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Abstract

We consider a communication system in which the outputs of a Markov source
are encoded and decoded in real-time by a finite memory receiver, and the dis-
tortion measure does not tolerate delays. The objective is to choose designs, i.e.
real-time encoding, decoding and memory update strategies that minimize a total
expected distortion measure. This is a dynamic team problem with non-classical
information structure [7]. We use the structural results of [4] to develop a sequen-
tial decomposition for the finite and infinite horizon problems. Thus, we obtain a
systematic methodology for the determination of jointly optimal encoding decoding
and memory update strategies for real-time point-to-point communication.

Keywords: Real-time communication, finite-delay communication, zero-delay communi-
cation, joint source-channel coding, Markov decision theory

1 Introduction

Real-time communication problems arise in controlled decentralized systems where in-
formation must be exchanged between various nodes of the system and decisions based
on the communicated information must be made in real-time. Such systems include
QoS (delay) requirements and distributed routing in wired, wireless and sensor networks,
traffic flow control in transportation networks, resource allocation and consensus in par-
tially synchronous systems and decentralized resource allocation problems in economic
systems.

We consider point-to-point real-time communication system as shown in Figure 1,
which is the simplest system of this class. A better understanding of this case is needed
before generalizing to multi-terminal systems. In the system under consideration, the
outputs of a Markov source are encoded in real-time into a sequence of random variables.
This sequence is transmitted through a discrete memoryless channel (DMC) to a receiver
with finite memory. At each time instant t, using the current channel output and its
current memory content, the receiver updates its memory and estimates the source output
at t. The system designer has to choose real-time encoding, decoding and memory update
rules that minimize an expected total distortion.

Real-time or finite-delay communication problems have been considered in the past.
For an extensive literature survey we refer the reader to [4, 3]. Here we will only refer
to the papers most relevant to our philosophy and approach. Real-time encoding and
decoding with limited memory make the standard Information theoretic techniques in-
appropriate for this problem. Most of the results of Information theory are based on
some form of the law of large numbers, which becomes applicable only when we consider
sufficiently long sequences. This problem does not have enough structure to use encoding
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Figure 1: Real-Time Communication System

and decoding of typical sequences. Hence, we consider a decision theoretic approach to
the problem.

Decision theoretic approaches to real-time communication similar in spirit to ours have
appeared in [11, 1, 5, 2, 4]. Real-time communication problems for noiseless channel were
studied in [11, 1]. Real-time encoding decoding problems for a noisy channel and noise-
less feedback were studied in [5, 2]. These problems share a common feature that at
every stage the encoder has perfect knowledge of the information available to the de-
coder/receiver. The case of a noisy channel and no feedback does not share this feature.
Real-time communication through noisy channels and no feedback was investigated in [4]
and structural results for optimal real-time encoding and decoding strategies were ob-
tained. However, to the best of our knowledge, the problem of obtaining jointly optimal
real-time encoders, decoders and memory update rules has not been considered by anyone
so far. In this paper we present a methodology for this joint optimization. We present
the key ideas and fundamental results here, and refer the reader to [3] for details and
extensions.

The remainder of the paper is organized as follows. In Section 2 we formally define
the problem, in Section 3 we restate the structural results of [4], in Section 4 we present
the joint optimization of encoder, decoder and memory update. In Sections 5 and 6 we
consider the finite and infinite horizon time homogeneous cases. We discuss some salient
points in Section 7 and conclude in Section 8.

Notation: When using English letters to represent a variable, we use the standard
notation of using uppercase letters (X, Y, Z) for denoting random variables and lowercase
letters for denoting their realization (x, y, z). While representing a function of random
variables as a random variable (PM , PY,M), we use a tilde above the variable to denote

its realization (P̃M , P̃Y,M). When using Greek letters to represent a random variable
(π, ϕ), we use a tilde above the variable to denote its representation (π̃, ϕ̃). We also
use the standard short-hand notation of xt

s to represent the sequence xs, . . . , xt , xt
1 is

abbreviated to xt and similar notation for random variables and functions.

2 Problem Formulation

We now give a formal description of the problem under consideration. Consider a discrete
time communication system shown in Figure 1. A first order Markov source produces a
random sequence X1, . . . , XT . For simplicity of exposition we assume that Xt belongs to
a finite alphabet X , { 1, . . . , |X | }.

At each stage t, the encoder can transmit a symbol Zt taking values in a finite alphabet
Z , { 1, . . . , |Z| }. This encoded symbol must be generated in real-time, i.e.,

Zt = ct(X1, . . . , Xt), t = 1, . . . , T, (1)



and transmitted through a |Z|-input |Y|-output discrete memoryless channel producing
the sequence {Y1, . . . , YT }, with each Yt belonging to an alphabet Y , { 1, . . . , |Y| }.
The transition probabilities of the channel is given by

Pr
(
yt

∣∣ xt, zt, yt−1
)

= Pr (yt | zt) = Pt(yt, zt). (2)

At the receiver, the most that could be accessible at stage t is the subsequence Y1, . . . , Yt.
However, we assume that the receiver has a memory of log2|M| bits. So, after some
time, all the past observations can not be stored and the receiver must selectively shed
information. We model this by assuming that the contents of the memory belong to a
finite alphabet M , { 1, . . . , |M| }. The memory is arbitrarily initialized with M0 = 1
and then updated at each stage according to the rule

Mt = lt(Yt,Mt−1), t = 1, . . . , T − 1. (3)

The objective of the decoder is to generate an estimate of the source output in real-
time. This estimate X̂t has to be generated from the present channel output Yt and the
memory contents Mt−1, by some decoding rule, i.e.,

X̂t = gt(Yt,Mt−1), t = 1, . . . , T. (4)

The performance of the system is defined by way of a sequence of distortion functions.
For each t, ρt : X × X → [0,∞). is given. Then, ρt(Xt, X̂t) measures the distortion at
stage t.

A choice (c, g, l) of decision rules for all stages is called a design, where c , (c1, . . . , cT ),
g , (g1, . . . , gT ) and l , (l1, . . . , lT−1). The performance of a design is quantified by the
expected distortion under that design, which is given by

J (c, g, l) , E

{
T∑

t=1

ρt(Xt, X̂t)

∣∣∣∣∣ c, g, l
}
. (5)

The optimization problem that we consider is as follows:

Problem 1. Assume that the encoder and the receiver know the statistics of the source
(i.e. PMF of X1 and the transition probabilities PXt+1|Xt

), the channel transition matrix
Pt, the distortion function ρt(·, ·) and a time horizon T . Choose a design (c∗, g∗, l∗) that
is optimal with respect to the performance criterion of (5), i.e.,

J (c∗, g∗, l∗) = J ∗ , min
c∈C T

g∈G T

l∈L T−1

J (c, g, l), (6)

where C T , C1 × · · · × CT , where Ct is the family of functions from X t → Z, G T ,

G ×· · ·×G (T -times), where G is the family of functions from Y×M → X and L T−1 ,

L × · · · × L ((T − 1)-times), where L is the family of functions from Y ×M → M.

The problem belongs to the class of decentralized dynamic team problems with non-
classical information structure. Such problems are difficult to solve as they are non-
convex functional optimization problems. We can view the problem as a sequential
stochastic optimization problem [8, 9] by a fictitious partitioning of stage t into three



parts. The encoder transmits at t+, the decoder makes a decision at (t + 1

2
) and the

memory is updated at (t + 1)−. Now we have a stochastic optimization problem with a
horizon of 3T where the decision makers can be ordered in advance, thus the problem
is sequential. Witsenhausen [8] presented a general framework to work with sequential
stochastic optimization problems by converting them into standard form. The solution
methodology presented therein is applicable only to finite horizon problems and can not
be extended to infinite horizon problems. We exploit the structural results of [4] to
obtain a solution methodology which can be extended to infinite horizon problems. For
completeness of presentation we summarize the structural results of [4] next.

3 Structural Results

Definition 1. Let PMt
be the encoder’s belief about the memory contents of the receiver,

i.e.,
PMt

(m) , Pr
(
Mt = m

∣∣X t, Zt, ct, lt
)
. (7)

For a particular realization xt and an arbitrary (but fixed) choice of ct, lt, the realization

of PMt
denoted by P̃Mt

, is a PMF on Mt and belongs to PM, the space of PMFs on M. If
X t is random vector and ct, lt are arbitrary (but fixed) functions, then PMt

is a random
vector belonging to PM.

Theorem 1 (Structure of Optimal Encoder). Consider the problem of minimizing the
expected distortion given by (5) for any arbitrary (but fixed) decoder g and memory update
l. Then, without loss in optimality, one can restrict attention to encoding rules of the
form

Zt = ct(Xt, PMt−1
), t = 2, . . . , T. (8)

Theorem 2 (Structure of Optimal Decoder). Consider the problem of minimizing the
expected distortion given by (5) for any arbitrary (but fixed) encoder c and memory update
rule l. Then, the design of an optimal decoder is a filtering problem and an optimal
decoding rule g∗ is given by

x̂t = g∗t (yt,mt−1) = τt
(
ξt(yt,mt−1)

)
, (9)

where

ξt(y,m)(x) = Pr (Xt = x |Yt = y,Mt−1 = m) , (10)

and

τt(ξt) = arg min
x̂

∑

x∈X

ρt(x, x̂)ξt(x). (11)

See [4] for a proof of these theorems.

3.1 Implication of Structural Results

The structural results simplify the problem as follows:

(i) Theorem 1 implies that at each stage t, without loss in optimality, we can restrict
attention to encoders belonging to CS, the family of functions from X × PM to
Z. Thus, at each stage, we can restrict to optimizing over a fixed (rather than
time-varying) domain.



(ii) Theorem 2 implies that the structure of an optimal decoders is a deterministic
function of ρt, the distortion measure at time t and ξt, the conditional PMF at
time t, which in turn depends only on the choice of decision rules ct and lt−1. Thus,
an optimal decoder at time t can be written as g∗t = g∗t (c

t, lt−1), implying that an
optimal decoder obtained by Theorem 2 can be expressed in terms of the encoder
and memory update rule as g∗(c, l). For any design define

J̃ (c, l) , J
(
c, g∗(c, l), l

)
, (12)

and consider the following problem:

Problem 2. Under the assumptions of Problem 1, choose a design (c∗, l∗) that is
optimal with respect to the performance criterion of (12), i.e.,

J̃ (c∗, l∗) = J̃ ∗ = inf
c∗∈C T

S

l∈L T

J
(
c, g∗(c, l), l

)
, (13)

where C T
S , CS × · · · × CS (T -times)

Clearly, J̃ ∗ = J ∗ i.e., the design (c∗, g∗, l∗) obtained by an optimal solution (c∗, l∗)
of Problem 2, along with an optimal decoder g∗(c∗, l∗) obtained by Theorem 2, is
an optimal solution for Problem 1.

In the next section we provide a sequential decomposition for Problem 2.

4 Joint Optimization

The critical step in obtaining an optimization methodology based on sequential decom-
position is identifying an information state sufficient for performance evaluation of the
system. In this section, we give expressions for an information state and explain how to
obtain a sequential decomposition of the problem. The intuition behind our approach
is as follows. The distortion at stage t depends on Xt and X̂t. We need to find a field
basis and conditional basis for X̂t (see [7]) for each agent at each stage. However, just
finding a field and conditional basis is not sufficient. These combined bases must form a
state (in the sense of [10]) for the purpose of performance evaluation. Suppose πt and ϕt

are the information states of the encoder and memory update respectively. They need
to satisfy the following properties:

(i) πt is a function only of the encoder’s information and the past encoding and memory
update rules. Any choice of the present encoding rule ct together with πt determine
ϕt, the information state for the memory update at the next step.

(ii) ϕt is a function only of the receiver’s information and the past encoding and memory
update rules. Any choice of the present memory update rule lt together with ϕt

determine πt+1, the information state for the encoder at the next step.

(iii) At each stage both the encoder and the receiver can evaluate the expected cost to
go from their respective information state and choice of present and future deci-
sion rules. This expectation is conditionally independent of the past decision rules,
conditioned on the current information state.

The above properties can be written more formally as follows:



(S1a) πt is a function of xt, ct−1 and lt−1.

(S1b) ϕt is a function of yt, mt−1, c
t and lt−1.

(S2a) ϕt can be determined from πt and ct.

(S2b) πt+1 can be determined from ϕt and lt.

(S3) For the purpose of performance evaluation, πt absorbs the effect of ct−1, lt−1 and ϕt

absorbs the effect of ct, lt−1 on expected future distortion, i.e.

E

{
T∑

s=t

ρs(Xs, X̂s)

∣∣∣∣ c, g, l
}

= E

{
T∑

s=t

ρs(Xs, X̂s)

∣∣∣∣ πt, c
T
t , l

T
t

}

= E

{
T∑

s=t

ρs(Xs, X̂s)

∣∣∣∣ ϕt, c
T
t+1, l

T
t

}
,

or alerntively

(S3⋆) E

{
ρt(Xt, X̂t)

∣∣∣ c, g, l
}

= E

{
ρt(Xt, X̂t)

∣∣∣ πt, ct

}

= E

{
ρt(Xt, X̂t)

∣∣∣ ϕt, lt

}
.

Properties (S1),(S2),(S3) are equivalent to properties (S1),(S2),(S3⋆). (S1) and (S2)
imply that πt and ϕt are states and (S3) ensures that πt and ϕt absorb the effect of past
decision rules on expected future distortion. Thus, they are sufficient for the purpose of
performance evaluation. In this section we find information states πt and ϕt that satisfy
(S1)–(S3). We define the following:

Definition 2. Let PYt,Mt−1
be the encoder’s belief about the channel output and memory

contents of the receiver, i.e.,

PYt,Mt−1
(y,m) , Pr

(
Yt = y,Mt−1 = m

∣∣X t, Zt, ct, lt−1
)
. (14)

For a particular realization xt and a particular choice ct, lt−1, the realization of PYt,Mt−1
,

denoted by P̃Yt,Mt−1
, is a PMF on (Yt,Mt−1) and belongs to PY×M, the space of PMFs

on Y ×M. If X t is a random vector and ct, lt−1 are arbitrary (but fixed) functions, then
PYt,Mt−1

is a random vector belonging to PY×M.

Lemma 1. At each stage t,

(i) there is a deterministic function νt(·) such that PYt,Mt−1
= νt(PMt−1

, Zt),

(ii) there is a deterministic function ψt(·) such that PMt
= ψt(PYt,Mt−1

, lt).

Proof. See [3]. �

Definition 3. Let Π (resp. Φ) be the space of probability measures on X × PM (resp.
X × PY×M). Define πt and ϕt as follows:

πt = Pr
(
Xt, PMt−1

)
, (15)

ϕt = Pr
(
Xt, PYt,Mt−1

)
, (16)

where πt (resp. ϕt) belongs to Π (resp. Φ).



Theorem 3. πt and ϕt are the information states for the encoder and memory update
respectively, i.e.,

(i) there is a linear transformation Qt(ct) such that

ϕt = Qt(ct)πt, (17)

(ii) there is a linear transformation Q̂t(lt) such that

πt+1 = Q̂t(lt)ϕt, (18)

(iii) for any choice of c and l, the expected conditional instantaneous cost can be ex-
pressed as

E

{
ρt(Xt, X̂t)

∣∣∣ ct, g∗t (ct, lt−1), lt−1

}
= ρ̃t(ϕt). (19)

where g∗t (c
t, lt−1) is an optimal decoding rule corresponding to ct, lt−1 and ρ̃t(·) is a

deterministic function.

Proof. This follows from Lemma 1. See [3] for detailed proof. �

The choice of functions ct, lt−1, g∗t (c
t, lt−1) make the variable X̂t a random variable

with well defined distribution. Thus, the performance criterion of (12) can be rewritten
as

E

{
T∑

t=1

ρt(Xt, X̂t)

∣∣∣∣∣ c, g
∗(c, l), l

}
=

T∑

t=1

E

{
ρt(Xt, X̂t)

∣∣∣ ct, g∗t (ct, lt−1), lt−1

}

=
T∑

t=1

ρ̃t(ϕt). (20)

Notice that (17) and (18) imply that πt and ϕt are states, i.e. they satisfy (S1) and (S2).
Moreover, (19) and (20) imply that πt and ϕt are sufficient for performance evaluation,
i.e., satisfy (S3). Hence Theorem 3 implies that Problem 2 is equivalent to the following
deterministic optimization problem:

Problem 3. Consider a deterministic system which evolves as follows:

ϕt = Qt(ct)πt, t = 1, . . . , T, (21)

πt+1 = Q̂t(lt)ϕt, t = 1, . . . , T − 1, (22)

where ct and lt are functions belonging to Cs and L respectively and Qt(·) and Q̂t(·) are
deterministic transforms depending on ct and lt respectively. The initial state π1 of the
system is known. If the system is in state ϕ at stage t, it incurs a cost ρ̃t(ϕt).

The optimization problem is to obtain decision rules c , (c1, . . . , cT ), l , (l1, . . . , lT−1)
to minimize the total cost over horizon T , i.e., find optimal design (c∗, l∗) such that

J̃ (c∗, l∗) = J̃ ∗ = inf
c∗∈C T

S

l∗∈L T

T∑

t=1

ρ̃t(ϕt). (23)



This is a classical deterministic control problem; optimal functions (c∗, l∗) are deter-
mined by the nested optimality equations given below.

Theorem 4. An optimal design (c∗, l∗) for Problem 3 (and consequently for Problem 2
and thereby for Problem 1) can be determined by the solution of the following nested
optimality equations:

V̂T (ϕ) ≡ 0, (24)

Vt(πt) = inf
ct∈CS

[
ρ̃t

(
Qt(ct)π

)
+ V̂t

(
Qt(ct)π

)]
, t = 1, . . . , T, (25)

V̂t(ϕ) = min
lt∈L

[
Vt+1

(
Q̂t(lt)ϕ

)]
, t = 1, . . . , T − 1. (26)

Proof. This is a standard result, see [6, Chapter 2] �

5 Time Homogeneous System — Finite Horizon Case

For many applications the system is time-homogeneous, that is, the source is time-
invariant Markov process (PXt+1|Xt

does not depend on t), the channel is time-invariant
(transition matrix Pt does not depend on t) and the distortion metric ρt(·) is time invari-

ant. For such a system, the functions νt(·), ψt(·), the linear transforms Qt(·), Q̂t(·) and
the distortion ρ̃t(·) defined in Theorem 3 are time-invariant, so we can drop the subscripts

t and simply refer them as ν(·), ψ(·), Q(·), Q̂(·) and ρ̃(·) respectively. So, we obtain an
equivalent of Theorem 3 making the corresponding changes. Thus, Problem 3 reduces to
a time-homogeneous problem — one in which state space, action space, system update
equation and instantaneous cost do not depend on time. Hence the optimality equations
of Theorem 3 can be written in a more compact manner We can define the following:

Definition 4. Let V (resp. V̂) be the family of functions from Π (resp. Φ) to R
+. Define

operators W (c) (resp. Ŵ (l)) from V̂ to V (resp. V to V̂) as follows:
(
W (c)V̂

)
(π) = ρ̃

(
Q(c)π

)
+ V̂

(
Q(c)π

)
, (27)

(
Ŵ (l)V

)
(ϕ) = V

(
Q̂(l)ϕ

)
. (28)

Further define transformations W (resp. Ŵ) from V̂ to V (resp. V to V̂) as follows:
(
WV̂

)
(π) = inf

c∈CS

(
W (c)V̂

)
(π), (29)

(
ŴV

)
(ϕ) = inf

l∈L

(
Ŵ (l)V

)
(ϕ). (30)

Theorem 5. For the time-homogeneous case, the value functions Vt and V̂t of Theorem 4
evolve in a time-homogeneous manner as follows:

V̂t = ŴVt+1, t = 1, . . . , T − 1, (31)

Vt = WV̂t, t = 1, . . . , T, (32)

with the terminal condition given by

V̂T ≡ 0. (33)

The arguments minimizing Vt and V̂t at each stage determine the decision rules ct and lt.

Proof. This follows immediately from Theorem 4. �



6 Time Homogeneous System — Infinite Horizon Case

We consider a time-homogeneous system as in Section 5. However, instead of a finite
horizon T , we consider the infinite horizon case with performance of a design determined
by

J (c, g, l) = E

{
∞∑

t=1

βt−1ρ(Xt, X̂t)

∣∣∣∣∣ c, g, l
}
, (34)

where β ∈ (0, 1) is called the discount factor. With a slight modification of the proof
of [4, Section 2.4] one can show that the structural results of Section 3 are also valid in
this case. Further, Theorem 3 (with the changes mentioned in previous section) holds
for the infinite-horizon case also.

Definition 5. Define operators W , Ŵ and transforms W, Ŵ as in Definition 4, with
one change — modify the definition of W to take the discounting into account as follows:

(
W (c)V̂

)
(π) = ρ̃

(
Q(c)π

)
+ βV̂

(
Q(c)π

)
. (35)

Theorem 6. For the infinite horizon time-homogeneous system with the performance
criterion of (34), the evolution of value function is governed by the following set of
equations

Vt = WV̂t, (36)

V̂t = ŴVt+1. (37)

The arguments that minimize V̂t and Vt+1 at each stage determine the decision rules ct
and lt.

Proof. This is the solution of the time-homogeneous problem formulated by considering a
time-homogeneous version of Problem 3 with the optimization criteria being minimizing
E {

∑∞
t=1

βt−1ρ̃(ϕt) | c, g
∗(c, l), l }. �

Definition 6. A design (c, l), c , (c1, c2, . . . ), l , (l1, l2, . . . ) is called stationary (or
time-invariant) if c1 ≡ c2 ≡ · · · ≡ c, l1 ≡ l2 ≡ · · · ≡ l.

Theorem 7. For the time homogeneous case with the performance measure of (34), if
the distortion measure ρ(·) is bounded and discount factor β < 1, then stationary designs
are ε-optimal, that is, for any design (c′, l′) and any ε > 0, there exists a stationary
design (c∞, l∞) such that

J (c∞, l∞) = V (π1) ≤ J (c′, l′) + ε, (38)

where V is the unique fixed point of

V = (W ◦ Ŵ)V, (39)

and c and l are the corresponding arg min and c∞ = (c, c, . . . ), l∞ = (l, l, . . . ).

Proof. See [3]. �

We have shown that a unique stationary ε-optimal policy exists. Thus, for the infi-
nite horizon problem, without loss of optimality, we can restrict attention to stationary
policies. This simplifies the implementation of an optimal policy.



7 Discussion

It was shown in [8] that all sequential problems can be transformed to a standard form
by moving all the uncertainty to the first stage and at each stage augmenting the state
variable to carry all the information needed to determine the cost. Further an optimal
policy for a problem in standard form can be obtained by solving a deterministic optimiza-
tion problem. We believe that our methodology has a similar spirit as Witsenhausen’s
standard form. We have a decentralized optimization problem that is sequential and an
optimal design is obtained by the solution of a deterministic optimization problem. In
our solution the state space is not increasing with time and allows us to use our approach
to infinite horizon problems while the standard form is applicable only to finite horizon
problems. The structural results of [4] are critical to our approach as they allow us to
obtain an information state whose dimensionality does not change with time.

8 Conclusion

We have developed a methodology for the determination of jointly optimal real-time
encoding, decoding and memory update strategies for point-to-point communication sys-
tem. This methodology has been extended to k-th oder Markov sources, distortion metric
accepting a finite delay of δ units and channels with memory (see [3] for details). We
believe that the same methodology can be used for the determination of jointly optimal
real-time encoding, decoding and memory update strategies for more complex communi-
cation systems.
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