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Introduction

• Smart electricity meters deliver household
power usage data to utility providers.
However, despite the benefits these systems
offer, there is potentially a loss of privacy.

• Time horizon: i ∈ {1, 2, . . . , n}
Battery state: Si ∈ S
Aggregate load: Xi ∈ X
Power drawn from the grid: Yi ∈ Y
(Yi is reported to the utility provider)

Binary Smart Meters Model

Let X = Y = S = {0, 1}, (Xi)
n
i=1 IID Bern(1/2)

and P (S0) = 1/2. We consider energy-efficient poli-
cies that satisfying Si−1 + Yi − Xi ∈ S.

Figure 1: Finite-state-machine representation for binary model.

Consider the following policies and the sample paths
they yield starting at battery state 0.

• P1: qi,(1)(yi|x
i, si−1, yi−1) = δ(yi = xi), ∀i

• P2: qi,(2)(yi|x
i, si−1, yi−1) = δ(yi = si−1), ∀i

• P3: qi,(3)(yi|x
i, si−1, yi−1) = 1/2 if xi 6= si−1, ∀i

i 0 1 2 3 4 5 6 7 8 9
Xi 1 0 1 0 0 0 0 0 1

P1: Si 0 0 0 0 0 0 0 0 0 0
P1: Yi 1 0 1 0 0 0 0 0 1

P2: Si 0 0 1 0 1 1 1 1 1 0
P2: Yi 1 1 0 1 0 0 0 0 0

P3: Si 0 0 0 0 0 0 1 1 1 0
P3: Yi 1 0 1 0 0 1 0 0 0

Equivalent Problem Formulations

The battery policy effectively creates a noisy channel
from the user to the utility provider. Let (Xi)

n
i=1 be

a first-order Markov source, Zi = (Xi, Si−1), and
W (x, s) = {y ∈ Y : s + y − x ∈ S}.
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Figure 2: System Diagram. At each time i ∈ {1, 2, . . . , n}, the

battery policy defines a with channel with memory.

We define our problem using mutual information as
the measure of information leakage.

L(q) := Iq(S0, Xn; Y n) for q ∈ QA

where QA is the set of feasible battery policies

QA :=
{

q ∈ P(Yn|X n, S) :

q(Y n|Xn, S0) =
n
⊗

i=1
qi(Yi|X

i, Si−1
0 , Y i−1),

qi(W (Xi, Si−1)|X
i, Si−1

0 , Y i−1) = 1, ∀i
}

.

Problem A Find a policy q∗ ∈ QA such that

L(q∗) = min
q∈QA

Iq(S0, Xn; Y n).

1 Problem A is a convex optimization problem.

2 Without loss of optimality, in Problem A, the
optimization over QA can be replaced by

QB :=
{

q ∈ QA : qi(Yi|Z
i, Y i−1) = qi(Yi|Zi, Y i−1), ∀i

}

.

Problem B Find a policy q∗ ∈ QB such that

L(q∗) = min
q∈QB

n
∑

i=1
Iq(Zi; Yi|Y

i−1).

Next, we recast the problem into a control frame-
work.

Problem C

State space: Hi−1 = Y i−1 × U i−1

Action space: PW = {u ∈ P(Y|Z) : u(W (Z)|Z) = 1}
Policy: fi : Hi−1 → PW

Transition law: hi = (hi−1) ∪ (yi, ui)
Per-stage cost: If(Zi; Yi|h

i−1)

MDP Formulation and Algorithms

Let us define a statistic πi which is computed recur-
sively. Let π1[∅](zi) := P (z1), and for i > 1

πi[h
i−1](zi) := φ(πi−1[h

i−2], ui−1, yi−1)

=

∑

zi−1
P (zi|yi−1, zi−1)ui−1(yi−1|zi−1)πi−1[h

i−2](zi−1)
∑

zi−1
ui−1(yi−1|zi−1)πi−1[hi−2](zi−1)

.

Let us define a cost function c : P(Z) × PW → R

c(πi, ui) :=
∑

yi,zi

ui(yi|zi)πi(zi) log
ui(yi|zi)

∑

z′
i
ui(yi|z′

i)πi(z′
i)

.

The following statements are true for almost all
(hi−1) for each i:

1 πi is the receiver’s estimate of Zi|h
i−1. Given hi−1

and a policy f as defined in Problem C,

πi[h
i−1](Zi) = P f(Zi|h

i−1)

Note that given hi−1, the posterior is independent
of the policy f .

2 (πi)
n
i=1 is a sufficient statistic for (hi−1)n

i=1. In
particular, the per-stage cost can be expressed as

If(Zi; Yi|h
i−1) = c(πi[h

i−1], ui)

and is independent of the policy f given the
action ui and the belief state πi.

3 (πi)
n
i=1 is a u-controlled Markov process

P f(πi+1|u
i, πi) = P (πi+1|ui, πi)

=
∑

yi

✶ (πi+1 = φ(πi, ui, yi))
∑

zi

ui(yi|zi)πi(zi)

Note that the transitions are independent of the
policy f .

Problem D

State space: πi ∈ P(Z)
Action space: ui ∈ PW

Policy: fi : P(Z) → PW

Transition law: P (πi|πi−1, ui−1)
Per-stage cost: c(πi, ui)

Dynamic Programming Algorithm

Jn+1(πn+1) = 0

Ji(πi) = min
ui∈PW

{

c(πi, ui) + Eui
πi

[Ji+1(φ)]
}

, i ≤ n

Binary Model Solution

Let us consider a class of symmetric policies:

q̄(Y n = yn|Xn = xn, S0 = s0)

:= q(Y n = yn|Xn = xn, S0 = s0)

1 If q ∈ QA then q ∈ QA. Since if (yn, xn, sn−1) is
a valid sample path through the FSM,
(yn, xn, sn−1) is also valid.

2 A policy q yields the same leakage as q̄, i.e.

L(q) = L(q̄), for q ∈ QA.

3 By the convexity of Problem A, we may optimize
over symmetric policies without loss of optimality.

QA,sym = {q ∈ QA : q = q̄}

4 For Problem D, at time 1, in belief state
π1(s1) = 1/2, the action space can be reduced to

PW,sym = {u ∈ PW : u = ū} .

Moreover, the following statements are true:
• Fixed Transitions: π1 = φ(π1, u1, y1), ∀y1, u1 ∈ PW,sym

• Optimal Single-Stage Cost: minu1∈PW,sym
c(π1, u1) = 1/2

• Optimal Single-Stage Action: u∗
1(y1|z1) = 1/2, if x1 = s0

5 Using forward induction, we apply the following
argument to J2, J3, . . . , Jn.

J1(π1) = min
u1∈PW







c(π1, u1) +
∑

π2

P (π2|π1, u1)J2(π2)







= min
u1∈PW,sym

c(π1, u1) + J2(π1)

=
n

2
.

In conclusion, for the binary model, the minimum
leakage rate is 1

nL(q∗) = 1/2, ∀n and is achievable
using Policy 3 (i.e. q∗ = q(3)).
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