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Abstract— In this paper, we consider a remote sensing system
that consists of a sensor and an estimator. A sensor observes a
first order Markov source and must communicate it to a remote
estimator. Communication is noiseless but expensive. At each
time, based on the history of its observations and decisions, the
sensor chooses whether to transmit or not. If the sensor does
not transmit, then the estimator must estimate the Markov
process using its past observations. We study the average cost
problem in the light of vanishing discount approach. The
problem was studied previously by Lipsa and Martins, IEEE
TAC, 2011 and by Nayyar et al, IEEE TAC, 2013, where it was
shown that the optimal estimation policy is Kalman-like and
the optimal communication policy is to communicate when the
estimation error is greater than a threshold. In the discounted
set-up, we had earlier characterized the optimal policy and
the optimal thresholds as a function of communication cost.
The average cost problem is investigated as the limiting case of
the discounted cost problem as the discount factor approaches
one. The average cost and the optimal values of the thresholds
are provided in terms of the communication cost. Lastly, we
present an example of birth-death Markov chain to illustrate
our results.

I. INTRODUCTION

A. Motivation

In this paper, we consider a model that captures a funda-

mental trade-off between communication cost and estimation

accuracy. This model is motivated by applications in smart

grids and environmental monitoring.

In smart grids, it is envisioned that smart meters will

measure the energy consumption in households and com-

municate these measurements to an aggregator which will

use this information for demand response etc. In such a

scenario, it is important not to flood the communication

network with measurement information by communicating

periodically. Instead, one can model the signaling overhead

as a cost and optimally trade-off communication cost with

estimation accuracy.

In environmental monitoring, a sensor network is used

to measure an environmental variable such as rainfall, soil

moisture, etc. Energy consumption at the sensor is an impor-

tant consideration in such systems because it is expensive

to replace the sensor battery. Thus, to conserve battery, it

is important not to transmit periodically. Instead, one can

model the energy consumed while communicating as a cost

and optimally trade-off communication cost with estimation

accuracy.
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Similar scenarios also arise in other applications such as

networked control systems. Consider the following model

that captures the above scenarios. A sensor observes a first

order Markov process and must communicate it to a remote

estimator. Communication is noiseless but expensive. At each

time, based on the history of its observations and decisions,

the sensor chooses whether to transmit or not. If the sensor

does not transmit, then the estimator must estimate the

Markov process using its past observations. The objective

is to minimize a weighted combination of communication

cost and estimation error.

The remote estimation is conceptually difficult due to

information decentralization. When the sensor decides not

to communicate, its decision is based on the current value

of the Markov source. So, even when the estimator does not

receive an observation, the ‘absence of observation’ conveys

some information about the Markov process. Such signal-

ing problems are known to be notoriously hard, with the

Witsenhausen’s counterexample [1] being the most famous

example.

The above model has received considerable attention in

the literature. The most closely related papers are [2]–[5],

which are briefly summarized below. Other related work

includes models where the sensor is allowed to sleep for

a pre-specified amount of time [6] and models where the

estimator decides when the sensor should transmit [7]–[9].

The set-up of this paper is also related to the censoring

sensors considered in hypothesis testing [10], [11] (where

the sensor takes one measurement and decides whether to

transmit it or not) and real-time source coding [12], [13]

(where the sensor must transmit a quantized version of the

observation).

In [2], the authors considered a remote estimation problem

where the sensor could communicate a finite number of

times. They assumed that the sensor used a threshold policy

to decide when to communicate and determined the optimal

estimation policy and the value of the thresholds. [14] have

generalized the results of [2] to delays and transmission

constraints imposed by real data networks. In [3], the authors

considered remote estimation of Gaussian processes. They

assumed a particular form of the estimator and show that

the estimation error is a sufficient statistic for the sensor.

In [4] too, the authors considered remote estimation of

Gaussian processes but do not impose any assumption on

the communication or estimation policy. They use ideas from

majorization theory to show that the optimal estimation pol-

icy is Kalman-like and the optimal communication policies

are threshold based. In [5], the authors considered remote



estimation of countable state Markov processes where the

sensor harvests energy to communicate. They show that if

the Markov process is symmetric in an appropriate sense,

then the results of [4] continue to hold. Both [4] and [5]

identified dynamic programs to find the optimal thresholds.

The authors of [15] adopted a formulation that is similar

to [4]. They consider a networked control problem with

transmission costs, where they adopt a Kalman-like estimator

and show, using dynamic programming, that, for such a pre-

determined choice of estimator, the optimal pre-processor

is a memoryless function of the state estimation error. In

contrast to [4], the problem analyzed in [15] dealt also with

the multidimensional case.

Threshold based transmission policies may be viewed as

event-based transmission policies: transmission takes place

when an event (estimation error greater than a threshold)

takes place. Such event-based transmission has also received

considerable attention in the literature, a detailed overview

of which is given in [16]. In recent years, various event-

triggering policies have been proposed and analyzed for

different problem formulations, for both stochastic and deter-

ministic set-ups. Given below are some of the contributions

in stochastic event-based sampling.

[17] showed that the optimal event-triggering rules are

given by the solutions to the optimal stopping-time problems

and derived the jointly optimal stopping times and control

signals for first-order systems. An extension to this work

was carried out in [18] for a Markov state process with

hard communication constraints, where it was shown that

the optimal thresholds can be chosen one at a time using

solutions to a nested sequence of optimization problems each

with a single threshold as its decision variable, and in [19]

for second-order systems, where the optimal threshold were

computed by minimizing the aggregate performance for a

given weight.

In a finite horizon LQG optimal control set-up, [20]

considered optimal closed-loop design for event-based sys-

tems, with a joint selection of the event triggering policy

and control law. They showed that the optimal scheduler

sequence can be computed by solving a deterministic dy-

namic program. In a subsequent work, [21], the authors have

shown that the optimal controller is a certainty equivalence

controller consisting of linear gains and the optimal state

estimator at the event-trigger is given by the Kalman filter.

The event-trigger consists of a Kalman filter and a copy of

the affine-linear predictor at the controller.

The rest of the paper is organized as follows. In Section II,

to study the discounted cost problem, we revisit the model

of [4] and [5] and look at it from a slightly different point

of view. Consequently, we use the results of [22], where

we use the idea of calibration from multi-armed bandits. We

identify the value of the communication cost for which one is

indifferent between two consecutive threshold policies. Using

these values, we obtain the range of communication costs for

which a particular policy is optimal. The main result is then

discussed in Section III, where the average cost problem is

studied as an extension to the discounted cost problem as the

discount factor goes to 1. Using vanishing discount approach,

we give the average cost and the optimal thresholds as

functions of the communication cost. We show that the

communication index provides the complete characterization

of the optimal communication policy for all values of the

communication cost.

B. Notation

Z denotes the set of integers and N denotes the set of nat-

ural numbers. x1:t is a short hand for the vector (x1, . . . , xt).
For a matrix A, Aij denotes the (i, j)-th element of A and

Ai denotes the i-th row of A. Note that unlike the standard

notation, in our notation the indices to denote an element of

a matrix take both positive and negative values. Furthermore,

A⊺ denotes the transpose of A. Ik denotes the identity matrix

of dimension k × k, k ∈ N. 1k denotes k × 1 vector of

ones. 〈v, w〉 denotes the inner product between vectors v
and w, P(·) denotes the probability of an event, E[·] denotes

the expectation of a random variable, and 1{·} denotes the

indicator function of a statement.

C. Problem Formulation

Consider a remote sensing system, which consists of a

sensor and an estimator. The sensor observes the state of

a first-order Markov process {Xt}
∞
t=0, Xt ∈ Z

1, with

transition matrix P . Assume that the Markov process starts

in state x0 that is known to the sensor and the estimator.

At time t, the sensor decides between two alternatives:

either to transmit the current state Xt and incur a cost c or not

transmit and incur no cost. The sensor’s decision is denoted

by Ut ∈ {0, 1}, where Ut = 0 denotes no transmission and

Ut = 1 denotes transmitting the current state. The transmitted

symbol Yt is given by

Yt =

{

Xt, if Ut = 1

ǫ, if Ut = 0

where ǫ means no transmission.

The sensor’s decision is generated as follows:

Ut = ft(X1:t, U1:t−1, Y1:t−1) (1)

where ft is called the communication rule at time t and

the collection f = (f1, f2, · · · ) is called the communication

policy.

The estimator observes the transmitted symbols and gen-

erates an estimate X̂t ∈ Z as follows:

X̂t = gt(Y1:t) (2)

where gt is called the estimation rule at time t and the

collection g = (g1, g2, · · · ) is called the estimation policy.

We are interested in the following optimization problem:

Problem 1: In the above model, given the transition matrix

P of the Markov process, the communication cost c and a

1The results generalize to Xt ∈ Rn, but for ease of exposition we restrict
our discussion to Xt ∈ Z



distortion function ℓ : Z × Z → R+, choose transmission

and estimation policies (f ,g) to minimize the average cost

J(f ,g) = lim
T→∞

E

[ 1

T

T
∑

t=0

[

cUt + ℓ(Xt, X̂t)
]

∣

∣

∣
X0 = x0

]

(3)

To analyze the above average cost optimization problem,

first we define the following discounted cost optimization

problem as an intermediate step.

Problem 2: In the above model, given the transition matrix

P of the Markov process, the communication cost c and a

distortion function ℓ : Z×Z → R+, choose transmission and

estimation policies (f ,g) to minimize the discounted cost

J(f ,g) = E

[

∞
∑

t=0

βt
[

cUt + ℓ(Xt, X̂t)
]

∣

∣

∣
X0 = x0

]

(4)

where β ∈ (0, 1) is the discount factor.

In the next section, we state some relevant results for

the discounted cost problem that were derived in [23]. The

analysis of Problem 1 is then discussed as an extension to

Problem 2.

D. Preliminary results on structure of optimal policies

We want to use vanishing discount approach to study

Problem 1. So, we consider Problem 2 first. Slight variations

of the above model have been considered in [4], [5] where

the objective was to minimize the finite horizon cost

E

[

T
∑

t=0

[

cUt + ℓ(Xt, X̂t)
]

∣

∣

∣
X0 = x0

]

. (5)

The model in [4] assumed a Gauss-Markov source with

square error distortion while the model in [5] assumed that

sensor had limited battery that was replenished using energy

harvesting. Both these papers established the structure of

optimal communication and estimation policies under the

following assumptions.

(A1) The transition matrix P of the Markov process is a

symmetric and banded Toeplitz matrix with decaying

terms, i.e.

Pij =

{

p|i−j|, if |i− j| ≤ b

0, if |i− j| > b

where b is fixed and p0 > p1 > · · · > pb.

(A2) The distortion function is given by ℓ(Xt, X̂t), where

ℓ is monotone increasing and even function given by

ℓ(Xt, X̂t) = 1{Xt 6= X̂t} or ℓ(Xt, X̂t) = |Xt − X̂t|
d

for some d > 0. With a slight abuse of notation, we use

ℓ(Xt − X̂t) to denote the distortion function.

Remark 1: Instead of assumption (A1), it was assumed in [5]

that the Markov process evolves according to

Xt+1 = Xt +Nt

where Nt has an even and a.s.u. (almost symmetric and

unimodal) distribution. That assumption was motivated by

the model in [4] where the (real-valued) Markov process

evolves according to

Xt+1 = aXt +Nt

where Nt is a zero-mean Gaussian process. Our assumption

(A1) is equivalent the assumption of [5]. In addition, [5] had

assumed that the distribution of X0 is even and a.s.u. We

do not need that assumption because we assume that x0 is

fixed.

Definition 1: Let Zt denote the most recent transmitted

value of the Markov process. The process {Zt}
∞
t=0 evolves

in a controlled Markov manner as follows:

Z0 = x0

and

Zt =

{

Xt, if Ut = 1

Zt−1, if Ut = 0.

Note that since Ut can be inferred from the transmitted

symbol Yt, the estimator can also keep track of Zt as follows:

Z0 = x0

and

Zt =

{

Yt, if Yt 6= ǫ

Zt−1, if Yt = ǫ.

Theorem 1: [5, Theorem 2], [4, Proposition 1] Consider

the finite horizon version of Problem 2 under assumptions

(A1) and (A2). The process {Zt}
T
t=0 is a sufficient statistic

at the estimator and an optimal estimation policy is given

by:

X̂t = gt(Zt) = Zt. (6)

In general, the optimal estimation policy depends on the

choice of the communication policy and vice-versa. Theo-

rem 1 shows that when the Markov process and the distor-

tion function satisfy appropriate symmetry assumptions, the

optimal estimation policy can be specified in closed form.

Consequently, we can fix the estimator to be of the above

form, and consider the centralized problem of identifying the

best communication policy.

Definition 2: Let Et = Xt − Zt−1. The process {Et}
∞
t=0

evolves in a controlled Markov manner as follows:

P(Et+1 = n | Et = e, Ut = u) =

{

P0n if u = 1

Pen if u = 0.

Theorem 2: [5, Theorem 3], [4, Theorem 1] Consider the

finite horizon version of Problem 2 under assumptions (A1)

and (A2). The process {Et}
T
t=1 is a sufficient statistic at the

sensor and an optimal communication policy is characterized

by a sequence of thresholds {kt}
T
t=1 i.e.,

Ut = ft(Et) =

{

1, if |Et| ≥ kt

0, if |Et| < kt.



The optimal policy mentioned above is given by the solution

of the following dynamic programming

VT+1(·; ·) = 0 (7)

and for t = T, . . . , 0

Vt(e; c) = min
{

c+
∞
∑

n=−∞

P0nVt+1(n; c), (8)

ℓ(e) +
∞
∑

n=−∞

PenVt+1(n; c)
}

.

We are interested in the sensitivity of the optimal policy to

a change in the communication cost c. For that reason, we

parametrize value function with the communication cost c.

Lemma 3: [23, Lemma 5] For all t = 1, · · · , T , the value

function Vt(·; ·) is even and increasing on Z≥0, i.e.

Vt(−e; c) = Vt(e; c) ≤ Vt(e+ 1; c), ∀e ∈ Z≥0.

E. Contributions of this paper

Theorem 2 shows that the optimal communication policy

is threshold based and, hence, easy to implement. However,

we still need to solve an appropriate dynamic program to

identify the thresholds. In this paper, we first consider the

infinite horizon discounted cost problem. From Theorem 1,

the optimal estimation policy is time-invariant. As an in-

termediate step to study the average cost problem, we first

mention the relevant results of [22] for discounted cost

problem, which showed that under appropriate conditions

the optimal communication policy is time-invariant threshold

policy and is given by the fixed point of a dynamic program.

The average cost problem is then studied as an extension to

the discounted cost problem as the discount factor goes to 1.

Using vanishing discount approach, we give the average cost

and the optimal thresholds as functions of the communication

cost. We show that the communication index provides the

complete characterization of the optimal communication

policy for all values of the communication cost.

II. RESULTS FOR THE DISCOUNTED COST SET-UP

A. Dynamic program for infinite horizon set-up

The structural result of Theorems 1 and 2 extend to the in-

finite horizon set-up. To show that the corresponding optimal

policy is time-homogeneous, we assume the following:

(A3) There exists positive and finite constant µ1 and µ2 and

a function w : Z → R such that for all e ∈ Z

max{c, ℓ(e)} ≤ µ1w(e);

and

max
{

∞
∑

n=−∞

Penw(n),

∞
∑

n=−∞

P0nw(n)
}

≤ µ2w(e).

Theorem 4: [22] Consider Problem 2 under assumptions

(A1), (A2) and (A3). The process {Et}
∞
t=1 is a sufficient

statistic at the sensor and an optimal communication policy

is characterized by a time-invariant threshold k, i.e.,

Ut = f(Et) =

{

1, if |Et| ≥ k

0, if |Et| < k.
(9)

The optimal policy mentioned above is given by the unique

fixed point of the following dynamic programming

V (e; c) = min
{

c+ β
∞
∑

n=−∞

P0nV (n; c),

ℓ(e) + β

∞
∑

n=−∞

PenV (n; c)
}

.

(10)

We are interested in the sensitivity of the optimal policy

to a change in the communication cost c. For that reason, we

parametrize value function with the communication cost c.

B. Performance of a threshold policy

Let F denote the class of all time-homogeneous threshold-

based policies of the type (9). Let fk ∈ F denote the policy

with threshold k, k ∈ N, i.e.

fk(e) =

{

1, if |e| ≥ k

0, if |e| < k.

Let Wk(e; c) denote the performance of policy fk when the

system starts in state e and has a communication cost c.
From standard results in Markov decision processes, Wk is

the unique fixed point of the following fixed point equation:

Wk(e; c) =















c+ β
∞
∑

n=−∞
P0nWk(n; c), if |e| ≥ k,

ℓ(e) + β
∞
∑

n=−∞
PenWk(n; c), if |e| < k

(11)

Define square matrices P (k) and Q(k) and a column vector

ℓ(k) indexed by I(k) = {−k + 1, · · · , k − 1} as follows:

P
(k)
ij = Pij , i, j ∈ I(k); (12)

Q(k) = [I2k−1 − βP (k)]−1; (13)

ℓ(k) = [ℓ(−k + 1), ℓ(−k + 2), · · · , ℓ(k − 2), ℓ(k − 1)]⊺.
(14)

Lemma 5: [23] For all n ∈ N,
〈

(P (k))n0 ,12k−1

〉

<
〈

(P (k+1))n0 ,12k+1

〉

, (15)
〈

(P (k))n0 , ℓ
(k)

〉

<
〈

(P (k+1))n0 , ℓ
(k+1)

〉

. (16)

Let τk denote the stopping time when the Markov process

starting at state 0 at time t = 0 enters the set {e ∈ Z : |e| ≥
k}. Define Lk and Tk as follows

Lk = E

[

τk−1
∑

t=0

βtℓ(Et)
∣

∣

∣
E0 = 0

]

and

Tk =
1− E[βτk ]

1− β
.



Then, the closed form expression for Lk and Tk is given

by the following lemma.

Lemma 6: [22]

1) Wk(0; c) can be written as

Wk(0; c) =
Lk + c

(1− β)Tk

− c (17)

2) Lk and Tk defined above can be expressed in a closed

form as follows:

Lk =
〈

Q
(k)
0 , ℓ(k)

〉

; (18)

Tk =
〈

Q
(k)
0 ,12k−1

〉

, (19)

where Q
(k)
0 denotes the row with index 0 in Q(k). Sub-

stituting these in (17), we get a closed form expression

of Wk(0; c).
3) Tk < Tk+1 and Lk < Lk+1.

Lemma 7: [22] The value function V (et; ·), as given in

(10, is a piece-wise linear and concave function of c for all

e ∈ Z.

C. Characterization of optimal policy

(A4) Lk/Tk is increasing in k.

Theorem 8: [22] Define ck as

ck =

(

Lk+1

Tk+1
−

Lk

Tk

)

/

(

1

Tk

−
1

Tk+1

)

. (20)

Suppose (A4) holds and {ck}
∞
k=1 is an increasing sequence.

Then, for all c ∈ (ck, ck+1] such that ck 6= ck+1, the policy

fk+1 is discounted cost optimal.

III. MAIN RESULTS FOR THE AVERAGE COST SET-UP

We follow the vanishing discount approach and show that

the optimal policy for the average cost set-up is given as a

limit of the discounted cost set-up as the discount factor β →
1. This approach relies on the following theorem. Note that to

capture the dependence of the discount factor, in the sequel

we use the subscript or superscript β with Wβ,k, Q(β,k),

Lβ,k, Tβ,k and cβ,k.

Theorem 9: [24, Theorem 7.2.3] Let Vβ and gβ be the value

function and optimal policy for a countable state MDP for

the discounted cost set-up with discount factor β. Suppose

the value function Vβ satisfies the following SEN conditions.

(S1) There exists a refernece state e0 ∈ Z, such that (1 −
β)Vβ(e0) < ∞ for all β ∈ (0, 1).

(S2) Define hβ(e) = Vβ(e)−Vβ(e0). There exists a function

M : Z → R such that hβ(e) ≤ M(e) for e ∈ Z and

β ∈ (0, 1).
(S3) There exists a nonegative (finite) constant L such that

−L ≤ hβ(e) for e ∈ Z and β ∈ (0, 1).

Then,

i The optimal average cost is given by

J ≡ lim
β→1−

(1− β)Vβ(e). (21)

The limit exists and does not depend on e.

ii Let ḡ be any limit point of gβ . Then ḡ is average cost

optimal.

We will show that the value functions in the discounted

cost set-up derived in Section II satisfy the SEN conditions.

To show that, we introduce the notion of a z-standard policy.

Definition 3: Consider a Markov chain with state space X .

For i, j ∈ X . Let mij denote the expected time to go from

i to j for the first time and cij denotes the expected cost

of a first passage from i to j. A Markov chain is called

z-standard, z ∈ X , if mij < ∞ and cij < ∞ for all i ∈ X .

Definition 4: Let d be a (possibly randomized) stationary

policy for a Markov decision process. Then d is a z-standard

policy if the Markov chain induced by d is z-standard.

Lemma 10: The policy f0 is 0-standard.

Proof: The policy f0 is essentially an ‘always transmit’

policy. Then, for any starting state e, the induced Markov

chain goes to the state 0 instantaneously and then goes to

some next state n with probability P0n. Hence we have

me0 < ∞. Also, the expected cost is given by ce0 = c
1−β

<
∞. Hence, f0 is 0-standard.

Proposition 11: The value function Vβ (defined by (10))

satisfies SEN conditions.

Proof: Proposition 7.5.3 of [24] states that if there

exists a z-standard policy, then (S1)-(S2) hold for reference

state z. Hence in our model (S1)-(S2) hold for reference state

0. Furthermore, an immediate consequence of Lemma 3 that

Vβ(e) ≥ Vβ(0). Hence (S3) holds for L = 0.

Let J(c) denote the optimal average cost when the com-

munication cost is c. Since our model satisfies the SEN

conditions (Proposition 11), the optimal average cost J(c)
and an optimal policy are given by Theorem 9. In particular

J(c) = lim
β→1−

(1− β)Vβ(0). (22)

Theorem 8 gives the value of communication costs for

which policy fk+1 is optimal. Proposition 11 gives the

corresponding value function (which equals Wβ,k). In the

next section, we combine these two results to identify a

closed form expression for J(c) and the optimal policy.

A. Structure of optimal policies

Recall the definition of P (k) and ℓ(k) given by (12) and

(14) and define

Q̄(k) = [I2k−1 − P (k)]−1.

Note that Q̄(k) exists since P (k) is substochastic [25].

Define

L̄k =
〈

Q̄
(k)
0 , ℓ(k)

〉

(23)

T̄k =
〈

Q̄
(k)
0 ,12k−1

〉

(24)



where Q̄
(k)
0 denotes the row with index 0 in Q̄(k) and

c̄k =

(

L̄k+1

T̄k+1
−

L̄k

T̄k

)

/

(

1

T̄k

−
1

T̄k+1

)

. (25)

Note that c̄k is well-defined as the following lemma holds.

Lemma 12: L̄k < L̄k+1 and T̄k < T̄k+1.

Proof: Since P (k) is a sub-stochastic matrix, Q̄(k) exists

and is given by

Q̄(k) = I + P (k) + (P (k))2 + · · · . (26)

Thus,

T̄k =
〈

Q̄
(k)
0 ,12k−1

〉

=
〈

I0,12k−1

〉

+
〈

P
(k)
0 ,12k−1

〉

+
〈

(P (k))20,12k−1

〉

+ · · · (27)

L̄k =
〈

Q̄
(k)
0 , ℓ(k)

〉

=
〈

I0, ℓ
(k)

〉

+
〈

P
(k)
0 , ℓ(k)

〉

+
〈

(P (k))20, ℓ
(k)

〉

+ · · · (28)

The result follows from (27), (28) and Lemma 5.

Lemma 13: We have the following

(i) limβ→1− Q(β,k) = Q̄(k)

(ii) limβ→1− Lβ,k = L̄k

(iii) limβ→1− Tβ,k = T̄k

(iv) limβ→1− cβ,k = c̄k.

Proof: (i) follows from the continuity of Q(β,k) in

β; (ii) and (iii) follow from (i) and the continuity of inner

product; since cβ,k is continuous in β, (iv) follows from (ii)

and (iii).

Theorem 14: Suppose that (A4) holds and {c̄k} is increas-

ing. Then for all c ∈ (c̄k, c̄k+1] the policy fk+1 is optimal

and corresponding average cost is given by

J(c) =
L̄k+1 + c

T̄k+1
. (29)

Proof: Consider a c ∈ (c̄k, c̄k+1]. From Lemma 13,

it follows that ∃β∗ ∈ (0, 1) such that ∀β ∈ (β∗, 1), c ∈
(cβ,k, cβ,k+1]. By Theorem 8, the policy fk+1 is optimal for

β ∈ (β∗, 1). Hence, by Theorem 9 (ii), the policy fk+1 is

also optimal for the average cost set-up.

Since policy fk+1 is optimal for β ∈ (β∗, 1), the value

function is given by Vβ,k+1(e; c). By Theorem 9 (i) and (17),

we get that

J(c) = lim
β→1−

(1− β)Vβ,k+1(0; c) =
L̄k+1 + c

T̄k+1
.

Proposition 15: J(c) is piece-wise linear, increasing and

concave in c.

Proof: From the expression of J(c) as given in (29),

we see that J(c) is a linear and increasing in c, for all c ∈
(c̄k, c̄k+1). Also, from Theorem 14 we have that

J(c̄−k ) =
L̄k + c̄k

T̄k

J(c̄+k ) =
L̄k+1 + c̄k

T̄k+1
.

Following (25), we have that J(c̄−k ) = J(c̄+k ) and hence J(·)
is a continuous function of c.

Now, let us consider two consecutive intervals (c̄k, c̄k+1]
and (c̄k+1, c̄k+2]. We know that

J(c+k ) =
L̄k+1 + c̄k

T̄k+1

J(ck+1) = J(c−k+1) =
L̄k+1 + c̄k+1

T̄k+1

= J(c+k+1) =
L̄k+2 + c̄k+1

T̄k+2

J(ck+2) = J(c−k+2) =
L̄k+2 + c̄k+2

T̄k+2
.

Hence, the slope of J in (c̄k, c̄k+1] is given by

J(ck+1)− J(c+k )

ck+1 − ck

=
( L̄k+1 + c̄k+1

T̄k+1
−

L̄k+1 + c̄k
T̄k+1

)/

(c̄k+1 − c̄k)

=
1

T̄k+1
.

Similarly, we have that the slope of J in (c̄k+1, c̄k+2] is

1/T̄k+2. Since by Lemma 12 T̄k+1 < T̄k+2, we have that

the slope of J is decreasing in c. This completes the proof.

IV. AN EXAMPLE: APERIODIC, SYMMETRIC

BIRTH-DEATH MARKOV CHAIN

0 1 2 · · ·−1−2· · ·

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

pppppp

Fig. 1. A birth-death Markov chain

Consider a birth-death Markov chain, shown in Fig. 1,

with transition probabilities as follows:

Pij =











p, if j = i+ 1, i− 1

1− 2p, if j = i

0, otherwise.

where p ∈ (0, 1
2 ). Let the distortion function ℓ(·) to be ℓ(e) =

|e|. Note that P and ℓ satisfy (A1) and (A2).



Lemma 16: (A3) is always satisfied for the above model.

The values of the function w(·) and the parameters µ1 and

µ2 are given by:

w(e) = max{c, ℓ(e)}, µ1 = 1,

µ2 = max{1− 2p+ 2p/c, ℓ(2)}

Proof: The result may be verified separately for ℓ(e) =
1{e 6= 0} and ℓ(e) = |e|d by substitution.

Since (A3) is satisfied, the optimal communication policy

is a time-homogeneous threshold policy. Hence, the frame-

work of sections II-B–II-C is applicable. The communication

indices {cβ,k}
∞
k=1 depend on the values of Lβ,k and Tβ,k,

which in turn depend on the matrix Q(β,k). Since, Q(β,k)

is the inverse of a tridiagonal symmetric Toeplitz matrix, an

explicit formula for its elements is available [26].

Lemma 17: Define D = −2 − (1 − β)/(βp) and λ =
cosh−1(−D/2). As β → 1−, we have

D̄ = lim
β→1−

D = −2.

Then Q̄(k) is given by

Q̄
(k)
ij =

(2k + i+ j − |j − i|)(2k − i− j − |j − i|)

8kp
, (30)

where i, j ∈ I(k−1). In particular Q̄
(k)
0j is given by:

Q̄
(k)
0j =

(2k + j − |j|)(2k − j − |j|)

8kp
. (31)

Proof: The matrix I2k−1 − P (k) ∈ R
2k−1×2k−1 is a

symmetric tridiagonal matrix given by

I2k−1−P (k) = −p























D̄ 1 0 0 · · · · · · 0
1 D̄ 1 0 · · · · · · 0
0 1 D̄ 1 · · · · · · 0
0 · · · 1 D̄ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 1 D̄ 1
0 · · · · · · · · · 0 1 D̄























Q̄(k) is the inverse of the above matrix. The inverse of

tridiagonal Toeplitz matrix in the above form are computed

in closed form in [26].

Following [26], we get the result of the lemma as a limiting

case of the Q(β,k) by solving finite difference equation

associated with the one-dimensional Poisson equation with

Dirichlet boundary conditions for the case D̄ = −2, i.e. for

λ = 0.

Lemma 18: For the above birth-death Markov chain with

ℓ(e) = |e|,

L̄k =
k(k2 − 1)

6p
(32a)

T̄k =
k2

2p
(32b)

c̄k =
k(k + 1)(k2 + k + 1)

6p(2k + 1)
. (32c)

Proof: Combining the results of Lemmas 6 and 17, we

get that

L̄k =

k−1
∑

e=−k+1

Q̄
(k)
0e ℓ(e),

and T̄k =

k−1
∑

e=−k+1

Q̄
(k)
0e ,

where Q
(β,k)
0e is given by (31). Simplifying the above expres-

sions we get (32a) and (32b). (32c) is obtained by plugging

these expressions for L̄k and T̄k in (25).

Lemma 19: For the above birth-death Markov chain with

ℓ(e) = |e|, c̄k is increasing in k.

Proof: Using (32c) we have

c̄k+1 − c̄k =
(k + 1)(6k3 + 20k2 + 16k + 6)

6p(2k + 3)(2k + 1)
.

Hence c̄k+1 ≥ c̄k since k ∈ Z≥0.

For the above birth-death Markov chain, the average cost

J(·) is piece-wise linear, increasing and concave function of

the communication cost c which is shown in Fig. 2. The

values of the corresponding c̄k are shown in the abscissa

(c̄1 = 1.11 is not shown due to dearth of space).

Fig. 2. The plot of average cost as a function of communication cost for
the example with p = 0.3.

V. CONCLUSION

In this paper, we study a remote sensing problem with

communication cost and investigate the average cost opti-

mization problem. We follow vanishing discount approach

and extend the results of infinite horizon discounted cost

problem to obtain the desired results. We obtain an explicit

characterization of the communication indices that represent

the value of communication cost for which one is indifferent

between two consecutive threshold policies. We provide

closed form expressions of these communication thresholds

and use them to completely characterize the optimal com-

munication policy for all values of the communication cost.
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