but equivalent form. To show achievability, we show that the
proposed optimal policy belongs to a class of policies that
satisfies a certain invariance property. Using this property the
multi-letter mutual information expression can be reduced into
a single-letter expression. For the converse we provide two
proofs: the first uses dynamic programming and the second
uses purely probabilistic and information theoretic arguments.

A. Simplification of the Dynamic Program

Define

θt (s) = Pf(St = s | Y t−1 = yt−1, At−1 = at−1).

Then, under Assumption 1, we can simplify the belief state
πt as follows:

πt (x, s) = P(Xt = x, St = s|Y t−1 = yt−1, At−1 = at−1)
(a)= P(Xt = x |St = s,Y t−1 = yt−1, At−1 = at−1)

×P(St = s | Y t−1 = yt−1, At−1 = at−1)
(b)= PX (x)θt(s)

where (a) follows from the product rule of probability and (b)
uses Assumption 1 and the definition of θt .

Since πt (x, s) = PX (x)θt(s), in principle, we can sim-
plify the dynamic program of Theorem 2 by using θt as
an information state. However, for reasons that will become
apparent, we provide an alternative simplification that uses an
information state ξt ∈ PW .

Recall that Wt = St − Xt which takes values in W =
{s − x : s ∈ S, x ∈ X }. For any realization (yt−1, at−1) of
past observations and actions, define ξt ∈ PW as follows: for
any w ∈ W ,

ξt (w) = Pf(Wt = w | Y t−1 = yt−1, At−1 = at−1).

If Y t−1 and At−1 are random variables, then ξt is a PW -valued
random variable. As was the case for πt , it can be shown that
ξt does not depend on the choice of the policy f .

Lemma 3: Under Assumption 1, θt and ξt are related as
follows:

ξt (w) =
∑

(x,s)∈D(w)
PX (x)θt(s). (38)

Proof:

ξt (w) = Pf (Wt = w | Y t−1 = yt−1, At−1 = at−1)

= Pf (St − Xt = w | Y t−1 = yt−1, At−1 = at−1)

=
∑

(x,s)∈D(w)
PX (x)θt (s).

�
Since πt (x, s) = PX (x)θt (s), Lemma 3 shows that ξt is a

function of πt . We will show that we can simplify the dynamic
program of Theorem 2 by using ξt as the information state
instead of πt . For such a simplification to work, we would
have to use charging policies of the form qt (yt |wt , yt−1).
We establish that restricting attention to such policies is
without loss of optimality. For that matter, define B as follows:

B = {
b ∈ PY |W : b(Y◦(w) | w) = 1, ∀w ∈ W}

. (39)

Lemma 4: Given a ∈ A and π ∈ PX,S, define the
following:

• ξ ∈ PW as ξ(w) = ∑
(x,s)∈D(w) π(x, s)

• b ∈ B as follows: for all y ∈ Y, w ∈ W

b(y | w) =
∑
(x,s)∈D(w) a(y | x, s)π(x, s)

ξ(w)
;

• ã ∈ A as follows: for all y ∈ Y, x ∈ X , s ∈ S
ã(y|x, s) = b(y|s − x).

Then under Assumption 1, we have
1) Invariant Transitions: for any y ∈ Y , ϕ(π, y, a) =

ϕ(π, y, ã).
2) Lower Cost: I (a;π) ≥ I (ã;π) = I (b; ξ).

Therefore, in the sequential problem of Sec. III-B, there is no
loss of optimality in restricting attention to actions b ∈ B.

Proof:
1) Suppose (X, S) ∼ π and W = S − X , S+ = W + Y ,

X+ ∼ PX . We will compare P(S+|Y ) when Y ∼
a(·|X, S) with when Y ∼ ã(·|X, S). Given w ∈ W and
y ∈ Y ,

Pa(W = w,Y = y) =
∑

(x,s)∈D(w)
a(y|x, s)π(x, s)

=
∑

(x,s)∈D(w)
b(y|w)π(x, s)

(a)=
∑

(x,s)∈D(w)
ã(y|x, s)π(x, s)

= Pã(W = w,Y = y) (40)

where (a) uses that for all (x, s) ∈ D(w), s − x = w.
Marginalizing (40) over W , we get that Pa(Y = y) =
Pã(Y = y). Since S+ = W + Y , Eq. (40) also implies
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Pa(S+ = s,Y = y) = Pã(S+ = s,Y = y). Therefore,
Pa(S+ = s|Y = y) = Pã(S+ = s|Y = y).

2) Let (X, S) ∼ π and W = S − X . Then W ∼ ξ .
Therefore, we have

I (a;π) = I a(X, S; Y ) ≥ I a(W ; Y ).

where the last inequality is the data-processing inequal-
ity. Under ã, (X, S)− W − Y , therefore,

I (ã;π) = I ã(X, S; Y ) = I ã(W ; Y ).

Now, by construction, the joint distribution of (W,Y ) is
the same under a, ã, and b. Thus,

I a(W ; Y ) = I ã(W ; Y ) = I b(W ; Y ).

Note that I b(W ; Y ) can also be written as I (b; ξ). The
result follows by combining all the above relations. �

Once attention is restricted to actions b ∈ B, the update of
ξt may be expressed in terms of b ∈ B as follows:

Lemma 5: For any realization yt of Yt and bt of Bt , ξt+1
is given by

ξt+1 = ϕ̃(ξt , yt , bt ) (41)

where ϕ̃ is given by

ϕ̃(ξ, y, b)(w+)

=
∑

x∈X ,w∈W PX (x)1w+{y +w − x}b(y | w)ξ(w)
∑
w∈W b(y | w)ξ(w) .

Proof: The proof is similar to the proof of Lemma 1. �
For any b ∈ B and ξ ∈ PW , let us define the Bellman

operator B̃b : [PW → R] → [PW → R] as follows: for any
Ṽ : PW → R and any ξ ∈ PW ,

[B̃bṼ ](ξ) = I (b; ξ) +
∑

y∈Y,w∈W
ξ(w)b(y | w)Ṽ (

ϕ̃(ξ, y, b)
)
.

Theorem 4: Under Assumption 1, there is no loss of opti-
mality in restricting attention to optimal policies of the form
qt (yt |wt , ξt ) in Problem A.

1) For the finite horizon case, we can identify the optimal
policy q∗ = (q∗

1 , . . . , q∗
T ) by iteratively defining value

functions Ṽt : PW → R. For any ξ ∈ PW , ṼT +1(ξ) = 0,
and for t = T, T − 1, . . . , 1,

Ṽt (ξ) = min
b∈B

[B̃bṼt+1](ξ). (42)

Let f ◦
t (ξ) denote the arg min of the right hand side

of (42). Then, the optimal policy q∗ = (q∗
1 , . . . , q∗

T ) is
given by

q∗
t (yt |wt , ξt ) = bt(yt |wt ), where bt = f ◦

t (ξt ).

Moreover, the optimal (finite horizon) leakage
rate is given by Ṽ1(ξ1)/T , where ξ1(w) =∑
(x,s)∈D(w) PX (x)PS1(s).

2) For the infinite horizon, suppose that there exists a
constant J̃ ∈ R and a function ṽ : PS → R which
satisfies the following fixed point equation:

J̃ + ṽ(ξ) = min
b∈B

[B̃bṽ](ξ), ∀ξ ∈ PW . (43)

Let f◦(ξ) denote the arg min of the right hand side
of (43). Then, the time-homogeneous policy q∗ =
(q∗, q∗, . . . ) given by

q∗(yt |wt , ξt ) = bt (yt |wt ), where bt = f ◦(ξt )

is optimal. Moreover, the optimal (infinite horizon) leak-
age rate is given by J̃ . �

Proof: Lemma 5 implies that {ξt }t≥1 is a controlled
Markov process with control action bt . Lemma 4, part 2),
implies that the per-step cost can be written as

1

T
E

[ T∑

t=1

I (bt ; ξt )

]
.

Thus, by standard results in Markov decision theory [21], the
optimal solution is given by the dynamic program described
above. �

B. Weak Achievability
To simplify the analysis, we assume that we are free to

choose the initial distribution of the state of the battery, which
could be done by, for example, initially charging the battery
to a random value according to that distribution. In principle,
such an assumption could lead to a lower achievable leakage
rate. For this reason, we call it weak achievability. In the next
section, we will show achievability starting from an arbitrary
initial distribution, which we call strong achievability.

Definition 1: [Constant-distribution policy] A time-
homogeneous policy f◦ = ( f ◦, f ◦, . . . ) is called a
constant-distribution policy if for all ξ ∈ PW , f ◦(ξ) is a
constant. If f ◦(ξ) = b◦, then with a slight abuse of notation,
we refer to b◦ = (b◦, b◦, . . . ) as a constant-distribution
policy.

Recall that under a constant-distribution policy b ∈ B, for
any realization yt of Y t , θt and ξt are given as follows:

θt (s) = P(St = s | Y t−1 = yt−1, Bt−1 = bt−1)

ξt (w) = P(Wt = w | Y t−1 = yt−1, Bt−1 = bt−1).

1) Invariant Policies: We next impose an invariance
property on the class of policies. Under this restriction
the leakage rate expression will simplify substantially.
Subsequently we will show that the optimal policy belongs
to this restricted class.

Definition 2: [Invariance Property] For a given distribution
θ1 of the initial battery state, a constant-distribution policy
b ∈ B is called an invariant policy if for all t , θt = θ1 and
ξt = ξ1, where ξ1 and θ1 satisfy (38).

Remark 3: An immediate implication of the above defini-
tion is that under any invariant policy b, the conditional distri-
bution Pb(Xt , St ,Yt |Y t−1) is the same as the joint distribution
Pb(X1, S1,Y1). Marginalizing over (X, S) we get that {Yt }t≥1
is an i.i.d. sequence.

Lemma 6: If the system starts with an initial distribution θ
of the battery state, and ξ and θ satisfy (38), then an invariant
policy b = (b, b, . . . ) corresponding to (θ, ξ) achieves a
leakage rate

LT (b) = I (W1; Y1) = I (b; ξ)
for any horizon T .
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Proof: The proof is a simple corollary of the invari-
ance property in Definition 2. Recall from the dynamic
program of Theorem 4, that the performance of any policy
b = (b1, b2, . . . ) such that bt ∈ B, is given by

LT (b) = 1

T
E

[ T∑

t=1

I (bt ; ξt )

]
.

Now, we start with an initial distribution ξ1 = ξ and follow
the constant-distribution structured policy b = (b, b, . . . ).
Therefore, by Definition 2, ξt = ξ for all t . Hence, the leakage
rate under policy b is

LT (b) = I (b; ξ). �

Remark 4: Note that Lemma 6 can be easily derived inde-
pendently of Theorem 4. From Proposition 1, we have that:

LT (b) = 1

T

T∑

t=1

I b(St , Xt ; Yt |Y t−1). (44)

From Remark 3, we have that I b(St , Xt ; Yt |Y t−1) =
I b(S1, X1; Y1) = I b(W1; Y1), which immediately results in
Lemma 6.

For invariant policies we can express the leakage rate in the
following fashion, which is useful in the proof of optimality.

Lemma 7: For any invariant policy b,

I b(W1; Y1) = I b(W1; X1).

Proof: Consider the following sequence of simplifications:

I b(W1; Y1) = H b(W1)− H b(W1|Y1)

= H b(W1)− H b(W1 + Y1|Y1)
(a)= H b(W1)− H b(S2|Y1)
(b)= H b(W1)− H b(S1)
(c)= H b(W1)− H b(S1|X1)
(d)= H b(W1)− H b(W1|X1)

= I b(W1; X1).

where (a) is due to the battery update equation (1); (b) is
because b is an invariant; (c) is because S1 and X1 are
independent; and (d) is because S1 = W1 + X1. �

2) Structured Policy: We now introduce a class of policies
that satisfy the invariance property in Def. 2. This will be then
used in the proof of Theorem 3.

Definition 3: [Structured Policy] Given θ ∈ PS and ξ ∈
PW , a constant-distribution policy b = (b, b, . . . ) is called a
structured policy with respect to (θ, ξ) if:

b(y|w) =
{

PX (y)
θ(y+w)
ξ(w) , y ∈ X ∩ Y◦(w)

0, otherwise.

Note that it is easy to verify that the distribution b defined
above is a valid conditional probability distribution.

Lemma 8: For any θ ∈ PS and ξ ∈ PW , the structured
policy b = (b, b, . . . ) given in Def. 3 is an invariant policy.

Proof: Since (θt , ξt ) are related according to Lemma 3,
in order to check whether a policy is invariant it is sufficient
to check that θt = θ1 for all t . Furthermore, to check if a

time-homogeneous policy is an invariant policy, it is sufficient
to check that either θ2 = θ1.

Let the initial distributions (θ1, ξ1) = (θ, ξ) and the system
variables be defined as usual. Now consider a realization s2
of S2 and y1 of Y1. This means that w1 = s2 − y1. Since Y1 is
chosen according to b(·|w1), it must be that y1 ∈ X ∩Y◦(w1).
Therefore,

Pb(S2 = s2,Y1 = y1) = Pb(S2 = s2,Y1 = y1,W1 = s2 − y1)

= ξ1(s2 − y1)b(y1|s2 − y1)

= PX (y1)θ1(s2), (45)

where in the last equality we use the fact that y1 ∈ X ∩
Y◦(s2 − y1). Note that if y1 �∈ X ∩Y◦(s2 − y1), then Pb(S2 =
s2,Y1 = y1) = 0. Marginalizing over s2, we get Pb(Y1 =
y1) = PX (y1).

Consequently, θ2(s2) = Pb(S2 = s2|Y1 = y1) = θ1(s2).
Hence, b is invariant as required. �

Remark 5: As argued in Remark 3, under any invariant
policy, {Yt }t≥1 is an i.i.d. sequence. As argued in the proof of
Lemma 8, for a structured policy the marginal distribution of
Yt is PX . Thus, an eavesdropper cannot statistically distinguish
between {Xt }t≥1 and {Yt }t≥1.

Proposition 3: Let θ∗, ξ∗, and b∗ be as defined in
Theorem 3. Then,

1) (θ∗, ξ∗) satisfy (38);
2) b∗ is a structured policy with respect to (θ∗, ξ∗).
3) If the system starts in the initial battery state θ∗ and fol-

lows the constant-distribution policy b∗ = (b∗, b∗, . . . ),
the leakage rate is given by J ∗.

Thus, the performance J ∗ is achievable.
Proof: The proofs of parts 1) and 2) follows

from the definitions. The proof of part 3) follows from
Lemmas 6 and 7. �

This completes the proof of the achievability of Theorem 3.

C. Strong Achievability

Lemma 9: Assume that for any x ∈ X , PX (x) > 0. Let
(θ◦, ξ◦) be a pair satisfying (38) and b◦ = (b◦, b◦, . . . ) be
the corresponding structured policy.

Assume that θ◦ ∈ int(PS) or equivalently, for any w ∈ W
and y ∈ X ∩ Y◦(w), b◦(y|w) > 0. Suppose the system starts
in the initial state (θ1, ξ1) and follows policy b◦. Then:

1) the process {θt }≥1 converges weakly to θ◦;
2) the process {ξt }≥1 converges weakly to ξ◦;
3) for any continuous function c : PW → R,

lim
T →∞

1

T

T∑

t=1

E[c(ξt )] = c(ξ◦). (46)

4) Consequently, the infinite horizon leakage rate
under b◦ is

L∞(b◦) = I (b◦, ξ◦).

Proof: The proof of parts 1) and 2) is presented in
Appendix IV. From 2), limt→∞ E[c(ξt )] = c(ξ◦), which
implies (46). Part 4) follows from part 3) by setting c(ξt ) =
I (b◦, ξt ). �
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Proposition 1 implies that θ∗ defined in Theorem 3 lies in
int(PS). Then, by Lemma 9, the constant-distribution policy
b∗ = (b∗, b∗, . . . ) (where b∗ is given by Theorem 3), achieves
the leakage rate I (b∗, ξ∗). By Lemma 7, I (b∗, ξ∗) is same as
J ∗ defined in Theorem 3. Thus, J ∗ is achievable starting from
any initial state (θ1, ξ1).

D. Dynamic Programming Converse

We provide two converses. One is based on the dynamic
program of Theorem 4, which is presented in this section;
the other is based purely on information theoretic arguments,
which is presented in the next section.

In the dynamic programming converse, we show that for J ∗
given in Theorem 3, v∗(ξ) = H (ξ), and any b ∈ B,

J ∗ + v∗(ξ) ≤ [B̃bv
∗](ξ), ∀ξ ∈ PW , (47)

Since H (ξ) is bounded, from [21, Lemma 5.2.5(b)], we get
that J ∗ is a lower bound of the optimal leakage rate.

To prove (47), pick any ξ ∈ PW and b ∈ B. Suppose
W1 ∼ ξ , Y1 ∼ b(·|W1), S2 = Y1 + W1, X2 is independent
of W1 and X2 ∼ PX and W2 = S2 − X2. Then,

[B̃bv
∗](ξ) = I (b; ξ)+

∑

(w1,y1)∈W×Y
ξ(w1)b(y1|w1)v

∗(ϕ̂(ξ, y1, b))

= I (W1; Y1)+ H (W2|Y1) (48)

where the second equality is due to the definition of condi-
tional entropy. Consequently,

[B̃bv
∗](ξ)− v∗(ξ) = H (W2|Y1)− H (W1|Y1)

= H (W2|Y1)− H (W1 + Y1|Y1)
(a)= H (S2 − X2|Y1)− H (S2|Y1)
(b)≥ min

θ2∈PS

[
H (S̃2 − X2)− H (S̃2)

]
, S̃2 ∼ θ2

= J ∗ (49)

where (a) uses S2 = Y1 + W1 and W2 = S2 − X2; (b) uses
the fact that H (A1|B)− H (A1 − A2|B) ≥ minPA1

[
H (A1)−

H (A1 − A2)
]

for any joint distribution on (A1, A2, B).
The equality in (49) occurs when b is an invariant policy

and θ2 is same as θ∗ defined in Theorem 3. For ξ that are not
equivalent to θ∗ via (38), the inequality in (49) is strict.

We have shown that Eq. (47) is true. Consequently, J ∗ is a
lower bound on the optimal leakage rate J̃ .

E. Information Theoretic Converse

Consider the following inequalities: for any admissible
policy q ∈ QB , we have

I (S1, X T ; Y T ) =
T∑

t=1

I (St , Xt ; Yt |Y t−1)

(a)≥
T∑

t=1

I (Wt ; Yt |Y t−1) (50)

where (a) follows from the fact that Wt = Xt − St is a deter-
ministic function of (Xt , St ) and that the mutual information
is non-negative.

Now consider

I (Wt ; Yt |Y t−1) = H (Wt |Y t−1)− H (Wt |Y t )

= H (Wt |Y t−1)− H (Wt + Yt |Y t )
(b)= H (Wt |Y t−1)− H (St+1|Y t )
(c)= H (Wt |Y t−1)− H (St+1|Y t , Xt+1)

= H (Wt |Y t−1)− H (St+1 − Xt+1|Y t , Xt+1)
(d)= H (Wt |Y t−1)− H (Wt+1|Y t , Xt+1) (51)

where (b) follows from (1); (c) follows because of assump-
tion (A); and (d) also follows from (1).

Substituting (51) in (50) (but expanding the last term as
H (WT |Y T−1)− H (WT |Y T ), we get

I (S1, X T ; Y T ) ≥
T∑

t=1

I (Wt ; Yt |Y t−1) (52)

=
T −1∑

t=1

[
H (Wt |Y t−1)− H (Wt+1|Y t , Xt+1)

]

+H (WT |Y T −1)− H (WT |Y T ) (53)

= H (W1)+
T∑

t=2

[ − H (Wt |Y t−1, Xt )+ H (Wt |Y t−1)
]

−H (WT |Y T ) (54)

= H (W1)+
T∑

t=2

I (Wt ; Xt |Y t−1)− H (WT |Y T ). (55)

Now, we take the limit T → ∞ to obtain a lower bound to
the leakage rate:

L∞(q) = lim sup
T →∞

1

T
I (S1, X T ; Y T )

≥ lim sup
T →∞

1

T

[
H (W1)+

T∑

t=2

I (Wt ; Xt |Y t−1)− H (WT |Y T )

]

(a)= lim supT →∞
1

T

[
T∑

t=2

I (Wt ; Xt |Y t−1)

]

(b)≥ min
PS∈PS

I (S − X; X) = J ∗

where (a) is because the entropy of any discrete random
variable is bounded and (b) follows from the fact that each
term in the summation satisfies:

I (Wt ; Xt |Y t−1) ≥ min
PS∈PS

I (S − X; X), (56)

which can be justified as follows. First note that for any
policy q we have that:

I (Wt ; Xt |Y t−1) = I (St − Xt ; Xt |Y t−1)

depends on the joint distribution Pq
St ,Xt ,Y t−1(st , xt , yt−1) which

factors as:

Pq
St ,Xt ,Y t−1(st , xt , yt−1) = PX (xt )P

q
St ,Y t−1(st , yt−1) (57)

as Xt is sampled i.i.d. from the distribution PX (·) and from
the state update equation (1), we have that St is a function of
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(Xt−1,Y t−1), and thus independent of Xt . Now note that:

I (Wt ; Xt |Y t−1)

=
∑

yt−1∈Y t−1

I (St − Xt ; Xt |Y t−1 = yt−1)p(yt−1)

≥ min
yt−1∈Y t−1

I (St − Xt ; Xt |Y t−1 = yt−1)

≥ min
yt−1∈Y t−1

min
pSt ,Xt |Y t−1 (·|yt−1)

I (St − Xt ; Xt |Y t−1 = yt−1)

= min
yt−1∈Y t−1,pSt |Y t−1 (·|yt−1)=

I (St − Xt ; Xt |Y t−1 = yt−1)

(58)

where (58) follows from (57) since Xt is independent of
(St ,Y t−1) and distributed according to PX (·) Since (58) is
simply equivalent to minimizing over the distribution PS(·),
the relation in (56) holds. This completes the proof. This shows
that J ∗ is a lower bound to the minimum (infinite horizon)
leakage rate.

V. CONCLUSION AND DISCUSSION

In this paper, we study a smart metering system that uses
a rechargeable battery to partially obscure the user’s power
demand. Through a series of reductions, we show that the
problem of finding the best battery charging policy can be
recast as a Markov decision process. Consequently, the optimal
charging policies and the minimum information leakage rate
are given by the solution of an appropriate dynamic program.

For the case of i.i.d. demand, we provide an explicit char-
acterization of the optimal battery policy and the leakage rate.
In this special case it suffices to choose a memoryless policy
where the distribution of Yt depends only on Wt . Our achiev-
ability results rely on restricting attention to a class of invariant
policies. Under an invariant policy, the consumption {Yt }t≥1
is i.i.d. and the leakage rate is characterized by a single-
letter mutual information expression. We then further restrict
attention to what we call structured policies under which the
marginal distribution of {Yt }t≥1 is PX . Thus, under the struc-
tured policies, an eavesdropper cannot statistically distinguish
between {Xt }t≥1 and {Yt }t≥1. We provide two converses; one
is based on the dynamic programming argument while the
other is based on a purely information theoretic argument.

Extending of our MDP formulation to incorporate an
additive cost, such as the price of consumption, is rather
immediate. However, the approach presented in this work
for explicitly characterizing the optimal leakage rate in the
i.i.d. case may not immediately extend to such general cost
functions. In another direction one can allow for a certain
controlled wastage of energy drawn from the grid to increase
privacy. It would be interesting to see how the leakage rate
decreases with the wasted energy. The study of such problems,
as well as finer implementation details of the proposed system,
remains an interesting future direction.

APPENDIX I
PROOF OF PROPERTY 1

For any θ ∈ int(PS) and δ : S → R such that∑
s∈S δ(s) = 0. Let θα(s) := θ(s) + αδ(s). Then

for small enough α, θα ∈ PS . Given such a θα, let
PW,X (w, x) = PW |X (w|x)PX (x) = θα(w + x)PX (x).
Then to show that I (W ; X) is strictly convex on PS we
require d2 I (W ;X)

dα2 > 0. Due to independence of X and S,
I (W ; X) = H (W )− H (S). Therefore,

d I (W ; X)

dα
= d [−H (S)+ H (W )]

dα
=

∑

s̃

δ(s̃) ln θα(s̃)−
∑

w∈W,s∈S
PX (s −w)δ(s) ln PW (w)

d2 I (W ; X)

dα2 =
∑

s

δ(s)2

θα(s)
−

∑

w∈W

(∑
s̃∈S PX (s̃ −w)δ(s̃)

)2

PW (w)
.

Let aw(s) = δ(s)
√

PX (s−w)
θα(s)

and bw(s) = √
θα(s)PX (s − w).

Using the Cauchy-Schwarz inequality, we can show that

d2 I (W ; X)

dα2 =
∑

s

δ(s)2

θα(s)
−

∑

w∈W

(∑
s̃∈S aw(s̃)bw(s̃)

)2

PW (w)

>
∑

s

δ(s)2

θα(s)
−

∑

w∈W

(∑
s̃∈S aw(s̃)2

) (∑
ŝ∈S bw(ŝ)2

)

PW (w)

=
∑

s

δ(s)2

θα(s)
−

∑

w∈W

(
∑

s̃∈S
aw(s̃)

2

)
= 0.

The strict inequality is because a and b cannot be linearly
dependent. To see this, observe that a(s)

b(s) = δ(s)
θ(s)+αδ(s) cannot

be equal to a constant for all s ∈ S since δ must contain
negative as well as positive elements.

APPENDIX II
PROOF OF PROPOSITION 1

The proof of Proposition 1 relies on the following interme-
diate results (which are proved later):

Lemma 2.1: For any q ∈ Q A ,

I q(S1, X T ; Y T ) ≥
T∑

t=1

I q(Xt , St ; Yt |Y t−1)

with equality if and only if q ∈ QB .
Lemma 2.2: For any qa ∈ Q A, there exists a qb ∈ QB ,

such that

T∑

t=1

I qa (Xt , St ; Yt |Y t−1) =
T∑

t=1

I qb (Xt , St ; Yt |Y t−1).

Combining Lemmas 2.1 and 2.2, we get that for any
qa ∈ QA, there exists a qb ∈ QB such that

I qa (S1, X T ; Y T ) ≥ I qb (S1, X T ; Y T ).

Therefore there is no loss of optimality in restricting attention
to charging policies in QB . Furthermore, Lemma 2.1 shows
that for any q ∈ QB , LT (q) takes the additive form as given
in the statement of the proposition.
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Proof of Lemma 2.1: For any q ∈ QA, we have

I q(S1, X T ,Y T )
(a)=

T∑

t=1

I q(S1, Xt ; Yt |Y t−1)

(b)=
T∑

t=1

I q(Xt , St ; Yt |Y t−1)

(c)≥
T∑

t=1

I q(Xt , St ; Yt |Y t−1)

where (a) uses the chain rule of mutual information and the
fact that (St−2,Y t−1) → Xt−1 → Xt

5; (b) uses the fact that
the battery process St is a deterministic function of S1, Xt−1,
and Y t−1 given by (1); and (c) uses the fact that removing
terms does not reduce the mutual information. �

Proof: [Proof of Lemma 2.2] For any qa = (qa
1 , qa

2 ,
. . . , qa

T ) ∈ QA, construct a qb = (qb
1 , qb

2 , . . . , qb
T ) ∈ QB as

follows: for any t and realization (xt , st , yt ) of (Xt , St ,Y t )
let

qb
t (yt |xt , st , yt−1) = P

qa

Yt |Xt ,St ,Y t−1(yt |xt , st , yt−1). (59)

To prove the Lemma, we show that for any t ,

P
qa
Xt ,St ,Y t = P

qb
Xt ,St ,Y t . (60)

By definition of qb given by (59), to prove (60), it is sufficient
to show that

P
qa

Xt ,St ,Y t−1 = P
qb

Xt ,St ,Y t−1 . (61)

We do so using induction.
For t = 1, Pqa

X1,S1
(x, s) = PX1(x)PS1(s) = P

qb
X1,S1

(x, s).
This forms the basis of induction. Now assume that (61) hold
for t .

In the rest of the proof, for ease of notation, we denote
P

qa
Xt+1,St+1,Y t (xt+1, st+1, yt ) simply by Pqa (xt+1, st+1, yt ).

For t + 1, we have

Pqa (xt+1, st+1, yt ) =
∑

(xt ,st )∈X×S
Pqa (xt+1, xt , st+1, st , yt )

=
∑

(xt ,st )∈X×S
Q(xt+1|xt )1st+1{st − xt + yt }qa(yt |xt , st , yt−1)

×Pqa (xt , st , yt−1)
(a)=

∑

(xt ,st )∈X×S
Q(xt+1|xt )1st+1{st − xt + yt }qb(yt |xt , st , yt−1)

×Pqb (xt , st , yt−1)

= Pqb(xt+1, st+1, yt )

where (a) uses (59) and the induction hypothesis. Thus,
(61) holds for t+1 and, by the principle of induction, holds for
all t . Hence (60) holds and, therefore, I qa (Xt , St ; Yt |Y t−1) =
I qb (Xt , St ; Yt |Y t−1). The statement in the Lemma follows by
adding over t . �

5The notation A → B → C is used to indicate that A is conditionally
independent of C given B .

APPENDIX III
PROOF OF CONCAVITY OF THE VALUE FUNCTION

To prove the result, we show the following:
Lemma 3.1: For any action a ∈ A, if V : PX,S → R is

concave, then Ba V is concave on PX,S .
The concavity of the value functions follows from backward

induction. VT+1 is a constant and, therefore, also concave.
Lemma 3.1 implies that VT , VT −1, . . . , V1 are concave.

Proof: [Proof of Lemma 3.1] The first term I (a;π) of
[BaV ](π) is a concave function of π . We show the same for
the second term.

Note that if a function V is concave, then it’s per-
spective g(u, t) := tV (u/t) is concave in the domain
{(u, t) : u/t ∈ Dom(V ), t > 0}. The second term in the def-
inition of the Bellman operator (10)

∑

y∈Y

[ ∑

(x,s)∈X×S
a(y|x, s)π(x, s)

]
V (ϕ(π, y, a))

has this form because the numerator of ϕ(π, y, a) is linear in
π and the denominator is

∑
x,s a(y|x, s)π(x, s) (and corre-

sponds to t in the definition of perspective). Thus, for each
y, the summand is concave in π , and the sum of concave
functions is concave. Hence, the second term of the Bellman
operator is concave in π . Thus we conclude that concavity is
preserved under Ba . �

APPENDIX IV
PROOF OF LEMMA 9

The proof of the convergence of {ξt }t≥1 relies on a result
on the convergence of partially observed Markov chains due
to Kaijser [33] that we restate below.

Definition 4: A square matrix D is called subrectangular if
for every pair of indices (i1, j1) and (i2, j2) such that Di1, j1 �=
0 and Di2 , j2 �= 0, we have that Di2, j1 �= 0 and Di1, j2 �= 0.

Theorem 5 (Kaijser [33]): Let {Ut }t≥1, Ut ∈ U , be a finite
state Markov chain with transition matrix Pu. The initial state
U1 is distributed according to probability mass function PU1 .
Given a finite set Z and an observation function g : U → Z ,
define the following:

• The process {Zt}t≥1, Zt ∈ Z , given by

Zt = g(Ut ).

• The process {ψt }t≥1, ψt ∈ PU , given by

ψt (u) = P(Ut = u | Zt ).

• A square matrix M(z), z ∈ Z , given by

[M(z)]i, j =
{

Pu
i j if g( j) = z

0 otherwise
i, j ∈ U .

If there exists a finite sequence zm
1 such that

∏m
t=1 M(zt )

is subrectangular, then {ψt }t≥1 converges in distribution to a
limit that is independent of the initial distribution PU1 .

We will use the above theorem to prove that under policy
b◦, {ξt }t≥1 converges to a limit. For that matter, let U = S×Y ,
Z = Y , Ut = (St ,Yt−1) and g(St ,Yt−1) = Yt−1.
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First, we show that {Ut }t≥1 is a Markov chain. In particular,
for any realization (st+1, yt ) of (St+1,Y t ), we have that

Pb◦
(Ut+1 = (st+1, yt ) | Ut = (st , yt−1))

= ∑
x̃t∈X P(Ut+1 = (st+1, yt ), Xt = x̃t | Ut = (st , yt−1))

= ∑
x̃t∈X 1st+1{yt + st − x̃t }b∗(yt |st − x̃t )PX (x̃t )

= Pb◦
(Ut+1 = (st+1, yt ) | Ut = (st , yt−1)).

Next, let m = 2ms and consider

zm = 111 · · · 1︸ ︷︷ ︸
ms times

000 · · · 0︸ ︷︷ ︸
ms times

.

We will show that this zm satisfies the subrectangularity
condition of Theorem 5. The basic idea is the following.
Consider any initial state u1 = (s, y) and any final state
um = (s′, 0). We will show that

P(Sms = ms | U1 = (s, y), Zms = (111 . . .1)) > 0, (62)

and

P(S2ms = s′ | Ums = (sm, 1), Zms
ms+1 = (000 . . . 0)) > 0. (63)

Eqs. (62) and (63) show that given the observation sequence
zm , for any initial state (s, y) there is a positive probabil-
ity of observing any final state (s′, 0).6 Hence, the matrix∏m

t=1 M(z) is subrectangular. Consequently, by Theorem 5,
the process {ψt }t≥1 converges in distribution to a limit that is
independent of the initial distribution PU1 .

Now observe that θt(s) = ∑
y∈Y ψt (s, y) and (θt , ξt )

are related according to Lemma 3. Since {ψt }t≥1 converges
weakly independent of the initial condition, so do {θt}t≥1 and
{ξt }t≥1.

Let θ̄ and ξ̄ denote the limit of {θt}t≥1 and {ξt }t≥1. Suppose
the initial condition is (θ◦, ξ◦). Since b◦ is an invariant policy,
(θt , ξt ) = (θ◦, ξ◦) for all t . Therefore, the limits (θ̄ , ξ̄ ) =
(θ◦, ξ◦).

Proof of Eq. (62): Given the initial state (s, y), define
s̄ = ms − s, and consider the sequence

xms = 000 · · · 0︸ ︷︷ ︸
s̄ times

111 · · · 1︸ ︷︷ ︸
s times

.

Under this sequence of demands, consider the sequence of
consumption yms−1 = (11 . . .1), which is feasible because
the state of the battery increases by 1 for the first s̄ steps
(at which time it reaches ms) and then remains constant for
the remaining s steps. Therefore,

P(Sms = ms | U1 = (s, y),

Y ms−1 = (111 . . .1), Xms = xms ) > 0.

Since the sequnce of demands xm has a positive
probability,

P(Sms = ms , Xms = xms | U1 = (s, y),

Y ms−1 = (111 . . .1)) > 0.

6Note that given the observation sequence zm , the final state must be of the
form (s′, 0).

Therefore,

P(Sms = ms | U1 = (s, y),Y ms−1 = (111 . . .1)) > 0

which completes the proof. �
Proof of Eq. (63): The proof is similar to the Proof of (62).

Given the final state (s′, 0), define s̄′ = ms − s′ and consider
the sequence

x2ms
ms+1 = 111 · · ·1︸ ︷︷ ︸

s̄ ′ times

000 · · · 0︸ ︷︷ ︸
s ′ times

.

Under this sequence of demands and the sequence of con-
sumption given by y2ms−1

ms = (00 . . . 0), the state of the battery
decreases by 1 for the first s̄′ steps (at which time it reaches s′)
and then remains constant for the remaining s′ steps. Since
x2ms

ms+1 has positive probability, we can complete the proof by
following an argument similar to that in the proof of (62). �
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