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Time-of-use pricing

Demand response

. . .



What is the minimum information

leakage rate if consumers obfuscate

consumption using a rechargeable battery?

What are privacy-optimal battery charging strategies?
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Energy conservation St+1 = St + Yt − Xt, St ∈ 𝒮 (Size of battery)
Randomized charging strategy qt(yt | xt, st, yt−1): Choose consumption given history . . .

Objective Choose battery charging strategy 𝐪 = {qt}t≥1 to

min lim
T→∞

1
T I

𝐪(XT; YT) (mutual information rate)
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Deterministic Memoryless Policy
P(Y|X = 0, S = 0) = [1 0]; P(Y|X = 1, S = 1) = [0 1]: Leakage = 1 (∵ Yt = Xt).

P(Y|X = 0, S = 0) = [0 1]; P(Y|X = 1, S = 1) = [1 0]: Leakage ≈ 1 (∵ Yt = 1 − St).

Randomized Memoryless Policy
P(Y|X = 0, S = 0) = [0.5 0.5]; P(Y|X = 1, S = 1) = [0.5 0.5]: Leakage = 0.5.
Is this the best memoryless policy?

Is this the optimal policy?

How do we evaluate the performance of an arbitrary policy? Need ℙ(XT, YT)?
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Literature overview

Evaluate privacy of specific battery management policies
[Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

[Varodayan Khisti, 2011] Computing performance of battery conditioned

stochastic charging policies using BCJR algorithm.

[Tan Gündüz Poor, 2012] Generalized results of [Varodayan Khisti] to

include models with energy harvesting.

[Giulio Gündüz Poor, 2015] Bounds on performance of best-effort and

hide-and-store policies for infinite battery size.
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[Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

[Varodayan Khisti, 2011] Computing performance of battery conditioned

stochastic charging policies using BCJR algorithm.

[Tan Gündüz Poor, 2012] Generalized results of [Varodayan Khisti] to

include models with energy harvesting.

[Giulio Gündüz Poor, 2015] Bounds on performance of best-effort and

hide-and-store policies for infinite battery size.

Dynamic programming decomposition to identify optimal policies
[Yao Venkitasubramanian, 2013] Dynamic program, computable inner and upper bounds.

Li Kshiti Mahajan, 2016 Dynamic program, closed form optimal strategy for i.i.d. case.
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Let f∗(π) denote the arg min of the RHS and a∗ = f∗(π).
Then, J∗ is achieved by the charging policy

q∗(y|xt, st, πt) = a∗(y|xt, st) (note a∗ depends on πt)

Inspired by the approach used for capacity of Markov channels

with feedback (Goldsmith Varaiya 1996, Tatikonda Mitter 2009,

Permuter et al 2008)

The DP is similar to the DP for POMDPs but the per-step cost

is concave rather than linear.

v(π) is concave. So, computational approaches for POMDPs work.
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[LKM] Main results: i.i.d. demand
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J∗ ∶= min
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I(S − X; X)
where X ∼ PX and S ∼ θ. Let θ∗ denote the arg min of the RHS.

Then, J∗ is the minimum leakage rate
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.
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[LKM] Salient features of the solution

I(S − X; X) is concave in 𝒫𝒮

J∗ and θ∗ may be computed using Blahut-Arimoto algorithm.

Optimal policy is stationary and memoryless

q∗t(y|xt, st) = b∗(y|xt, st) (note b∗ does not depend on πt)

If St ∼ θ∗, then St+1 ∼ θ∗ and St+1 ⊥ Yt.

Support of consumptions

Even if 𝒴 ⊃ 𝒳, under the optimal policy the support of PY is 𝒳.
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This paper: Periodic Input Distribution

Periodic input Xodd ∼ Q1(⋅) and Xeven ∼ Q2(⋅).
We assume that the input cycles between two distributions (each of length one).

Results easily generalize to a larger cycle or staying at each distribution for a different

amount of time.

Conceptual diff. Same as before. The leakage rate is a multi-letter mutual information expression that

depends on ℙ(XT, YT).
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bounds. Compare them with non-achievable lower bounds.
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Achievable scheme and lower bound

Achievable scheme Arbitrarily restrict attention to periodic policies:

For odd time: q1(yt|xt, st)
For even time: q2(yt|xt, st)

Pick q1 and q2 to ensure invariance condition: St+1 ⊥ Yt.
This induces ℙ(St) = PS1

for odd times and PS2
for even times.

L∗ ≤ L∞(𝐪) = 12I(S1, X1; X1) + 12I(S2, X2; X2).
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Achievable scheme Arbitrarily restrict attention to periodic policies:

For odd time: q1(yt|xt, st)
For even time: q2(yt|xt, st)

Pick q1 and q2 to ensure invariance condition: St+1 ⊥ Yt.
This induces ℙ(St) = PS1

for odd times and PS2
for even times.

L∗ ≤ L∞(𝐪) = 12I(S1, X1; X1) + 12I(S2, X2; X2).

Lower bound L∗ ≥ 1
2 min

PS
1

I(S1 − X1; X1) + 12 min
PS

2

I(S2 − X2; X2)

Same as assuming that the input distribution was Q1 for first T/2 time steps

and Q2 as last T/2 time steps.
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Numerical Results

Binary Model 𝒳 = 𝒴 = {0, 1}. Q1 = [0.7 0.3], Q2 = [0.3 0.7].
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The performance of the proposed policy

numerically matches that of the lower bound.

Could we show optimality?
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This paper: Periodic Input Distribution

Periodic input Xodd ∼ Q1(⋅) and Xeven ∼ Q2(⋅).
We assume that the input cycles between two distributions (each of length one).

Results easily generalize to a larger cycle or staying at each distribution for a different

amount of time.
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depends on ℙ(XT, YT).
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Achievable scheme and lower bound

Achievable scheme Arbitrarily restrict attention to periodic policies:

For odd time: q1(yt|xt, st)
For even time: q2(yt|xt, st)

Pick q1 and q2 to ensure invariance condition: St+1 ⊥ Yt.
This induces ℙ(St) = PS1

for odd times and PS2
for even times.

L∗ ≤ L∞(𝐪) = 12I(S1, X1; X1) + 12I(S2, X2; X2).

Lower bound L∗ ≥ 1
2 min

PS
1

I(S1 − X1; X1) + 12 min
PS

2

I(S2 − X2; X2)

Same as assuming that the input distribution was Q1 for first T/2 time steps

and Q2 as last T/2 time steps.
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T I
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[LKM] Main results: Markovian demand

Structure of optimal strategies
Define belief state πt(x, s) = ℙ(Xt = x, St = s|Yt−1)
Charging strategies of the form qt(yt|xt, st, πt) are optimal.

Dynamic programming decomposition
Let 𝒜 denote the class of conditional distributions on 𝒴 given (𝒳, 𝒮).
Suppose there exists a J ∈ ℝ and v∶ 𝒫X,S → ℝ that satisfies the following:

J∗ + v(π) = inf
a∈𝒜{I(a; π) + ∑

x,s,y

π(x, s)a(y|x, s)v(φ(π, y, a))}
Then,

J∗ is the minimum leakage rate

Let f∗(π) denote the arg min of the RHS and a∗ = f∗(π).
Then, J∗ is achieved by the charging policy

q∗(y|xt, st, πt) = a∗(y|xt, st) (note a∗ depends on πt)
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[LKM] Main results: i.i.d. demand

Solution of the dynamic program

J∗ ∶= min
θ∈𝒫S

I(S − X; X)
where X ∼ PX and S ∼ θ. Let θ∗ denote the arg min of the RHS.

Then, J∗ is the minimum leakage rate

Optimal strategies

Define b∗(y|x, s) = ⎧⎨⎩
PX(y)θ∗(y + x − s)

Normalize
if y ∈ 𝒳 and y is feasible

0, otherwise
.

Then, J∗ is achieved by time-invariant action

q∗t(y|xt, st, πt) = b∗(y|xt, st) (note b∗ does not depend on πt)
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Numerical Results
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