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Abstract— We consider the optimal design of sequential trans-
mission over broadcast channel with nested feedback. Nested
feedback means that the channel output of the outer channel
is also available at the decoder of the inner channel. We model
the communication system as a decentralized team with three
decision makers—the encoder and the two decoders. Structure
of encoding and decoding strategies that minimize a total
distortion measure over a finite horizon are determined. The
results are applicable for real-time communication as well as
for the information theoretic setup.

I. Problem formulation and main result

In this paper, we study real-time broadcast of correlated sources
over physically degraded channel with nested noiseless feedback.
The communication system is shown in Figure 1. It operates in
discrete time for a horizon T .

The source is a first-order time-homogeneous Markov chain. The
source outputs (Ut, Vt) take values in U × V . The initial output of
the source is distributed according to PU1V1

; the transition matrix
of the source is PUV .

The source output is transmitted over a discrete memoryless
broadcast channel that is physically degraded. Let Xt ∈ X denote
the channel input at time t and (Yt, Zt) ∈ Y×Z denote the channel
outputs at time t. Since the channel is memoryless, we have

Pr(Yt = yt, Zt = zt |U
t = ut, V t = vt,

X
t = xt, Y t−1 = yt−1

, Z
t−1 = zt−1)

= Pr (Yt = yt, Zt = zt |Xt = xt)

=:QY Z|X(yt, zt|xt).

Moreover, the channel is physically degraded, so

QY Z|X(y, z|x) = QY |X(y|x)QZ|X(z|x).

Sometimes it is more convenient to describe the channel in a
functional form as

Yt = q1(Xt, N1,t), Zt = q2(Yt, N2,t).

The channel noises {N1,t, t = 1, . . . , T} and {N2,t, t = 1, . . . , T}
are i.i.d. sequences that are mutually independent and also indepen-
dent of the source outputs. The channel functions q1 and q2 and
the distribution of the noises are consistent with the conditional
distributions QY |X and QZ|Y .

The communication system consists of an encoder and two
decoders, all of which operate causally and in real-time. The decoder
that receives Yt is called the inner decoder while the decoder that
receives Zt is called the outer decoder. The channel is used with
feedback, i.e., Yt is available to the encoder after a unit delay and
Zt is available to the encoder and the inner decoder after a unit
delay.

The encoder is described by an encoding strategy cT :=
(c1, . . . , cT ) where

ct : Ut × Vt ×X t−1 × Yt−1 ×Zt−1 7→ X .

The encoded symbol at time t is generated according to the encoding
rule ct as follows

Xt = ct(U
t
, V
t
, X
t−1
, Y
t−1
, Z
t−1). (1)

The inner decoder is described by a decoding strategy gT1 :=
(g1,1, . . . , g1,T ) where

g1,t : Yt ×Zt−1 7→ Û .

Similarly, the outer decoder is described by a decoding strategy

gT2 := (g2,1, . . . , g2,T ) where

g2,t : Zt 7→ V̂.

Thus, the decoded symbols at time t are generated as follows

Ût = g1,t(Y
t
, Z
t−1); (2)

V̂t = g2,t(Z
t). (3)

The fidelity of reconstruction at the two decoders is determined

by distortion functions ρ1,t : U × Û 7→ [0, ρmax] and ρ2,t : V ×

V̂ 7→ [0, ρmax], where ρmax <∞. For any communication strategy

(cT , gT1 , g
T
2 ), the system incurs an expected distortion given by

J(cT , gT1 , g
T
2 )

:= E
(cT ,gT

1
,gT

2
)

{

T
∑

t=1

[

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
]

}

. (4)

We are interested in the optimal design of the above commu-
nication system. Specifically, we are interested in the following
optimization problem.

Problem 1: Given the statistics of the source and the channel,
the distortion functions ρ1,t and ρ2,t, and the time horizon T ,

choose a communication strategy (c∗T , g∗T1 , g
∗T
2 ), with encoders

of the form (1) and decoders of the form (2) and (3), such

that (c∗T , g∗T1 , g
∗T
2 ) minimizes the expected total distortion given

by (4).

Since the alphabets U , V , X , Y , and Z are finite, the number of
communication strategies are finite. Therefore, in principle, we can
evaluate the performance of all of them and choose the one with
the best performance. Consequently, Problem 1 is well posed.

The domain of the encoding and decoding functions of the
form (1), (2), (3) increases exponentially with time. As a result, the
number of communication strategies increase doubly exponentially
with time. Furthermore, implementing a communication strategy for
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Fig. 1. A broadcast communication system with feedback

a large horizon becomes difficult. In this paper, we find structural
properties of optimal communication strategies that will allow us
to “compress” the information available at a node to a sufficient
statistic. The size of these sufficient statistics does not increase
with time; therefore, the domain of the encoding and decoding
functions does not change with time. Consequently, implementing
a communication strategy that is such a form is easier.

A simplified version of the structural results is stated below. The
more formal version of the structural result and along with its
derivation is presented in Section II.

Theorem 1: Without loss of optimality, we can restrict attention
to communication strategies where the encoding rule is of the form

ct : U × V ×∆(U × V)×∆
(

∆(U × V)
)

7→ X , (5)

and the decoding functions are of the form

g1,t : ∆(U) 7→ Û , (6)

g2,t : ∆(V) 7→ V̂. (7)

Specifically, a strategy of the following form is optimal.

Xt = ct
(

Ut, Vt,Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t−1
, Z
t−1
)

,

Pr
(

Ut−1, Vt−1,Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t
, Z
t−1
) ∣

∣

∣
Z
t−1
))

,

Ût = g1,t

(

Pr
(

Ut

∣

∣

∣
Y
t
, Z
t−1
))

,

V̂t = g2,t

(

Pr
(

Vt

∣

∣

∣
Z
t
))

.

These structural results imply that we can restrict attention to
communication strategies where the domain of the encoding and
the decoding functions is not increasing with time. This restriction
allows us to write the communication strategy in a recursive form.
Due to lack of space, we cannot present the recursive form in this
paper.

Consider the following special case.
• PU1V1

is a uniform distribution over U×V . PUV is an identity
matrix and ρi,t ≡ 0 for t = 0, . . . , T − 1 and

ρi,T (w, ŵ) =

{

0, if w 6= ŵ;
1, otherwise.

In this case the source does not change with time. So, we drop
the subscripts and denote the source output by U and V . The total

cost (4) of a communication strategy (cT , gT1 , g
T
2 ) equals

J(cT , gT1 , g
T
2 ) = Pr (U 6= UT ) + Pr (V 6= VT ) (8)

This special case is (almost1) identical to the information theoretic
setup of communicating over broadcast channels [1]. Therefore, the
structural results presented in this paper are also applicable to the
information theoretic setup.

The capacity of degraded broadcast channel was computed in [2,

3]. For degraded broadcast channels, feedback does not increase
capacity [4, 5]. Nonetheless, as in point-to-point communication,
feedback can simplify the communication scheme. We believe that
the structural results presented in this paper will be useful for finding
recursive schemes that can achieve capacity of broadcast channels
with feedback.

II. Structural Results

The domain of the encoding functions of the form (1) increases

with time because of three elements: the source outputs (U t, V t),

the channel inputs Xt−1, and the channel outputs (Y t−1, Zt−1).
The channel outputs also increase the domain of the decoding rules
with time. We compress each of these elements one by one by
proceedings as follows.

1. Ignoring past source outputs and channel inputs.
First, we show that the past source outputs and the past
channel inputs can be ignored at the encoder. Thus, without
loss of optimality, we can restrict attention to encoding rules
of the form

ct : U × V × Yt−1 ×Zt−1 7→ X .

Specifically,

Xt = ct(Ut, Vt, Y
t−1
, Z
t−1).

2. Compressing Y t−1 to a sufficient statistic.
Next, we consider an equivalent reformulation of the problem
where a coordinator chooses the encoding and the inner de-
coding functions. This coordinator can compress the outputs

Y t−1 of the inner channel to a sufficient statistic such that
we can restrict attention to encoding and inner decoding
functions of the form

ct : U × V ×∆(U × V)×Zt−1 7→ X ,

g1,t : Y ×∆(U × V)×Zt−1 7→ Û .

Specifically,

Xt = ct
(

Ut, Vt,Pr
(

Ut, Vt

∣

∣

∣
Y
t−1
, Z
t−1
)

, Z
t−1
)

,

Ût = g1,t

(

Yt,Pr
(

Ut, Vt

∣

∣

∣
Y
t−1
, Z
t−1
)

, Z
t−1
)

.

3. Compressing Zt−1 to a sufficient statistic.
After that we consider an equivalent reformulation where a
coordinator chooses the communication strategy. This coor-

dinator can compress the outputs Zt−1 of the outer channel
to a sufficient statistic such that we can restrict attention to
encoding and decoding functions of the form

In the information theoretic setup, the probability of error is Pr({U 6= ÛT }
1

or {V 6= VT }). As the two errors {U 6= UT } and {V 6= VT } are not
independent, so (8) is not exactly the same as the information theoretic
setup. Nevertheless, the two setups are essentially the same.
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Fig. 2. An alternative formulation of the broadcast system with feedback.

ct : U × V ×∆(U × V)×∆
(

∆(U × V)
)

7→ X ,

g1,t : Y ×∆(U × V)×∆
(

∆(U × V)
)

7→ Û ,

g2,t : ∆
(

∆(U × V)
)

7→ V̂.

Specifically,

Xt = ct
(

Ut, Vt,Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t−1
, Z
t−1
)

,

Pr
(

Ut−1, Vt−1,Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t
, Z
t−1
) ∣

∣

∣
Z
t−1
))

,

Ût = g1,t

(

Yt,Pr
(

Ut, Vt

∣

∣

∣
Y
t
, Z
t−1
)

,

Pr
(

Ut−1, Vt−1,Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t
, Z
t−1
) ∣

∣

∣
Z
t−1
))

,

V̂t = g2,t

(

Pr
(

Ut−1, Vt−1,

Pr
(

Ut−1, Vt−1

∣

∣

∣
Y
t
, Z
t−1
)

|Zt−1)
)

.

4. A smaller sufficient statistic for the decoders.
At this stage, we already have a structural result where
the domain of the communication strategy is not increasing
with time. The decoding rules can nevertheless be further
simplified to

g1,t : ∆(U) 7→ Û ,

g2,t : ∆(V) 7→ V̂.

Specifically,

Ût = g1,t(Pr
(

Ut

∣

∣

∣
Y
t
, Z
t−1
)

),

V̂t = g2,t(Pr
(

Vt

∣

∣

∣
Z
t
)

).

Below, we elaborate on each of these steps.

A. Ignoring past source outputs and channel inputs

The past source outputs and the channel inputs can be ignored at
the encoder. Specifically, we have the following.

Proposition 1: Without loss of optimality, we can restrict atten-
tion to encoding rules of the form

ct : U × V × Yt−1 ×Zt−1 7→ X

with

Xt = ct(Ut, Vt, Y
t−1
, Z
t−1). (9)

Proof. Define Rt = (Ut, Vt, Y
t−1, Zt−1). It can be verified

that

Pr
(

Rt+1

∣

∣

∣
U
t
, V
t
, X
t
, Y
t−1
, Z
t−1
)

= Pr (Rt+1 |Rt, Xt) .

Furthermore,

E

{

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
∣

∣

∣
U
t
, V
t
, X
t
, Y
t−1
, Z
t−1
}

= E

{

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
∣

∣

∣
Rt, Xt

}

.

Thus, the process {Rt, t = 1, . . . , T} is a controlled Markov
chain given Xt. Further, the conditional expectation of the instan-
taneous distortion given (Rt, Xt) depends only on (Rt, Xt). The
state Rt of the chain is perfectly observed at the encoder (which
has to choose Xt). Hence, the results of Markov decision theory [6]
imply that restricting attention to encoders of the form (9) does not
incur a loss of optimality. �

From now on, we will assume that the encoder is of the form (9).
Thus, we can simplify Problem 1 as follows.

Problem 2: Under the assumptions of Problem 1, find optimal

communication strategy (c∗T , g∗T1 , g
∗T
2 ) with encoders of the

form (9) and decoders of the form (2) and (3).

B. Compressing Y t−1 to a sufficient statistic

To find a sufficient statistic for Y t−1, we proceed as follows.
1. Fix a decoding policy of the outer decoder and formulate

a stochastic control problem from the point of view of a

coordinator that observes (Y t−1, Zt−1).
2. Show that the coordinator’s problem is equivalent to the

original problem. Specifically, any strategy for the coordina-
tor’s problem can be implemented in the original problem
in the absence of a physical coordinator. Contrariwise, any
strategy of the original problem can be implemented by the
coordinator.

3. Identify a controlled Markov process that is observed at the
controller and use that to identify a sufficient statistic for

Y t−1.
Below we elaborate on each of these stages.

Stage 1

Consider the following modified problem. In addition to the
encoders and the two decoders, assume that a coordinator is present

in the system that knows (Y t−1, Zt−1) at time t. This information

(Y t−1, Zt−1) is the information shared between the encoder and
the inner decoder at time t. Based on this shared information , the
coordinator decides partial encoding and decoding functions

c̃t : U × V 7→ X ,

g̃1,t : Y 7→ Û .

These functions map the private information of the encoder and
the decoder to their decisions. The coordinator then informs the



encoder and the inner decoder of c̃t and g̃1,t. The encoder and
the inner decoder use their respective partial function to choose an
action as follows.

Xt = c̃t(Ut, Vt), (10)

Ût = g̃1,t(Yt). (11)

The dynamics of the source and the channel along with the
operation of the outer decoder are the same as in the original
problem (Problem 2). At the next time step, the coordinator observes
(Yt, Zt) and selects the partial functions (c̃t+1, g̃1,t+1). The system
proceeds sequentially in this manner until horizon T . The block
diagram of the system is shown in Figure 2.

In the above formulation, there are two decision makers: the
coordinator and the outer decoder. The encoder and the inner
decoder simply carry out the computations prescribed in (10)
and (11). At time t, the coordinator knows the shared information

(Y t−1, Zt−1) and all the past partial functions (c̃t−1, g̃t−1
1 ). The

coordinator’s decision rule φ̃t maps this information to its decisions,
that is,

(c̃t, g̃1,t) = φ̃t(Y
t−1
, Z
t−1
, c̃
t−1
, g̃
t−1
1 ). (12)

The choice of φ̃T is called a coordination strategy. The expected

total distortion of a strategy (φ̃T , gT2 ) is given by

J̃(φ̃T , gT2 ) = E
(φ̃T ,gT

2
)

{

T
∑

t=1

[

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
]

}

.

(13)

We are interested in the optimal design of the above system,
which can be set up as the following optimization problem.

Problem 3: Under the assumptions of Problem 1, find a strategy

(φ̃∗T , g∗T2 ) with φ̃∗T of the form (12) and g2,t of the form (3)

such that (φ̃∗T , g∗T2 ) minimizes the expected total distortion given
by (13).

Stage 2

Now we show that Problem 3 is equivalent to Problem 2.

Specifically, we show that any strategy (cT , gT1 , g
T
2 ) for Problem 2

can be implemented by the coordinator in Problem 3 and any

strategy (φ̃T , gT2 ) for Problem 3 can be implemented by the encoder
and the decoders in Problem 2.

Any strategy (cT , gT1 , g
T
2 ) in Problem 2 can be implemented in

Problem 3 as follows. Keep the outer decoding strategy gT2 as is.
At time t, the coordinator selects partial functions (c̃t, g̃1,t) using

the shared information (yt−1, zt−1) as follows. Let

(c̃t, g̃1,t) = φ̃t(y
t−1
, z
t−1) (14a)

where φ̃t is chosen such that

c̃t(ut, vt) = ct(ut, vt, y
t−1
, z
t−1), (14b)

g̃1,t(yt) = g1,t(yt, y
t−1
, z
t−1). (14c)

Now consider Problems 2 and 3. Use strategy (cT , gT1 , g
T
2 )

in Problem 2 and strategy (φ̃T , gT2 ) in Problem 3 where φ̃T is
given by (14). Consider a specific realization of the source output
{(Ut, Vt), t = 1, . . . , T} and the channel noise {(N1,t, N2,t),

t = 1, . . . , T}. The choice of φ̃T according to (14) implies that the
channel inputs {Xt, t = 1, . . . , T}, the channel outputs {(Yt, Zt),

t = 1, . . . , T}, and the reconstructions {(Ût, V̂t), t = 1, . . . , T}

are identical in Problems 2 and 3. Thus, any strategy (cT , gT1 , g
T
2 )

in Problem 2 can be implemented by the coordinator in Problem 3
by using a coordination strategy given by (14). Furthermore, the
total expected distortion in both cases is identical.

By a similar argument, any strategy (φ̃T , gT2 ) for Problem 3 can
be implemented in Problem 2 as follows. Keep the outer decoding
strategy as is. At time t,

(c̃t, g̃1,t) = φ̃t(y
t−1
, z
t−1
, c̃
t−1
, g̃
t−1
1 ).

By recursively substituting the values of c̃t−1 and g̃t−1
1 , we can

write this as

(c̃t, g̃1,t) = φ̃t(y
t−1
, z
t−1
, φt−1(yt−2

, z
t−2
, . . . , φ1))

=: Ft(φ̃
t
, y
t−1
, z
t−1). (15a)

Let F1,t(·) and F2,t(·) denote the first and second components of
Ft(·), i.e.,

c̃t = F1,t(φ̃
t
, y
t−1
, z
t−1),

g̃1,t = F2,t(φ̃
t
, y
t−1
, z
t−1).

Then, use the following encoding and inner decoding strategy in
Problem 2:

ct(ut, vt, y
t−1
, z
t−1) = F1,t(φ̃

t
, y
t−1
, z
t−1)(ut, vt), (15b)

g1,t(y
t
, z
t−1) = F2,t(φ̃

t
, y
t−1
, z
t−1)(yt). (15c)

Now consider Problems 3 and 2. Use strategy (φ̃T , gT2 ) in

Problem 3 and strategy (cT , gT1 , g
T
2 ) in Problem 2 where (cT , gT1 )

is given by (15). Consider a specific realization of the source output
{(Ut, Vt), t = 1, . . . , T} and the channel noise {(N1,t, N2,t), t =

1, . . . , T}. The choice of (cT , gT1 ) according to (15) implies that the
channel inputs {Xt, t = 1, . . . , T}, the channel outputs {(Yt, Zt),

t = 1, . . . , T}, and the reconstructions {(Ût, V̂t), t = 1, . . . , T}

are identical in Problems 3 and 2. Thus, any strategy (φ̃T , gT2 ) in
Problem 3 can be implemented by the encoder and decoders in
Problem 2 by using a strategy given by (15). Furthermore, the total
expected distortion in both cases is identical.

The above arguments show that Problems 2 and 3 are equivalent.

We now identify a sufficient statistic for compressing Y t−1 in
Problem 3.

Stage 3

We first define the following.

Definition 1: For any choice of c̃T , define

Ξt(Y
t
, Z
t; c̃t) := Prc̃

t
(

Ut, Vt

∣

∣

∣
Y
t
, Z
t
)

. (16)

For any choice of c̃t, the channel outputs (Y t, Zt) are random
variables (measurable on the probability space on which the source
outputs and the channel noise are defined). Given a realization

(yt, zt) of (Y t, Zt), the realization ξt of Ξt is a conditional

probability on (Ut, Vt) given (yt, zt). On the other hand, when

(Y t, Zt) are random variables, Ξt is a random variable taking
values in ∆(U × V). Moreover, Ξt is related to Ξt−1 as follows.

Proposition 2: Fix arbitrary partial encoding functions c̃T . Then,
the update of Ξt is given by

ξt(y
t
, z
t; c̃t) = f1

(

ξt−1(yt−1
, z
t−1; c̃t−1), yt, zt, c̃t

)

(17)

where f1(·) is given by

f1(ξ, y, z, ĉ)(u, v) =
∑

(u′,v′)∈U×V

PUV (u, v|u′, v′)

×
QZ|Y (z|y)QY |X(y|c̃(u′, v′))ξ(u′, v′)

∑

(y′,z′)∈Y×Z QZ|Y (z′|y′)QY |X(y′|c̃(u′, v′))ξ(u′, v′)
.

Proof. This is a direct consequence of Definition 1 and Bayes’s
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rule. �

Ξt−1 is a sufficient statistic for Y t−1 in Problem 3. In particular,
we have the following result.

Proposition 3: Arbitrarily fix the outer decoding strategy gT2 .
Then, in Problem 3, without loss of optimality we can restrict
attention to a coordination strategy of the form

φ̃t : ∆(U × V)×Zt−1 7→
(

(U × V 7→ X ), (Y 7→ Û)
)

with

(c̃t, g̃1,t) = φ̃t(Ξt−1, Z
t−1). (18)

Since Problems 2 and 3 are equivalent, the above implies that in
Problem 2, without loss of optimality we can restrict attention to
encoding and inner decoding strategies of the form

ct : U × V ×∆(U × V)×Zt−1 7→ X ,

g1,t : Y ×∆(U × V)×Zt−1 7→ Û .

with

Xt = ct(Ut, Vt,Ξt−1, Z
t−1), (19)

Ût = g1,t(Yt,Ξt−1, Z
t−1). (20)

Proof. Define Rt = (Ξt−1, Z
t−1). It can be verified that

Pr
(

Rt+1

∣

∣

∣
R
t; c̃t
)

= Pr (Rt+1 |Rt; c̃t) .

Furthermore,

E

{

ρ2,t−1(Vt−1, V̂t−1) + ρ1,t(Ut, Ût)
∣

∣

∣
R
t; c̃t, g̃t1, g

t
2

}

= E

{

ρ2,t−1(Vt−1, V̂t−1) + ρ1,t(Ut, Ût)
∣

∣

∣
Rt; c̃t, g̃1,t, g2,t

}

As the outer decoder policy gT2 is fixed, the expected instantaneous
cost only depends on (Rt, c̃t, g̃1,t). The state Rt of the process is
perfectly observed at the coordinator. Hence, the results of Markov
decision theory [6] imply that restricting attention to coordinator
strategies of the form (18) does not incur a loss of optimality. �

From now on, we will assume that the encoder and the inner
decoder are of the form (19) and (20). Thus, the broadcast system
can be viewed as shown in Figure 3. The system has a inner state-
generator, which carries out the computations prescribed in (17).
At time t, the state-generator computes Ξt−1 and communicates it
to the encoder and the inner decoder. The encoder and the inner de-
coder use Ξt−1 along with their private information, (Ut, Vt, Z

t−1)

and (Yt, Z
t−1), respectively, to implement communication strategy

of the form (19) and (20). Thus, we can simplify Problem 2 as
follows.

Problem 4: Under the assumptions of Problem 1, find opti-

mal communication strategy (c∗T , g∗T1 , g
∗T
2 ) with encoder of the

form (19), inner decoder of the form (20) and outer decoder of the
form (3).

C. Compressing Zt−1 to a sufficient statistic

To find a sufficient statistic for Zt−1, we follow the three stage

approach that we followed to find a sufficient statistic for Y t−1.
These stages are

1. Formulate a stochastic control problem from the point of a

coordinator that observes Zt−1.
2. Show that the coordinator’s problem is equivalent to the orig-

inal problem. Specifically, any strategy for the coordinator’s
problem can be implemented in the original problem and vice
versa.

3. Identify a controlled Markov process that is observed at the
controller and use that to identify a sufficient statistic for

Zt−1.
Below we elaborate on each of these stages.

Stage 1

This stage is similar to stage 1 for compressing (Y t−1, Zt−1).
We consider a modified problem with a coordinator that observes

Zt−1. This information Zt−1 is the common shared information be-
tween the encoder and the two decoders. Based on this information,
the coordinator decides action V̂t−1 and the partial functions

ĉt : U × V ×∆(U × V) 7→ X ,

ĝ1,t : Y ×∆(U × V) 7→ Û .

These functions map the private information of the encoder and the
inner decoder to their decisions. The coordinator then informs the
encoder and the decoders of V̂t−1, ĉt, and ĝ1,t. The outer decoder

uses V̂t−1 as its estimate; the encoder and the inner decoder use
their respective partial functions to choose an action as follows

Xt = ĉt(Ut, Vt, ξt−1), (21)

Ût = ĝ1,t(Yt, ξt−1). (22)

The source and the channel dynamics are the same as in the
original problem. At the next time step, the coordinator observes

Zt and selects action V̂t and partial functions (ĉt+1, ĝ1,t+1). The
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system proceeds sequentially in this manner until horizon T . The
block diagram of the system is shown in Figure 4.

In the above formulation, there is only one decision maker:
the coordinator. The encoder and the decoders simply carry out
the computations prescribed in (21) and (22). The coordinator’s

decision rule φ̂t maps its information at time t to its decision, that
is,

(V̂t−1, ĉt, ĝ1,t) = φ̂t(Z
t−1
, V̂
t−2
, ĉ
t−1
, ĝ
t−1
1 ). (23)

The choice of φ̂T is called a coordination strategy. The expected

total distortion of a strategy φ̂T is given by

Ĵ(φ̂T ) = E
φ̂T

{

T
∑

t=1

[

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
]

}

. (24)

We are interested in the optimal design of the above system,
which can be set up as the following optimization problem.

Problem 5: Under the assumptions of Problem 1, find a strategy

φ̂∗T of the form (23) that minimizes the expected total distortion
given by (24).

Stage 2

By an argument similar to the argument presented in Stage 2

for compressing (Y t−1, Zt−1), Problem 5 is equivalent to Prob-

lem 4. Specifically, any communication strategy (cT , gT1 , g
T
2 ) for

Problem 4 can be implemented by the coordinator in Problem 5
and vice versa. Thus, we can focus on deriving structural results for
Problem 5.

Stage 3

We first define the following.

Definition 2: For any choice of ĉT , define

Πt(Z
t; ĉt) := Prĉ

t
(

Ut, Vt,Ξt

∣

∣

∣
Z
t
)

. (25)

Πt has the same interpretation as Ξt defined in Definition 1.

For any choice of ĉT , Zt is a random vector (measurable on the
probability space on which the source outputs and the channel noise

are defined). Given a realization zt of Zt, the realization πt of
Πt is a conditional probability on (Ut, Vt) given zt. On the other

hand, when Zt is random, Πt is a random variable taking values
in ∆(U × V). Furthermore, Πt is related to Πt−1 as follows.

Proposition 4: Fix arbitrary partial encoding functions ĉt. Then

the update of Πt is given by

πt(z
t; ĉt) = f2(πt−1(zt−1; ĉt−1); zt, ĉt) (26)

where

f2(π, z, ĉ)(u, v, ξ) =
∑

(u′,v′)∈U×V

PUV (u, v|u′, v′)

×

∫

U×V

∑

y′∈Ŷ(ξ,ξ′,z,ĉ)R(u′, v′, y′, z, ξ)

∫

U×V

∑

y′∈Ŷ(ξ,ξ′,z,ĉ)

∑

z′∈Z R(u′, v′, y′, z′, ξ)
.

with

R(u, v, y, z, ξ) = QZ|Y (z|y)QY |X(y|ĉ(u, v))ξ(u, v)

and Ŷ(ξ, ξ′, z, ĉ) := {y ∈ Y : ξ = f2(ξ′, y, z, ĉ)}.

Proof. This is a direct consequence of Definition 2 and Bayes’s
rule. �

Πt−1 is a sufficient statistic for Zt−1 in Problem 5. In particular,
we have the following result.

Proposition 5: In Problem 5, without loss of optimality we can
restrict attention to a coordination strategy of the form

φ̂t : ∆(U × V ×∆(U × V))

7→ (V̂, (U × V ×∆(U × V) 7→ X ), (Y ×∆(U × V) 7→ Û))

with

(V̂t−1, ĉt, ĝ1,t) = φ̂t(Πt−1). (27)

Since Problems 4 and 5 are equivalent, the above implies that in
Problem 4, without loss of optimality, we can restrict attention to
communication strategies of the form

ct : U × V ×∆(U × V)×∆
(

∆(U × V)
)

7→ X ,

g1,t : Y ×∆(U × V)×∆
(

∆(U × V)
)

7→ Û ,

g2,t : ∆
(

∆(U × V)
)

7→ V̂.

with

Xt = ct(Ut, Vt,Ξt−1,Πt−1), (28)

Ût = g1,t(Yt,Ξt−1,Πt−1), (29)
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Fig. 5. The broadcast system with simplified encoder and inner decoder and outer decoder.

V̂t = g2,t(Πt). (30)

Proof. It can be verified that

Pr
(

Πt

∣

∣

∣
Πt−1; ĉt, ĝt1, ĝ

t
2

)

= Pr (Πt |Πt−1; ĉt) .

Furthermore,

E

{

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
∣

∣

∣
Πt−1; ĉt, ĝt1, ĝ

t
2

}

= E

{

ρ1,t(Ut, Ût) + ρ2,t(Vt, V̂t)
∣

∣

∣
Πt−1; ĉt, ĝ1,t, ĝ2,t

}

Thus, the expected instantaneous cost only depends on (Πt−1,
ĉt, ĝ1,t, ĝ2,t). Moreover, the state Πt−1 is perfectly observed at the
coordinator. Hence, the results of Markov decision theory [6] imply
that restricting attention to coordinator strategies of the form (27)
does not incur a loss of optimality. �

From now on, we will assume that the encoder and the decoders
are of the form (28), (29), and (30). Thus, the broadcast system
can be viewed as shown in Figure 5. The system has a outer state-
generator, which carries out the computations prescribed in (26).
At time t, the state generator computes Πt. Πt is immediately
communicated to the outer decoder, and it is communicated with a
unit delay to the encoder and the inner decoder. The encoder and the
decoders use Πt along with their private information to implement
communication strategy of the form (28), (29) and (30).

D. A smaller sufficient statistic for the decoders

The results of Proposition 5 show that we can restrict attention
to encoders and decoders that have a time-invariant domain. The
decoders can be further simplified by exploiting the fact that the
decoding is a filtration, i.e., the decoder’s decision do not affect
the future evolution of the system. For that matter, we define the
following.

Definition 3: For any choice of cT , define

θ1,t(Y
t
, Z
t−1; ct) = Prc

t
(

Ut

∣

∣

∣
Y
t
, Z
t−1
)

, (31)

θ2,t(Z
t; ct) = Prc

t
(

Vt

∣

∣

∣
Z
t
)

. (32)

For any choice of ct, (Y t, Zt) are random variables (measurable
on the probability space on which the source outputs and the channel

noise are defined). Given a realization of (yt, zt−1), the realization

θ1,t of Θ1,t is conditional probability on Ut given (yt, zt−1).

Similarly, given a realization of zt, the realization θ2,t of Θ2,t

is a conditional probability on Vt given zt. On the other hand,

when (Y t, Zt) are random variables, Θ1,t and Θ2,t are random
variables taking value in ∆(U) and ∆(V). Moreover, Θ1,t and
Θ2,t are related to Ξt−1 and Πt−1 as follows.

Proposition 6: Fix arbitrary encoding functions cT of the
form (28). Let ĉt(·, ·) = ct(·, ·, ξt−1, πt−1). Then, Θ1,t and Θ2,t
are given by

θ1,t(y
t
, z
t−1; ct) = h1

(

ξt−1(yt−1
, z
t−1; ĉt−1), yt, ĉt

)

, (33)

θ2,t(z
t; ct) = h2

(

πt(z
t; ĉt)); (34)

where

h1(ξ, y, ĉ)(u) =
∑

v′∈V

QY |X(y|ĉ(u, v′, ξ))ξ(u, v′)
∑

y′∈Y QY |X(y′|ĉ(u, v′))ξ(u, v′)
,

h2(π)(v) =
∑

u′∈U

∫

∆(U×V)

π(u′, v, ξ′) dξ′.

Proof. This is a direct consequence of the definitions of Θ1,t,
Θ2,t, Ξt, Πt, and Baye’s rule. �

Θ1,t and Θ2,t are sufficient statistics for the decoders. Specifi-
cally,

Proposition 7: Without loss of optimality, we can restrict atten-
tion to decoders of the form

Ût = τ1,t(Θ1,t) (35)

V̂t = τ2,t(Θ2,t) (36)

where

τ1,t(θ1) = arg min
û∈Û

∑

u∈U

ρ1,t(u, û)θ1(u),

and

τ2,t(θ2) = arg min
v̂∈V̂

∑

v∈V

ρ2,t(v, v̂)θ2(v).

Proof. For any arbitrary but fixed choice of the encoding and
outer decoding rule, the choice of decoding rules is a filtration,
i.e., the choice of decoded symbols does not affect the future
evolution of the system. Hence, the inner and outer decoders can

choose Ût and V̂t to minimize E
{

ρ1,t(Ut, Ût)
∣

∣

∣
Y t, Zt−1

}

and

E

{

ρ2,t(Vt, V̂t)
∣

∣

∣
Zt
}

, respectively. Consequently, optimal decoders
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can be of the form (35) and (36). �

From now on, we will assume that the decoders are of the
form (35) and (36). Thus, the broadcast system can be viewed as
shown in Figure 6. There are two modifications. First, the system
has two extra components, the inner and outer state-compressors.
Second, the outer state compressor communicates communicates
ĉt to the encoder and the inner decoder while it communicates
Πt to the outer state-compressor. The state-compressors carry out
the computations of (33) and (34). At time t, they compute Θi,t,
i = 1, 2, and communicate these to their corresponding decoders.
The decoders use Θi,t and generate Ut and Vt according to τi,t.

E. Combined structural results

We can combine the results of the previous sections to get
Theorem 1. We restate a more detailed version of that theorem
below.

Theorem 2: Without loss of optimality, we can restrict attention
to communication strategies where the encoding rule is of the form

ct : U × V ×∆(U × V)×∆
(

∆(U × V)
)

7→ X , (37)

and the decoding functions are of the form

g1,t : ∆(U) 7→ Û , (38)

g2,t : ∆(V) 7→ V̂. (39)

The encoder and the decoders operate as follows:

Xt = ct(Ut, Vt,Ξt−1,Πt−1) = ĉt(Πt−1)(Ut, Vt,Ξt−1),
(40)

and

Ût = τ1,t(h1(Ξt−1, Yt, ĉt)), (41)

V̂t = τ2,t(h2(Πt)); (42)

where τ1,t and τ2,t are defined in Proposition 7 and h1 and h2 are
defined in Proposition 6.

III. Conclusion

We presented structural properties of optimal encoders and de-
coders for sequential transmission over degraded broadcast channel
with nested feedback. Our technical approach is based on ideas
from decentralized team theory. We obtain the structural results by
a sequence of steps; each step compresses an increasing sequence
of observations into a sufficient statistic taking values in a fixed
space. To identify these sufficient statistics, we identify coordinators
for two or more agents that observes the common information
of these agents. We believe that this idea formulating equivalent
problem from the point of view of a coordinator observing common
information is also useful in other multi-terminal communication
problems.
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