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Smart Meters empower smart grids
Fine grained consumption measurements
are needed for:

P> Time-of-use pricing

> Demand response
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Smart Meters empower smart grids
Fine grained consumption measurements
are needed for:

P> Time-of-use pricing

> Demand response

> ...
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European Data Protection Supervisor warns 'massive collection of personal data’ could
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What is the minimum information
leakage rate if consumers obfuscate
consumption using a rechargeable battery?

What are privacy-optimal
battery charging strategies?




Home Demand: X. EESTHENAV3 Consumption: Yy

Applicances Controller
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Home Demand: X [ESInERAVIEE
Applicances Controller

Battery
( State Sy)

Smart-meter privacy-(Li, Mahajan and Khisti)

Consumption: Y

Evesdropper/
Adversory




Home Demand: X;
Applicances

Energy conservation

Smart Meter
Controller

Battery
( State Sy)

St41 =S¢ +Ye — Xy,
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Evesdropper/
Adversory

St € 8 (Size of battery)




Home Demand: X [ESInERAVIEE
Applicances Controller

Battery
( State Sy)

Energy conservation  Siiq =S¢+ Ye — X4,

Consumption: Y

Evesdropper/
Adversory

St € 8 (Size of battery)

Randomized charging  q¢(ylxt, st,yt~'): Probability that the consumption Y; =y,
strategy given history of demand, battery charge, and consumption,
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Home Demand: X. EESTHENAVT Consumption: Yy
Applicances Controller

Battery
( State Sy)

Evesdropper/

Adversory

Energy conservation Sy 1 =S¢+ Yy —Xt, St € 8 (Size of battery)

Randomized charging  q¢(ylxt, st,yt~'): Probability that the consumption Y; =y,
strategy given history of demand, battery charge, and consumption,

Objective  Choose battery charging strategy q = {qi}t>1 to

1
minTlim —Iq(XT;YT) (mutual information rate)
— 00




Why is the problem non-trivial?

X=Y=8={0,1}, Px =[0.5, 0.5] (Binary model) Consv: Sy + Y — Xt €8
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Why is the problem non-trivial?
X=Y=8={0,1}, Px =[0.5, 0.5] (Binary model) Consv: Sy + Yy — X €8

Empty state S =0 Full state Sy =1
DXt:0:>Yt€{O,1} DXtZO:>Yt:O
DXt=1$Yt=1 DXt=1 ﬁYtE{O)]}
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Why is the problem non-trivial?

X=Y=8={0,1}, Px =[0.5, 0.5] (Binary model) Consv: Sy + Y — Xt €8

Empty state S =0 Full state Sy =1
DXt:0:>Yt€{O,1} DXtZO:>Yt:O
DXt:]:>Yt:] DXt:1 :>Y1;E{O)]}

Consider performance of memoryless policies

Deterministic Memoryless Policy

P PYX=0,S=0)=1[1 0; P(YIX=1,S=1)=[0 1]: Leakage =1 (.- Yy = Xy).
> P(YX=0,S=0)=[0 1;P(YX=1,S=1) =[1 0]: Leakage ~1 (- Yy =1—S,).
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Why is the problem non-trivial?
X=Y=8={0,1}, Px =[0.5, 0.5] (Binary model) Consv: Sy + Y — Xt €8

Empty state S =0 Full state Sy =1
DXt:0:>Yt€{O,1} DXtZO:>Yt:O
DXt:]:>Yt:] DXt:1 :>Y1;E{O)]}

Consider performance of memoryless policies

Deterministic Memoryless Policy

P PYX=0,S=0)=1[1 0; P(YIX=1,S=1)=[0 1]: Leakage =1 (.- Yy = Xy).
> P(YX=0,S=0)=[0 1;P(YX=1,S=1) =[1 0]: Leakage ~1 (- Yy =1—S,).

Randomized Memoryless Policy
D> P(YX=0,S=0)=1[0.5 05]; P(Y|X=1,S =1) =[0.5 0.5]: Leakage = 0.5.
B> Is this the best memoryless policy?
B> Is this the optimal policy?
P> How do we evaluate the performance of an arbitrary policy? Need P(XT,YT)?

Smart-meter privacy-(Li, Mahajan and Khisti)




Literature overview

Evaluate privacy of specific battery management policies
P> [Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

D> [Varodayan Khisti, 2011] Computing performance of battery conditioned
stochastic charging policies using BC|R algorithm.

D> [Tan Gunduz Poor, 2012] Generalized results of [Varodayan Khisti] to include
models with energy harvesting.

P> [Giulio Ginduz Poor, 2015] Bounds on performance of best-effort and hide-
and-store policies for infinite battery size.
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Dynamic programming decomposition to identify optimal policies
P> [Yao Venkitasubramanian, 2013] Dynamic program and computable inner and
upper bounds on privacy.

Smart-meter privacy-(Li, Mahajan and Khisti)




Literature overview

Evaluate privacy of specific battery management policies
P> [Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

D> [Varodayan Khisti, 2011] Computing performance of battery conditioned
stochastic charging policies using BC|R algorithm.

D> [Tan Gunduz Poor, 2012] Generalized results of [Varodayan Khisti] to include
models with energy harvesting.

P> [Giulio Ginduz Poor, 2015] Bounds on performance of best-effort and hide-
and-store policies for infinite battery size.

Dynamic programming decomposition to identify optimal policies
P> [Yao Venkitasubramanian, 2013] Dynamic program and computable inner and
upper bounds on privacy.

Many results restrict to the binary battery model

—,,
_——————
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Main results: Markovian demand

Structure of optimal strategies
Define belief state 7 (x,s) = P(X¢ = x, S¢ = s|[Yt 1)

Charging strategies of the form q¢(y¢|xt, st,7t¢) are optimal.
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Main results: Markovian demand

Structure of optimal strategies

Define belief state 7 (x,s) = P(X¢ = x, S¢ = s|[Yt 1)

Charging strategies of the form q¢(y¢|xt, st,7t¢) are optimal.
Dynamic programming decomposition

Let A denote the class of conditional distributions on Y given (X, 8).

Suppose there exists a ] € R and v: Px s — R that satisfies the following:

]*+v(7't):aig£{ an+Zrcxs (ylx, s)v(e (ﬂ,y,a))}

X8,y

Then,
B> J* is the minimum leakage rate

P> Let f*(7r) denote the arg min of the RHS and a* = f*(7).
Then, J* is achieved by the charging policy
q*(ylxt, st, ) = a*(ylx¢, s¢) (note a* depends on )
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Main results: Markovian demand

Ctriictiira nf Antimal ctrataaiac

B> Similar to DP for POMDP.
D> Per-step cost is concave rather than linear.
> However, v(m) is still concave.

Dynamic programming decomposition
Let A denote the class of conditional distributions on Y given (X, 8).

Suppose there exists a ] € R and v: Px s — R that satisfies the following:

{I(a;m Ly rr(x,sJa(mx,s)v(cp(vr,y,aJ)}

X)S)y

i) = i

Then,
P> J* is the minimum leakage rate

B> Let f*(7t) denote the arg min of the RHS and a* = *(7).
Then, J* is achieved by the charging policy
q*(ylxt, st, ) = a*(ylx¢, s¢) (note a* depends on )

Vny
2714
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Main results: i.i.d. demand

Solution of the dynamic program
J* = min I[(S — X;X)
0ePs

where X ~ Px and S ~ 0. Let 0* denote the arg min of the RHS.

Then, J* is the minimum leakage rate
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Main results: i.i.d. demand

Solution of the dynamic program
J* = min I[(S — X;X)
0ePs

where X ~ Px and S ~ 0. Let 0* denote the arg min of the RHS.

Then, J* is the minimum leakage rate

Optimal strategies

PxWOy+w)
Define b*(ylw) = > Px(x)er(s)

(xy8):x—s=w
0, otherwise

fyeXandy+wes

Then, J* is achieved by time-invariant action
qi (ylxt, s¢, ) = b*(ylsy —x¢) (note b* does not depend on 7)
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Salient features of the solution

I(S — X; X) is concave in Pg

J* and 6* may be computed using Blahut-Arimoto algorithm.

Optimal policy is stationary and memoryless
qi(ylxt, st) =b*(ylsy —x¢) (note b* does not depend on )

IFS¢ ~ 0% then Sy, ~0*and Sy L Yt

Support of consumptions

Even ifY O X, under the optimal policy the support of Py is X.

Structure of the solution

IF Px is symmetric (and unimodal), so is 0*.
For binary model, 6* = [0.5 0.5] is optimal!
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Example

Py ~ Bin(n, 0.5)

Corresponds to the situation when there are n devices where each device
is ON or OFF with equal probability.
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Example

Py ~ Bin(n, 0.5)

Corresponds to the situation when there are n devices where each device
is ON or OFF with equal probability.
Forn=6and X =Y =8 ={0,...,6}, we get

J*=0.1638

0*={0.0586,0.1332,0.1972,0.2220,0.1972,0.1332, 0.0586}
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Example

Leakage rate

Battery size

n==~6

123456 78 910111213141516171819°20
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Leakage rate

123456 78 910111213141516171819°20

Battery size
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Leakage rate

123456 78 910111213141516171819°20

Battery size
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Proof outlines




Proof outline for Markovian demand

Conceptual Let QA denote all admissible policies. For any policy q € Qa,

difficulty T
(S, XTYT) = 3 19(51, X5 Yelyt=)

t=1
The cost is additive, but per-step cost depends on P(Sq, X!, Y¢[Yt~1).
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Proof outline for Markovian demand

Conceptual Let QA denote all admissible policies. For any policy q € Qa,

difficulty . LI
I'(S1,XTYN) =3 T (Sy, X5 YY)

t=1
The cost is additive, but per-step cost depends on P(Sq, X!, Y¢[Yt~1).

Let Qg C Qa denote randomized charging policies of the form

qlyex®, syt 1) = q(yelxe, se,y* ). Then,
1. For any policy qq € Qa, there exists a policy qp € Qp such that

107, XTYT) > 177 (Sy, X5 YT)

Thus, we may restrict attention to charging policies in Qg.
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Proof outline for Markovian demand

Conceptual Let QA denote all admissible policies. For any policy q € Qa,

difficulty . LI
I'(S1,XTYN) =3 T (Sy, X5 YY)
t=1
The cost is additive, but per-step cost depends on P(Sq, X!, Y¢[Yt=1).

Let Qg C Qa denote randomized charging policies of the form
qlyelxt, sty ") = q(yelxe, s,y ). Then,
1. For any policy q, € Qa, there exists a policy qy € Qp such that

19 (S, X5 YT) = 197 (7, XT; YT)

Thus, we may restrict attention to charging policies in Qg.

2. For any policy qp € Qp,

-
1 (51, X5Y) = 3 177 (84, Xe; Vel V)
t=1
Thus, for policies in Qg, the cost is additive and the per-step cost
depends on P(S¢, X¢, Yi[Y* ).

9%
Smart-meter privacy-(Li, Mahajan and Khisti) I




Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process
[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Px s
Action Space: {a € Py|x,s such that energy conservation is satisfied.}
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Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process
[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Px s
Action Space: {a € Py|x,s such that energy conservation is satisfied.}

State C (%, 8) = P(Xg =%,S¢ =s | YH T =yt )

Dynamics : T = (7, Yt, a¢) Where @ is a non-linear flter.

Per-step cost: Iq (X¢, S¢; Yelyt=1) = I(ay; ), where
ac(ylx, s)
Z Tl ()2, d) a¢ (y|7~6, §)

(x,8)

I(ay, ) = Z (%, s)ag(ylx, s) log
(xys,y)
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Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process
[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Px s
Action Space: {a € Py|x,s such that energy conservation is satisfied.}

State L (%,8) = P(Xg =%, St =s | Y =yt7)

Dynamics : T = (7, Yt, a¢) Where @ is a non-linear flter.

Per-step cost: Iq (X¢, S¢; Yelyt=1) = I(ay; ), where
ac(ylx, s)
Z Tl ()2, d) (lt(y|7~(, §)

(x,8)

I(ay, ) = Z (%, s)ag(ylx, s) log
(xys,y)

The above structure implies the dynamic programming decomposition

= —_— ————————————

10w
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Proof outline for Markovian demand (cont.)

]*+v(7r):cig£{ a; 7 —I—ZTtXS (ylx, s)v(e (ﬂ,y,a))}

X,$,Y

‘\’_,—
State (%, 8) =P(Xe =x,S¢ =s | Y =yt
Dynamics : T = (7, Yt, a¢) Where @ is a non-linear flter.
Per-step cost: 1 (X¢, S¢; Yelyt=1) = I(ay; ), where
at(ylx,s)
I(a¢, 1) = e (%, 8)ae(ylx, s) lo — —
( ty t) (X;J)t( ) ) t(yl ) ) g Z Ttt(x,a)(lt(y|x,$)
7 (%,8)
—

The above structure implies the dynamic programming decomposition
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Proof outline for i.i.d. demand

Simplifying state space

Let Wt = St — Wt and E,t(W) = P(Wt = V\)|Yt_‘l = yt_1 ) Then,
L&) = > m(x,8).

(xy8):s—x=W

2. m(x,8) = Px(x)0(s), where 0 = Px x &,

Thus, & is equivalent to 7ty
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Proof outline for i.i.d. demand

Simplifying state space

Let Wt = St — Wt and at(W) = ]P)(Wt = W|Yt_‘l = yt_1 ) Then,
L&) = > m(x,8).

(xy8):s—x=W

2. m(x,8) = Px(x)0(s), where 0 = Px x &,

Thus, & is equivalent to 7ty

Simplifying action space

Let B ={b € Py s.t. energy consuv. is satisfied}. For a € A and 7 € Px s
> alylx,s)m(x,8)

) = (%,5):5—%=w

Define b(yw , a(ylx,s) = blyls —x).

(X, $)
(%,8):5—%=w

Then, 1. Invariant transitions: ¢(m,y,a) = @(m,y, a).
2. Lower cost: I(a;7) > I(a;m) = I(b; &).

Thus, we may restrict attention to B.
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Proof outline for i.i.d. demand

Simplified DP:

{ (b ) +Z£ b(ylw)v (E,y,b))}

Simplifying action space

Let B ={b € Py s.t. energy consuv. is satisfied}. For a € A and 7 € Px s

> a(ylx, s)m(x,s)

(X,8):8—x=w ~
D == :
efine b(y/w) 50 y a(ylx,s) =b(yls —x)

(%,8):5—%=w

Then, 1. Invariant transitions: ¢(m,y,a) = @(m,y, a).
2. Lower cost: I(a;7) > I(a;m) = I(b; &).

Thus, we may restrict attention to B.
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Proof outline for i.i.d. demand

Simplified DP:

" 4 v(E) = { (0:)+ 3 emblyhy (a,y,bn}

We show that J* = mingep, [(S — X;X) and
b* given in the Theorem satisfy the above DP.

R UdttatitC CrattSicionrts.  VAWA y U y U — (I_)\/L) y, (,1).
2. Lower cost: I(a;7) > I(a;m) = I(b; &).

Thus, we may restrict attention to B.
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Summary

Home Demand: X EESIMENAVET= S Consumption: Y,
Applicances Controller

Battery Evesdropper/
( State Sy) Adversory

Energy conservation Str1 =S¢ +Y—X¢, St € 8 (Size of battery)

Randomized charging  q¢(y/xt,st,y*~'): Probability that the consumption Y, =y,
strategy given history of demand, battery charge, and consumption,

Objective Choose battery charging strategy q = {q¢}i>1 to

1
min _lim —Iq(XT;YT) (mutual information rate)
T—oo T
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Summary

Main results: Markovian demand

Ctrictiira nf antimal ctrataaiac

P> Similar to DP for POMDP.
D> Per-step cost is concave rather than linear.
B> However, v(n) is still concave.

Dynamic programming decomposition
Let A denote the class of conditional distributions on Y given (X, §).

Suppose there exists a ] € R and v: Px s — R that satisfies the following:
p i) = ok i I+ T nlxsialylx sile (mya) |

Then,
P> J* is the minimum leakage rate

D Let f*(7t) denote the arg min of the RHS and a* = f*(7).
Then, J* is achieved by the charging policy
q*(ylxe, st, ™) = a*(ylxi,s¢) (note a* depends on 7;)
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Summary

' M.ain results: i.i.d. d.emand
1

Solution of the dynamic program
¥ := min I(S — X; X)
0ePs

where X ~ Px and S ~ 6. Let 0* denote the arg min of the RHS.

Then, J* is the minimum leakage rate

Optimal strategies

Px(le"ly +w)
Define b*(ylw) = D> Px(x)ex(s)

(x,8):x—s=w

0, otherwise

fyeXandy+wes

Then, J* is achieved by time-invariant action
qi(ylxt, st, ) = b*(ylst —x¢) (note b* does not depend on 7ty)

1 smart-meter privacy-(Li, Mahajan and Khisti)
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Summary

Example

Leakage rate

1234567 8910111213141516171813°20

Battery size

1
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Conclusion

Dynamic programming characterization of optimal privacy in smart meters
|dentify structure of optimal strategies

For i.i.d. demand, identify optimal charging strategies and a single letter
characterization of optimal leakage rate.
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Conclusion

Dynamic programming characterization of optimal privacy in smart meters
|dentify structure of optimal strategies
For i.i.d. demand, identify optimal charging strategies and a single letter
characterization of optimal leakage rate.

Remark on modeling assumptions
The results generalize to higher order Markov demands
The results generalize to continuous state spaces

The results are applicable if the demand is modeled as a deterministic
process + noise, where the noise is Markov ori.i.d.
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Conclusion

Dynamic programming characterization of optimal privacy in smart meters
|dentify structure of optimal strategies
For i.i.d. demand, identify optimal charging strategies and a single letter
characterization of optimal leakage rate.

Remark on modeling assumptions
The results generalize to higher order Markov demands
The results generalize to continuous state spaces
The results are applicable if the demand is modeled as a deterministic

process + noise, where the noise is Markov ori.i.d.

Future directions

Optimal leakage rate in the presence of local energy harvesting devicesgs,
=%
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