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Smart Meters empower smart grids

Fine grained consumption measurements are needed for:
P> Time-of-use pricing
> Demand response
> ...
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Smart Meters empower smart grids

Fine grained consumption measurements are needed for:
P> Time-of-use pricing
B> Demand response
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What is the minimum information
leakage rate if consumers obfuscate
consumption using a rechargeable battery?

What are privacy-optimal battery charging strategies?




Home Demand: X [IESRENAY-4-l Consumption: Y; Power
Applicances Controller Grid
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Home Demand: X [IESRENAY-4-l Consumption: Y; Power
Applicances Controller Grid

Battery
( State Sy)

Evesdropper/

Adversory

Energy conservation S¢.; =S¢+ Y —X¢, St € 8 (Size of battery)

Randomized charging strategy q¢(y¢|xt,st,yt='): Choose consumption given history . ..

Objective Choose battery charging strategy q = {q¢}t>1 to

1
min lim —Iq

(XT:YT)  (mutual information rate)
Tooo |
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Why is the problem non-trivial?

X=Y=8={0,1}, Px =1[0.5, 0.5] (Binary model)
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Why is the problem non-trivial?
X=Y=8={0,1}, Px =1[0.5, 0.5] (Binary model)

Empty state Sy =0
B X;=0 = Y, €{0,1}
>Xt:] ﬁ Yt:]
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Why is the problem non-trivial?

X=Y=8={0,1}, Px =1[0.5, 0.5] (Binary model) Consv: Sy + Y¢ —

Empty state Sy =0 Full state Sy = 1
DXt:()#YtG{O)]} DXt:()#Yt:O
DXt:] :>Yt:] DXt:]:>YtE{O)]}

Consider performance of memoryless policies

Deterministic Memoryless Policy

B PYX=0,S=0)=1[ 0;P(YIX=1,S=1)=[0 1]: Leakage =1 (" Y¢ = Xy).
B PYIX=0,S=0)=1[0 1; P(YIX=1,S=1)=1[1 0]: Leakage ~1 (- Yy =1— Sy).
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Why is the problem non-trivial?

X=Y=8={0,1}, Px =1[0.5, 0.5] (Binary model) Consv: Sy + Y¢ —

Empty state Sy =0 Full state Sy = 1
DXt:()ﬁYtE{O,]} DXt:()#Yt:O
DXt:1 :>Yt:1 DXt:] :>Yt€{o,1}

Consider performance of memoryless policies
Deterministic Memoryless Policy
B PYX=0,S=0)=1[ 0; P(YIX=1,S=1) =[0 1]: Leakage =1 (-~ Yy = Xy).
P PYX=0,S=0)=1[0 1;P(YIX=1,S=1) =[1 0]: Leakage ~ 1 (- Yy =1—S5y).

Randomized Memoryless Policy
B> P(YIX=0,S=0)=1[0.5 0.5]; P(YIX=1,S=1) =[0.5 0.5]: Leakage = 0.5.
B> |s this the best memoryless policy?
P> Is this the optimal policy?
D> How do we evaluate the performance of an arbitrary policy? Need P(XT, YT)?
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Literature overview

Evaluate privacy of specific battery management policies
P> [Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

P> [Varodayan Khisti, 2011] Computing performance of battery conditioned
stochastic charging policies using BC|R algorithm.

B> [Tan GUnduz Poor, 2012] Generalized results of [Varodayan Khisti] to
include models with energy harvesting.

B> [Giulio Gundlz Poor, 2015] Bounds on performance of best-effort and
hide-and-store policies for infinite battery size.
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Literature overview

Evaluate privacy of specific battery management policies
P> [Kalogridis et al., 2010] Monte-Carlo evaluation of best-effort policy

B> [Varodayan Khisti, 2011] Computing performance of battery conditioned
stochastic charging policies using BC|R algorithm.

P> [Tan Gunduz Poor, 2012] Generalized results of [Varodayan Khisti] to
include models with energy harvesting.

P [Giulio Ginduz Poor, 2015] Bounds on performance of best-effort and
hide-and-store policies for infinite battery size.

Dynamic programming decomposition to identify optimal policies
P> [Yao Venkitasubramanian, 2013] Dynamic program, computable inner and upper bounds.

B> Li Kshiti Mahajan, 2016 Dynamic program, closed form optimal strategy for i.i.d. case.
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[LKM] Main results: Markovian demand

Structure of optimal strategies
D> Define belief state mm¢(x,s) = P(X¢ = x,S¢ = s|[Yt 1)

> Charging strategies of the form g (y¢|x¢, s¢, 7t¢ ) are optimal.
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[LKM] Main results: Markovian demand

Structure of optimal strategies
> Define belief state mm(x,s) = P(X¢ = x,S¢ = s|[Yt 1)

> Charging strategies of the form g (y¢|x, s¢, 7t¢) are optimal.

Dynamic programming decomposition
Let A denote the class of conditional distributions on Y given (X, 8).

Suppose there exists a ] € R and v: Px s — R that satisfies the following:

I*+v(7r):aigi{ a; 7 +Z¢tx, a(ylx, s)v(e (ﬂ,y,a))}

X,8,Y

Then,
B> J* is the minimum leakage rate

D> Let *(7t) denote the arg min of the RHS and a* = *(7).
Then, J* is achieved by the charging policy

q*(ylxe, se, ) = a*(ylxe, s¢) (note a* depends on 7y)
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B> Inspired by the approach used for capacity of Markov channels
with feedback (Goldsmith Varaiya 1996, Tatikonda Mitter 2009,
Permuter et al 2008)

B> The DP is similar to the DP for POMDPs but the per-step cost
is concave rather than linear.

P> v(m) is concave. So, computational approaches for POMDPs work.

vl = inf {itam) + 3 i shalyls sl u,a)) |

X,8,Y

Then,
P> J* is the minimum leakage rate

B> Let *(71) denote the arg min of the RHS and a* = *(7).
Then, J* is achieved by the charging policy
q*(ylxe, se, ) = a*(ylxe, s¢) (note a* depends on 7y)
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[LKM] Main results: i.i.d. demand

Solution of the dynamic program

* e in I _ VY.
J iy (S =X X)

where X ~ Px and S ~ 6. Let 0* denote the arg min of the RHS.

Then, J* is the minimum leakage rate
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[LKM] Main results: i.i.d. demand

Solution of the dynamic program

* e in I _ VY.
J iy (S =X X)

where X ~ Px and S ~ 6. Let 0* denote the arg min of the RHS.

Then, J* is the minimum leakage rate

Optimal strategies

Px(y)0*(y +x —s)
Define b*(ylx, s) = Normalize
0, otherwise

ify € X and y is feasible

Then, J* is achieved by time-invariant action
qi (ylx¢, s, ) = b*(ylx¢, s¢) (note b* does not depend on 7;)
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[LKM] Salient features of the solution

I(S — X;X) is concave in Pg

J* and 6* may be computed using Blahut-Arimoto algorithm.

Optimal policy is stationary and memoryless

q%(ylxt, st) = b*(ylx¢,s¢) (note b* does not depend on 7r)

IFS¢ ~ 0% then Sy 7 ~0%and Sy 7 L Yt

Support of consumptions

Even if Y D X, under the optimal policy the support of Py is X.
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This paper: Periodic Input Distribution

Periodic input  Xggq ~ Q1(+) and Xeyen ~ Q2(+).

We assume that the input cycles between two distributions (each of length one).

Results easily generalize to a larger cycle or staying at each distribution for a different
amount of time.

Conceptual diff. Same as before. The leakage rate is a multi-letter mutual information expression that
depends on P(XT, YT).
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This paper: Periodic Input Distribution

Periodic input  Xggq ~ Q1(+) and Xeyen ~ Q2(+).

We assume that the input cycles between two distributions (each of length one).
Results easily generalize to a larger cycle or staying at each distribution for a different
amount of time.

Conceptual diff. Same as before. The leakage rate is a multi-letter mutual information expression that
depends on P(XT, YT).

Solution idea We can use the qualitative properties of the i.i.d. solution to get achievable upper
bounds. Compare them with non-achievable lower bounds.
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Achievable scheme and lower bound

Achievable scheme Arbitrarily restrict attention to periodic policies:
P> For odd time: g1 (y¢/xt, St)
B> For even time: q2(y+/xt, St)

Pick g7 and g3 to ensure invariance condition: Sy L Y".
This induces P(S;) = Ps, for odd times and P, for even times.

1 1
L* < I—oo(q) = 21(31)X1;X1) + ZI(SZ)XZ;XZ)-
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Achievable scheme and lower bound

Achievable scheme Arbitrarily restrict attention to periodic policies:

Lower bound

&> For odd time: q1 (y¢/xt, St)
P> For even time: q2(y+|xt, St)

Pick g1 and q> to ensure invariance condition: Sy, 7 L Y.
This induces P(S;) = Ps, for odd times and P, for even times.

1 1
L* < Loo(q) = 21(31)X1;X1) + ZI(SZ)XZ;XZ)-

1 1
[*> —minI(S; — X1;X7) + = minI(S; — X3; X3)
Ps, 2 Ps,

Same as assuming that the input distribution was Q; for Arst T/2 time steps
and Q; as last T/2 time steps.
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Numerical Results

Binary Model X =Y ={0,1}. Q; =[0.70.3], Q2 = [0.30.7].

— lower bound
— achievable policy

Leakage rate

3 4
Battery size
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Numerical Results

Ternary Model X=Y=1{0,1,2}. Q; =1[0.330.33 0.33], Q2 = [0.25 0.5 0.25].

— lower bound
— achievable policy

Leakage rate

4
Battery size
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Numerical Results

Ternary Mc

0.5

0.4

0.3

Leakage rate

0.2

0.1

I

The performance of the proposed policy
numerically matches that of the lower bound.

Could we show optimality?

wer bound
evable policy

_J

4
Battery size
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Home Demand: X IS ERAEI I onsumption: Yy Power
Applicances Controller Grid

Battery Evesdropper/
( State Sy) Adversory

Energy conservation S.,; =S;+Y—X;, S; € 8 (Size of battery)

Randomized charging strategy q:(y«|xt,st,y*="): Choose consumption given history . . .

Objective Choose battery charging strategy q = {qt}t>1 to

1
min _lim —Iq(XT;YT) (mutual information rate)
Tooo T
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rmKM] Main results: Markovian demand

Structure of optimal strategies
& Define belief state ¢ (x,s) = P(X; = x,S¢ = s|]Y* 1)

B> Charging strategies of the form g (y¢|x, st,7t¢) are optimal.

Dynamic programming decomposition
Let A denote the class of conditional distributions on Y given (X, 8).

Suppose there exists a ] € R and v: Px s — R that satisfies the following:

{I(a;m + Yy n(x,s)a(mx,s)v(cpm,y,a))}

X)S,y

i) = i

Then,
B> J* is the minimum leakage rate

B> Let f*(7t) denote the arg min of the RHS and a* = f*(7).
Then, J* is achieved by the charging policy
q*(ylxe, s¢, ) = a*(ylxe, s¢)  (note a* depends on 7r)
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Summary

Optimal strategies

KM] Mam results

Solution of the dynamic program

||d d.emand

J¥ = min I(S — X; X)

0ePs

where X ~ Px and S ~ 0. Let 6* denote the arg min of the RHS.

Then, J* is the minimum leakage rate

Define b*(y|x,s) = {

Px(y)0*(y +x —s)

ify € X and y is feasible

0,

Normalize
otherwise

Then, J* is achieved by time-invariant action
qi(ylxt, s¢, 1) = b*(ylx¢, s¢) (note b* does not depend on 7t;)

R
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Periodic input

Conceptual diff.

Solution idea

This paper: Perlodlc Input Dlstrlbu ion

Smart-meter nrivacv—(linn kKhicti and Mahaian)

E
1

Xodd ~ Ql () and Xeven ~ QZ()

We assume that the input cycles between two distributions (each of length one).

Results easily generalize to a larger cycle or staying at each distribution for a different
amount of time.

Same as before. The leakage rate is a multi-letter mutual information expression that
depends on P(XT, YT).

We can use the qualitative properties of the i.i.d. solution to get achievable upper
bounds. Compare them with non-achievable lower bounds.




Summary

Achievable scheme

Lower bound

S pT

chlevable scheme and lower bound

Arbitrarily restrict attention to periodic policies:
&> For odd time: q1(y¢|xt, st)
> For even time: q2(ytlxt, St)

Pick g1 and q; to ensure invariance condition: S¢,y L Y*.
This induces P(S¢) = Ps, for odd times and Ps, for even times.

1 1
[*<Lo(q) = 21(51,X1;X1) + 51(52>X2;Xz)-
1 1 .
L*> =minI(S7 — X7;X7) + s minI(S2 — X2; X3)

2 s] 2 Psz

Same as assuming that the input distribution was Q; for frst T/2 time steps
and Q; as last T/2 time steps.

r..1.. [ J..... [ ] _.
e *11




Summary

E—
I
A —

—D

'*

S T

Leakage rate

mumerical Results

Binary Model

0.5

0.4

0.3

0.2

0.1

X=9={01} Q

(0.7 0.3], Q2 =[0.3 0.7].

i |
D |
i |
B

— lower bound
— achievable policy

4 5 6
Battery size




Summary

E—
I
A —

—D

'*

S T

Leakage rate

mumerical Results

Binary Model

0.5

0.4

0.3

0.2

0.1

X=9={01} Q

(0.7 0.3], Q2 =[0.3 0.7].

i |
D |
i |
B

— lower bound
— achievable policy

4 5 6
Battery size




