Structure of Optimal Privacy-Preserving Policies in Smart-Metered Systems
with a Rechargeable Battery

Introduction

« Smart electricity meters deliver household
power usage data to utility providers.
However, despite the benefits these systems
offer, there is potentially a loss of privacy:.

- Time horizon: ¢ € {1,2,...,n}
Battery state: S; € S
Agoregate load: X, € X
Power drawn from the grid: Y; € YV
(Y; is reported to the utility provider)

Binary Smart Meters Model

Let X =Y =6 = {0,1}, (X;), IID Bern(1/2)
and P(Sy) = 1/2. We consider energy-efficient poli-
cies that satistying ;1 +Y; — X; € S.
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Figure 1: Finite-state-machine representation for binary model.

Consider the following policies and the sample paths
they yield starting at battery state 0.

« Pl gy (wile’, sy ™Y = 0y = @), Vi
« P20 g o) (yile, sy ) = 0(ys = 5i0), Vi
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Equivalent Problem Formulations

The battery policy effectively creates a noisy channel
from the user to the utility provider. Let (X;)!, be
a first-order Markov source, Z; = (X, S;_1), and

Wi(x,s)={yeY s+y—xeS}
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Figure 2: System Diagram. At each time i € {1,2,...,n}, the

battery policy defines a with channel with memory.

We define our problem using mutual information as

the measure of information leakage.
L(q) == ISy, X"; Y") for q € Q4
where @ 4 is the set of feasible battery policies
Q1= {q € PY'|A",S).
q(Y"| X", 5)) = Q? (i X', Sy YT,
QZ<W(X27 Si—1)|Xi7 Sé_la Yi_l) — 17 \V/Z} :

Problem A Find a policy ¢* € Q4 such that
L(g") = min 19(S), X", Y").
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o Problem A is a convex optimization problem.

® Without loss of optimality, in Problem A, the
optimization over Q4 can be replaced by

MDP Formulation and Algorithms

Let us define a statistic 7r; which is computed recur-
sively. Let m[0](z;) :== P(z1), and for ¢ > 1

milh' ~(2) = o(mia[h' ), w1, yi1) |
21 P(zilyi—1, zi—1)wi—1(yi—1|zie1)mi—1[h ) (zi1)

Zg—

2 Uit (Yi-1|zi-1)mi1 W2 (zi1)
Let us define a cost function ¢ : P(Z) x Py — R

C\T0j, W) ‘= U;\Y; |27 )T 24 lo :
i th) = g WRITED08 a2

The following statements are true for almost all

(h*~1) for each ¢:

©; is the receiver’s estimate of Z;|h'~!. Given h'™!

and a policy f as defined in Problem C,
Wz[hl_l](ZZ) — Pf(Z@VLZ_l)

Note that given h'~!. the posterior is independent
of the policy f.

® (m;), is a sufficient statistic for (h*"1)™,. In
particular, the per-stage cost can be expressed as

I'(Z; Y| h' Y = elm[h ™Y, u,)

and is independent of the policy f given the
action u; and the belief state ;.

© ()" is a u-controlled Markov process
Pl (i, ') = P(miga|ui, m)

= %: 1 (7Tz+1 — ¢(7Tz', U;, yz)) Zuz(yz\zz)m(zz)

Zq

Op = {q c Oy qz-(Y;\Zi, Yi_l) = q;(Y:| Z;, Yi_l), W} Note that the transitions are independent of the

Problem B Find a policy ¢* € Op such that
L(g") = min > I(Z; Y;[Y"™).
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Next, we recast the problem into a control frame-
work.

Problem C

State space:
Action space:
Policy:

f}_[é—l _ yi—l % Z/{i—l

fi : %i_l — PW
h' = (B~ U (yi, w;)
1(Z; ;| h=

Transition law:
Per-stage cost:

Pw ={uePY|Z) uW(Z)|Z) =1}

policy f.
Problem D
State space: m € P(Z)
Action space: u; € Pw
Policy: fi: P(Z) = Pw
Transition law: P(7|mi_1, ui_1)
Per-stage cost: c(7m;, u;)

Dynamic Programming Algorithm

Jn1(Tng1) =0
Ji(m;) = min {c(m,w) + EX [Jia(o)]}, i <n
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Binary Model Solution

Let us consider a class of symmetric policies:
qY"=y"| X" =2",5) = s
=q(Y" =y X" =2™, 5y = 3

olf g € Q4 then g € Q4. Since if (y", 2", s" 1) is
a valid sample path through the FSM,

- —=n —=n—1
(y",z", 3

) is also valid.

® A policy q yields the same leakage as ¢, i.e.
L<Q) — L(Q)a for q < QA-

© By the convexity of Problem A, we may optimize

over symmetric policies without loss of optimality:.

QA,Sym — {C] c QA L = (j}
o For Problem D, at time 1, in belief state
mi(s1) = 1/2, the action space can be reduced to

PW,Sym:{Uepwiu:ﬂ}.

Moreover, the following statements are true:

= Fixed Transitions: m = ¢(m1, w1, 1), Yy1, w1 € Pwsym

- Optimal Single-Stage Cost: miny,epy,,,,, c(m1, u1) = 1/2

« Optimal Single-Stage Action: ui(y1|z1) = 1/2, it 1 = s
o Using forward induction, we apply the following

argument to Jo, Js, ..., J,.

Ji(m1) = min {c(m, w1) + Y P(mo|my, uy) Jo(mo)

— u1EII71)1VVI}Sym C(Tl’l, ul) + J2(7T1)

|

In conclusion, for the binary model, the minimum
leakage rate is +L(g*) = 1/2, Vn and is achievable

using Policy 3 (i.e. ¢" = q(3)).
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