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Abstract— In this paper, we consider a remote sensing system
that consists of a sensor and an estimator. A sensor observes a
first order Markov source and must communicate it to a remote
estimator. Communication is noiseless but expensive. At each
time, based on the history of its observations and decisions, the
sensor chooses whether to transmit or not. If the sensor does not
transmit, then the estimator must estimate the Markov process
using its past observations. It was shown by Lipsa and Martins,
2011 and by Nayyar et al, 2013 that the optimal strategy has the
following structure. The optimal estimation strategy is Kalman-
like and the optimal communication strategy is to communicate
when the estimation error is greater than a threshold. We
derive closed form expressions for infinite horizon discounted
cost version of the problem. Our solution approach is inspired
by the idea of calibration used in multi-armed bandits. We
identify the value of the communication cost for which one is
indifferent between two consecutive threshold based strategies.
Using these values, we characterize the optimal thresholds as
a function of the communication cost. Lastly, we present an
example of birth-death Markov chain to illustrate our results.

I. INTRODUCTION

A. Motivation

In this paper, we consider a model that captures a funda-

mental trade-off between communication cost and estimation

accuracy. This model is motivated by applications in smart

grids and environmental monitoring.

In smart grids, it is envisioned that smart meters will

measure the energy consumption in households and com-

municate these measurements to an aggregator which will

use this information for demand response etc. In such a

scenario, it is important not to flood the communication

network with measurement information by communicating

periodically. Instead, one can model the signaling overhead

as a cost and optimally trade-off communication cost with

estimation accuracy.

In environmental monitoring, a sensor network is used

to measure an environmental variable such as rainfall, soil

moisture, etc. Energy consumption at the sensor is an impor-

tant consideration in such systems because it is expensive

to replace the sensor battery. Thus, to conserve battery, it

is important not to transmit periodically. Instead, one can

model the energy consumed while communicating as a cost

and optimally trade-off communication cost with estimation

accuracy.

Similar scenarios also arise in other applications such as

networked control systems. Consider the following model
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that captures the above scenarios. A sensor observes a first

order Markov process and must communicate it to a remote

estimator. Communication is noiseless but expensive. At each

time, based on the history of its observations and decisions,

the sensor chooses whether to transmit or not. If the sensor

does not transmit, then the estimator must estimate the

Markov process using its past observations. The objective

is to minimize a weighted combination of communication

cost and estimation error.

The remote estimation is conceptually difficult due to

information decentralization. When the sensor decides not

to communicate, its decision is based on the current value of

the Markov process. So, even when the estimator does not

receive an observation, the ‘absence of observation’ conveys

some information about the Markov process. Such signal-

ing problems are known to be notoriously hard, with the

Witsenhausen’s counterexample [1] being the most famous

example.

The above model has received considerable attention in

the literature. The most closely related papers are [2]–[5],

which are briefly summarized below. Other related work

includes models where the sensor is allowed to sleep for

a pre-specified amount of time [6] and models where the

estimator decides when the sensor should transmit [7]–[9].

The setup of this paper is also related to the censoring sensors

considered in hypothesis testing [10], [11] (where the sensor

takes one measurement and decides whether to transmit it or

not) and real-time source coding [12], [13] (where the sensor

must transmit a quantized version of the observation).

In [2], the authors considered a remote estimation problem

where the sensor could communicate a finite number of

times. They assumed that the sensor used a threshold strategy

to decide when to communicate and determined the optimal

estimation strategy and the value of the thresholds. In [3],

the authors considered remote estimation of Gauss-Markov

processes. They assumed a particular form of the estimator

and show that the estimation error is a sufficient statistic for

the sensor.

In [4] too, the authors considered remote estimation of

Gauss-Markov processes but do not impose any assumption

on the communication or estimation strategy. They use ideas

from majorization theory to show that the optimal estimation

strategy is Kalman-like and the optimal communication

strategies are threshold based. In [5], the authors considered

remote estimation of countable state Markov processes where

the sensor harvests energy to communicate. They show that

if the Markov process is symmetric in an appropriate sense,

then the results of [4] continue to hold. Both [4] and [5]
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identified dynamic programs to find the optimal thresholds.

Threshold based transmission policies may be viewed as

event-based transmission policies: transmission takes place

when an event (estimation error greater than a threshold)

takes place. Such event-based transmission has also received

considerable attention in the literature, a detailed overview

of which is given in [14]. In recent years, various event-

triggered policies have been proposed and analyzed for

different stochastic and deterministic setups, of which a few

works are given in [15]–[19].

In this paper, we revisit the model of [4] and [5] and look

at it from a slightly different point of view. Instead of asking

what is the optimal threshold for a particular communication

cost, we ask what is the range of communication costs for

which a particular threshold is optimal. To find such a range,

we use the idea of calibration from multi-armed bandits. We

identify the value of the communication cost for which one

is indifferent between two consecutive threshold strategies.

Using these values, we obtain the range of communication

costs for which a particular strategy is optimal.

B. Notation

Z denotes the set of integers and N denotes the set of nat-

ural numbers. x1:t is a short hand for the vector (x1, . . . , xt).
For a matrix A, Aij denotes the (i, j)-th element of A and

Ai denotes the i-th row of A. Note that unlike the standard

notation, in our notation the indices to denote an element of

a matrix take both positive and negative values. Furthermore,

A⊺ denotes the transpose of A. Ik denotes the identity matrix

of dimension k × k, k ∈ N. 1k denotes k × 1 vector of

ones. 〈v, w〉 denotes the inner product between vectors v
and w, P(·) denotes the probability of an event, E[·] denotes

the expectation of a random variable, and 1{·} denotes the

indicator function of a statement.

C. Problem Formulation

Consider a remote sensing system, which consists of a

sensor and an estimator. The sensor observes the state of

a first-order Markov process {Xt}
∞
t=0, Xt ∈ Z

1, with

transition matrix P . Assume that the Markov process starts

in state x0 that is known to the sensor and the estimator.

At time t, the sensor decides between two alternatives:

either to transmit the current state Xt and incur a cost c or not

transmit and incur no cost. The sensor’s decision is denoted

by Ut ∈ {0, 1}, where Ut = 0 denotes no transmission and

Ut = 1 denotes transmitting the current state. The transmitted

symbol Yt is given by

Yt =

{

Xt, if Ut = 1

ǫ, if Ut = 0

where ǫ means no transmission.

The sensor’s decision is generated as follows:

Ut = ft(X1:t, U1:t−1, Y1:t−1) (1)

1The results generalize to Xt ∈ Rn, but for ease of exposition we restrict
our discussion to Xt ∈ Z

where ft is called the communication rule at time t and

the collection f = (f1, f2, · · · ) is called the communication

strategy.

The estimator observes the transmitted symbols and gen-

erates an estimate X̂t ∈ Z as follows:

X̂t = gt(Y1:t) (2)

where gt is called the estimation rule at time t and the

collection g = (g1, g2, · · · ) is called the estimation strategy.

We are interested in the following optimization problem:

Problem 1: In the above model, given the transition matrix

P of the Markov process, the communication cost c and a

distortion function ℓ : Z × Z → R+, choose transmission

and estimation strategies (f ,g) to minimize the discounted

cost

J(f ,g) = E

[

∞
∑

t=0

βt
[

cUt + ℓ(Xt, X̂t)
]

∣

∣

∣
X0 = x0

]

(3)

where β ∈ (0, 1) is the discount factor.

D. Results of [4] and [5]

Slight variations of the above model have been considered

in [4], [5] where the objective was to minimize the finite

horizon cost

E

[

T
∑

t=0

[

cUt + ℓ(Xt, X̂t)
]

∣

∣

∣
X0 = x0

]

. (4)

The model in [4] assumed a Gauss-Markov process with

square error distortion while the model in [5] assumed

that sensor had limited battery that was replenished using

energy harvesting. The structure of optimal communication

and estimation strategies was established in [5] under the

following assumptions.

(A1) The transition matrix P of the Markov process is a

symmetric and banded Toeplitz matrix with decaying

terms, i.e.

Pij =

{

p|i−j|, if |i− j| ≤ b

0, if |i− j| > b

where b is fixed and p0 > p1 > · · · > pb.

(A2) The distortion function is given by ℓ(Xt, X̂t), where

ℓ is monotone increasing and even function given by

ℓ(Xt, X̂t) = 1{Xt 6= X̂t} or ℓ(Xt, X̂t) = |Xt − X̂t|
d

for some d > 0. With a slight abuse of notation, we use

ℓ(Xt − X̂t) to denote the distortion function.

Remark 1: Instead of assumption (A1), it was assumed in [5]

that the Markov process evolves according to

Xt+1 = Xt +Nt

where Nt has an even and a.s.u. (almost symmetric and

unimodal) distribution. That assumption was motivated by

the model in [4] where the (real-valued) Markov process

evolves according to

Xt+1 = aXt +Nt
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where Nt is a zero-mean Gaussian process. Our assumption

(A1) is equivalent to the assumption of [5] and, in our

opinion, a more natural characterization of a Markov process.

In addition, [5] had assumed that the distribution of X0 is

even and a.s.u. We do not need that assumption because we

assume that x0 is fixed.

Definition 1: Let Zt denote the most recent transmitted

value of the Markov process. The process {Zt}
∞
t=0 evolves

in a controlled Markov manner as follows:

Z0 = x0

and

Zt =

{

Xt, if Ut = 1

Zt−1, if Ut = 0.

Note that since Ut can be inferred from the transmitted

symbol Yt, the estimator can also keep track of Zt as follows:

Z0 = x0

and

Zt =

{

Yt, if Yt 6= ǫ

Zt−1, if Yt = ǫ.

Theorem 1: [5, Theorem 2], [4, Proposition 1] Consider

the finite horizon version of Problem 1 under assumptions

(A1) and (A2). The process {Zt}
T
t=0 is a sufficient statistic

at the estimator and an optimal estimation strategy is given

by:

X̂t = gt(Zt) = Zt. (5)

In general, the optimal estimation strategy depends on

the choice of the communication strategy and vice-versa.

Theorem 1 shows that when the Markov process and the

distortion function satisfy appropriate symmetry assump-

tions, the optimal estimation strategy can be specified in

closed form. Consequently, we can fix the estimator to be

of the above form, and consider the centralized problem of

identifying the best communication strategy.

Definition 2: Let Et = Xt − Zt−1. The process {Et}
∞
t=0

evolves in a controlled Markov manner as follows:

P(Et+1 = n | Et = e, Ut = u) =

{

P0n if u = 1

Pen if u = 0.

Theorem 2: [5, Theorem 3], [4, Theorem 1] Consider

the finite horizon version of Problem 1 under assumptions

(A1) and (A2). The process {Et}
T
t=1 is a sufficient statistic

at the sensor and an optimal communication strategy is

characterized by a sequence of thresholds {kt}
T
t=1 i.e.,

Ut = ft(Et) =

{

1, if |Et| ≥ kt

0, if |Et| < kt.

The optimal strategy mentioned above is given by the solution

of the following dynamic programming

VT+1(·) = 0 (6)

and for t = T, . . . , 0

Vt(e) = min
{

c+

∞
∑

n=−∞

P0nVt+1(n), (7)

ℓ(e) +

∞
∑

n=−∞

PenVt+1(n)
}

.

E. Contributions of this paper

Theorem 2 shows that the optimal communication strategy

is threshold based and, hence, easy to implement. However,

we still need to solve an appropriate dynamic program to

identify the thresholds. In this paper, we consider the infinite

horizon discounted cost problem. From Theorem 1, the

optimal estimation strategy is time-invariant. Using standard

results for countable state Markov decision processes, we

show that under appropriate conditions the optimal com-

munication strategy is time-invariant threshold strategy and

given by the fixed point of a dynamic program.

The dynamic program for the infinite horizon discounted

cost problem is similar to the dynamic programs that arises

in multi-armed bandits [20]. We exploit this relationship and

use the idea of calibration from multi-armed bandits. We first

derive a closed form expression for an arbitrary threshold

based strategy. We use this expression to obtain a closed

form expression of the communication index, i.e. the value

of communication cost for which one is indifferent between

two consecutive threshold strategies. We show that the com-

munication index provides the complete characterization of

the optimal communication strategy for all values of the

communication cost.

II. MAIN RESULTS

A. Dynamic program for infinite horizon setup

In contrast to [4], [5], we consider infinite horizon dis-

counted cost problem. The structural result of Theorems 1

and 2 extend to the infinite horizon setup. To show that

the corresponding optimal strategy is time-homogeneous, we

assume the following:

(A3) There exists positive and finite constant µ1 and µ2 and

a function w : Z → R such that for all e ∈ Z

max{c, ℓ(e)} ≤ µ1w(e);

and

max
{

∞
∑

n=−∞

Penw(n),

∞
∑

n=−∞

P0nw(n)
}

≤ µ2w(e).

Theorem 3: Consider Problem 1 under assumptions (A1),

(A2) and (A3). The process {Et}
∞
t=1 is a sufficient statistic

at the sensor and an optimal communication strategy is

characterized by a time-invariant threshold k, i.e.,

Ut = f(Et) =

{

1, if |Et| ≥ k

0, if |Et| < k.
(8)
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The optimal strategy mentioned above is given by the unique

fixed point of the following dynamic programming

V (e; c) = min
{

c+ β

∞
∑

n=−∞

P0nV (n; c),

ℓ(e) + β

∞
∑

n=−∞

PenV (n; c)
}

.

(9)

We are interested in the sensitivity of the optimal strategy

to a change in the communication cost c. For that reason, we

parametrize value function with the communication cost c.

Proof: The above result is the natural extension of the

result of Theorem 2 to infinite horizon setup. The results

on uniqueness of the fixed point rely on Banach fixed point

theorem. To apply Banach fixed point theorem, the value

function must be bounded with respect to a sup-norm. In our

case, the loss function is unbounded, so we cannot assume

that the value function is uniformly bounded. Therefore, we

need to work with a weighted sup-norm. As shown in [21,

Assumptions 6.10.1, 6.10.2], if a weighting function w(·)
defined in (A3) exists, then the Bellman operator has a

unique fixed point and the result of the theorem follows

from [21, Proposition 6.10.3].

Assumption (A3) is fairly mild. In Section III, we show

that this assumption is always satisfied by a birth-death

Markov chain.

B. Performance of a threshold strategy

The result of Theorem 3 shows that we can restrict atten-

tion to time-homogeneous threshold based communication

strategies. In this section we obtain a closed form expression

for the performance of an arbitrary strategy of this form.

Let F denote the class of all time-homogeneous threshold-

based strategies of the type (8). Let fk ∈ F denote the

strategy with threshold k, k ∈ N, i.e.

fk(e) =

{

1, if |e| ≥ k

0, if |e| < k.

Let Wk(e; c) denote the performance of strategy fk when

the system starts in state e and has a communication cost c.
From standard results in Markov decision processes, Wk is

the unique fixed point of the following equation:

Wk(e; c) =















c+ β
∞
∑

n=−∞
P0nWk(n; c), if |e| ≥ k,

ℓ(e) + β
∞
∑

n=−∞
PenWk(n; c), if |e| < k

(10)

For ease of notation, denote

Ŵk(0; c) =
∞
∑

n=−∞

P0nWk(n; c).

Note that Wk(0; c) = βŴk(0; c) and an equivalent charac-

terization of Wk(0; c) is given by

Wk(0; c) = E

[

τk−1
∑

t=0

βtℓ(Et)

+ βτk(c+ βŴk(0; c))
∣

∣

∣
E0 = 0

]

(11)

where τk denotes the stopping time when the Markov process

starting at state 0 at time t = 0 enters the set {e ∈ Z : |e| ≥
k}. Define

Lk = E

[

τk−1
∑

t=0

βtℓ(Et)
∣

∣

∣
E0 = 0

]

and

Tk =
1− E[βτk ]

1− β
.

Then, substituting Wk(0; c) and Lk in (11), we get that

Wk(0; c) = βŴk(0; c) =
1

(1− β)Tk

(Lk+c(1−(1−β)Tk)).

(12)

Next, we seek to find a closed form expression for Lk and

Tk. First, let us define square matrices P (k) and Q(k) and a

column vector ℓ(k) indexed by I(k) = {−k + 1, · · · , k − 1}
as follows:

P
(k)
ij = Pij , i, j ∈ I(k);

Q(k) = [I2k−1 − βP (k)]−1;

ℓ(k) = [ℓ(−k + 1), ℓ(−k + 2), · · · , ℓ(k − 2), ℓ(k − 1)]⊺.

We can now state the following theorem which gives an

easily computable expression for Lk and Tk.

Lemma 4: Lk and Tk defined above can be expressed in a

closed form as follows:

Lk =
〈

Q
(k)
0 , ℓ(k)

〉

; (13)

Tk =
〈

Q
(k)
0 ,12k−1

〉

, (14)

where Q
(k)
0 denotes the row with index 0 in Q(k). Substituting

these in (12), we get a closed form expression of Wk(0; c).

Proof: Recall that for a matrix A, A0 denotes the row

with index 0 (and our index set includes negative values

as well). P (k) is a substochastic matrix that captures the

probability of Markov chain not leaving the set I(k). Thus

Lk = E

[

τk−1
∑

t=0

βtℓ(Et)
∣

∣

∣
E0 = 0

]

=
∞
∑

t=0

βt
[

∑

e∈I(k−1)

(P
(k)
0e )tℓ(e)

]

=

∞
∑

t=0

〈[

(βP (k))t
]

0
, ℓ(k)

〉

=
〈

∞
∑

t=0

[

(βP (k))t
]

0
, ℓ(k)

〉

=
〈[

∞
∑

t=0

(βP (k))t
]

0
, ℓ(k)

〉

=
〈

Q
(k)
0 , ℓ(k)

〉

(15)

(14) can be proved by a similar argument.
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C. Characterization of optimal strategy

Our approach to characterize the optimal strategy is in-

spired by the idea of calibration in multi-armed bandits [20].

Let ck be the value of the communication cost for which,

starting from state 0, one is indifferent between communica-

tion strategy fk and fk+1, i.e., ck is such that

Wk(0; ck) = Wk+1(0; ck). (16)

For reasons that will become apparent later, we call the

sequence {ck}
∞
k=1 as the communication indices. We show

that such a ck exists under the following assumption.

(A4) Lk/Tk is increasing in k.

Lemma 5: Tk < Tk+1 and Lk < Lk+1.

Due to dearth of availability of space, we omit the proof

of the above lemma.

Lemma 6: Under (A4) such a ck always exists, is positive,

and is given by

ck =

(

Lk+1

Tk+1
−

Lk

Tk

)

/

(

1

Tk

−
1

Tk+1

)

. (17)

Proof: By definition of ck, Wk(0; ck) = Wk+1(0; ck).
Using (12), we get that

Lk + ck(1− (1− β)Tk)

(1− β)Tk

=
Lk+1 + ck(1− (1− β)Tk+1)

(1− β)Tk+1
.

Under (A4), the above equation always has a solution for

ck. By rearranging the terms, we get ck as given by (17),

which is positive.

Theorem 7: Suppose (A4) holds and {ck}
∞
k=1 is an in-

creasing sequence. Then, for all c ∈ (ck, ck+1] such that

ck 6= ck+1, the strategy fk+1 is discounted cost optimal.

Proof: Using (12), we get that for any c,

Wk(0; c) = Wk(0; ck) +
(1− Tk)

Tk

(c− ck).

Using the above equation with (16), we get

Wk(0; c)−Wk+1(0; c) =

[

1

Tk

−
1

Tk+1

]

(c− ck)

Since by Lemma 5 we have Tk < Tk+1, the first term in the

brackets is positive and the sign of Wk(0; c) − Wk+1(0; c)
is the same as that of (c− ck).

Now, consider a c ∈ (ck, ck+1]. Since c > ck ≥ ck−1 ≥
· · · ≥ c1, we have that

Wk+1(0; c) < Wk(0; c) ≤ Wk−1(0; c) ≤ · · · ≤ W1(0; c).

Moreover, since c ≤ ck+1 ≤ ck+2 ≤ · · · we have that

Wk+1(0; c) ≤ Wk+2(0; c) ≤ Wk+3(0; c) ≤ · · ·

Hence, fk+1 is optimal among all threshold strategies. From

Theorem 3, we get that fk+1 is globally optimum.

Lemma 8: The value function V (e; ·), as given in (9), is

a piece-wise linear, continuous, concave and increasing

function of c for all e ∈ Z.

The proof of the above lemma is omitted here due to

limitation of space.

D. Discussion of the result

The result of Theorem 7 identifies the range of values for

the communication cost for which an arbitrary strategy fk is

optimal. For a particular Markov process and loss function,

we can compute the communication indices {ck}
∞
k=1 by

substituting the values of Lk and Tk from Lemma 4 into

(17). These communication indices determine the optimal

communication strategy for all values of the communication

cost. For a particular communication cost c, we find the

smallest threshold ck+1 that is larger than c, and use the

strategy fk+1. This is in contrast to the result of [4] and [5]

where a separate dynamic program needs to be solved for

each value of c.

III. AN EXAMPLE: APERIODIC, SYMMETRIC

BIRTH-DEATH MARKOV CHAIN

0 1 2 · · ·−1−2· · ·

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

pppppp

Fig. 1. A birth-death Markov chain

Consider a birth-death Markov chain, shown in Fig. 1,

with transition probabilities as follows:

Pij =











p, if j = i+ 1, i− 1

1− 2p, if j = i

0, otherwise.

where p ∈ (0, 1
2 ). Let the distortion function ℓ(·) to be ℓ(e) =

|e|. Note that P and ℓ satisfy (A1) and (A2).

Lemma 9: (A3) is always satisfied for the above model. The

values of the function w(·) and the parameters µ1 and µ2

are given by:

w(e) = max{c, ℓ(e)}, µ1 = 1, µ2 = max{1− 2p+ 2p/c, ℓ(2)}

Proof: The result may be verified separately for ℓ(e) =
1{e 6= 0} and ℓ(e) = |e|d by substitution.

Since (A3) is satisfied, the optimal communication strategy

is a time-homogeneous threshold strategy. Hence, the frame-

work of Sections II-B–II-C is applicable. The communication

indices {ck}
∞
k=1 depend on the values of Lk and Tk, which in

turn depend on the matrix Q(k). Since, Q(k) is the inverse of

a tridiagonal symmetric Toeplitz matrix, an explicit formula

for its elements is available [22].

Lemma 10: Define

D = −2− (1− β)/(βp) and λ = cosh−1(−D/2).

Then Q(k) is given by

Q
(k)
ij =

a
(k)
ij

b(k)
, i, i ∈ I(k−1) (18)
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TABLE I

VALUES OF ck FOR A BIRTH-DEATH MARKOV CHAIN WITH p = 0.3.

k 1 2 3 4 5 6 7 8 9 10
ck 1.0811 3.4764 6.7826 10.5126 14.4118 18.3748 22.3612 26.3563 30.3545 34.3538

where

a
(k)
ij = cosh((2k − |j − i|)λ)− cosh((i+ j)λ),

b(k) = 2βp sinh(λ) sinh(2kλ).

In particular Q
(k)
0j is given by:

Q
(k)
0j =

1

βp

cosh((2k − |j|)λ)− cosh(jλ)

2 sinh(λ) sinh(2kλ)
(19)

Proof: The matrix I2k−1−βP (k) ∈ R
(2k−1)×(2k−1) is

a symmetric tridiagonal matrix given by

I2k−1 − βP (k) = −βp



















D 1 0 · · · · · · 0
1 D 1 · · · · · · 0
0 1 D · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 1 D 1
0 · · · · · · 0 1 D



















Q(k) is the inverse of the above matrix. The inverse of

tridiagonal Toeplitz matrix in the above form are computed

in closed form in [22]. The result of the Lemma corresponds

to the D ≤ −2 case in [22].
Using the expression for Q

(k)
0 , we can obtain Lk and Tk

in closed form. In particular:

Lemma 11: For the above birth-death Markov chain with

ℓ(e) = |e|,

Lk = −
k sinh(λ)− sinh(kλ)

4βp sinh2(λ/2) sinh(λ) cosh(kλ)
(20a)

Tk =
(1− β)sinh2(kλ/2)

2βp sinh2(λ/2) cosh(kλ)
(20b)

Proof: The result follows by substituting Q
(k)
0j given by

(19) into the expressions for Lk and Tk derived in Lemma 4,

and simplifying the expressions.
Using Lemmas 4 and 10, we can easily verify if assump-

tion (A4) holds and find the values of ck. To illustrate this,

consider ℓ(e) = |e| and pick p = 0.3 and β = 0.75.

We verified numerically that when (A4) is satisfied for

different values of k, the corresponding values of ck are non-

decreasing and the initial 10 values are shown in Table I.

IV. CONCLUSION

In this paper, we study a remote sensing problem with

communication cost and generalize the results of [4] and

[5] to infinite horizon. We obtain an explicit characterization

of the communication indices that represent the value of

communication cost for which one is indifferent between

two consecutive threshold strategies. We provide closed

form expressions of these communication thresholds and use

them to completely characterize the optimal communication

strategy for all values of the communication cost.
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