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Abstract—Consider a communication system in which a trans-
mitter observes n independent Markov sources and has to
jointly quantize them in real-time for a single receiver. Al-
though the model is a special case of real-time quantization
of Markov sources, a direct application of the results of real-
time quantization is infeasible due to computational complexity.
We restrict attention to a encoding-decoding strategies having
a specific structure, and identify a dynamic program to find
the best strategies with that structure. This dynamic program
has uncountable state space. For the special case when all
source alphabets are equal to each other and to the quantization
alphabet, we reduce the dynamic program to one with a countable
state space. We then present a finite-state approximation of this
dynamic programming. The feasibility of the approach is shown
by means of examples.

I. INTRODUCTION

A. Problem formulation

Consider the communication system in which a transmitter

causally observes n independent first-order Markov sources

{St}
∞
t=0, i ∈ {1, . . . , n}. The sources are assumed to have a

finite or countable alphabet, denoted by Si. The corresponding

transition matrix is denoted by P i.

To simplify the exposition, assume that the initial state s0 =
(s10, . . . , s

n
0 ) of all sources is fixed and known a priori to both

the transmitter and the receiver.

The transmitter sequentially encodes the sources to a com-

mon quantization symbol Qt ∈ Q according to some quanti-

zation rule f = {ft}t=1, i.e.,

Qt = ft(S1:t, Q1:t−1), t = 1, 2, . . . (1)

where St denotes (S1
t , . . . , S

n
t ) and S1:t is a short-hand for

{Sτ}
t
τ=1 and a similar interpretation holds for Q1:t−1.

The receiver sequentially observes the quantized symbols

and generates an estimate Ŝ = (Ŝ1
t , . . . , Ŝ

n
t ) of all sources

according a decoding rule g = {gt}
∞
t=1, i.e.,

Ŝt = gt(Q1:t), t = 1, 2, . . . . (2)

The fidelity of the reconstruction is quantified by a per-step

distortion function

d(St, Ŝt) =
n
∑

i=1

di(Si
t , Ŝ

i
t). (3)

We are interested in choosing the encoding-decoding strat-

egy (f ,g) to minimize the expected discounted distortion over

an infinite horizon

Jβ(f ,g) = E
(f ,g)

[ ∞
∑

t=1

βt−1d(St, Ŝt)

∣

∣

∣

∣

S0 = s0

]

(4)

where β ∈ (0, 1) is the discount factor.

B. Literature overview

Since each source is Markov, the “joint” source {St}
∞
t=1 is

also Markov. Hence the model described above is a special

case of the real-time quantization of a Markov source. Such a

model was first considered by Witsenhausen [1] who identified

the structure of optimal encoders. For the model described

above, Witsenhausen’s result may be stated as follows:

Theorem 1 (Witsenhausen [1]): In real-time quantization,

there is no loss of optimality in restricting attention to encod-

ing strategies of the form

Qt = ft(St, Q1:t−1). (5)

Witsenhausen [1] also presented a source repackaging tech-

nique to generalize the above structural results to higher order

Markov sources and finite decoding delay (also called source

coding with lookahead).

Walrand and Varaiya [2] showed that Witsenhausen’s struc-

tural result extends to the case of real-time communication of

discrete Markov sources over a DMC with noiseless feedback.

Furthermore, when the receiver has no restrictions on its

memory (as is the case in the above model), the structure

of optimal encoders and decoders may be refined as follows:1

Theorem 2 (Walrand and Varaiya [2]): Let ∆(
∏n

i=1 S
i)

denote the space of probability distributions on S. Define

Πt|t−1,Πt|t ∈ ∆(
∏n

i=1 S
i) as follows. For s ∈

∏n

i=1 S
i,

Πt|t−1(s) = P(St = s | Q1:t−1)

Πt|t(s) = P(St = s | Q1:t).

Then, there is no loss of optimality in restricting attention to

encoding and decoding strategies of the form

Qt = ft(St,Πt|t−1), Ŝt = gt(Πt|t). (6)

1Since fixed rate quantization is a special case of DMC with noiseless
feedback, Walrand and Varaiya’s result apply to that setup.
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Walrand and Varaiya also presented a dynamic program-

ming decomposition of the problem based on Πt. Linder

and Yüksel [3] showed that Walrand-Varaiya-type structural

results hold under quite general assumptions on the Markov

source and the distortion function. A similar result under

more restrictive assumptions was also established by Borkar

et al [4].

These results have been generalized to other setups, in-

cluding source coding with side-information [5], variable rate

quantization [6], finite lookahead [7], joint source-channel

coding [5], [8], joint source-channel coding with noisy feed-

back [9], and various multi-terminal setups [10], [11].

These structural results are useful because they identify

a time-homogeneous sufficient statistic of the data available

at the transmitter and the receiver. Thus, the domain of the

encoders and decoders does not change with time, thereby

simplifying implementation complexity. A time-homogeneous

sufficient statistic also enables us to identify a dynamic

programming decomposition, and thereby search for optimal

encoding-decoding strategies in a systematic way. In spite

of these advantages, these results have been of limited use

because of the inherent computational complexity of solving

the resultant dynamic programs.

In the model presented above, the source is a collection

of n-independent sources. Thus, the search for optimal real-

time encoding-decoding strategies is expected to be an order

of magnitude more difficult than that of a single Markov

source. For that reason, we consider a simplified version of

the problem by imposing assumptions on the structure of the

encoding-decoding strategies. Under these assumptions, the

problem of optimal quantization of n sources decomposes into

n independent problems of optimal quantization of a single

source and a scheduling problem.

C. Simplifying assumptions

Instead of “joint” quantization of all sources, consider the

subproblem of sequentially quantizing source {Si
t}

∞
t=1 over

alphabet Q and per-step distortion di(·, ·). Let (f i,gi) be a

Walrand-Varaiya-type optimal encoding-decoding strategy for

this subproblem. That is, for every sit ∈ Si and πi
t|t−1 ∈

∆(Si), the encoding strategy f i prescribes the quantization

symbol

qit = f i
t (s

i
t, π

i
t|t−1);

and for every πi
t|t ∈ ∆(Si), the decoding strategy gi pre-

scribes the source reconstruction

ŝit = gi(πi
t|t).

Assume that such optimal individual encoding-decoding

strategies have been determined for each source {Si
t}

∞
t=1 and

per-step distortion di(·, ·) for i ∈ {1, . . . , n}. Then, for the

joint quantization of the n sources, we restrict attention to

scheduling strategies described below.

The transmitter and the receiver keep track of the posterior

distributions Πt|t−1 and Πt|t. The update equation for these

distributions will be described shortly. The transmitter picks

an index Ut ∈ {1, . . . , n} of the source to transmit and then

sends

Qt = (Ut, f
Ut

t (SUt ,ΠUt

t|t−1)) (7)

to the receiver,2 where Πi
t|t−1 is the marginal of Πt|t−1. The

index sequence {Ut}
∞
t=1 is chosen according to a scheduling

strategy h = {ht}
∞
t=1 where

Ut = ht(St,Πt|t−1), t = 1, 2, . . . . (8)

The receiver uses Qt to update Πt|t−1 to Πt|t (the update

equation is described later) and generates estimates Ŝt accord-

ing to

Ŝi
t = git(Π

i
t|t) (9)

where Πi
t|t is the marginal of Πt|t.

The above separation of quantization and scheduling is

the first simplifying assumption (A1) that we make. Such a

separation is not optimal but it is assumed to make the problem

tractable.

Even with assumption (A1), finding the best scheduling

strategy is not easy because the evolution of the posterior dis-

tribution is coupled with the scheduling strategy. In particular,

suppose the posterior at the receiver is πt|t−1 and quantized

symbol (k, qt) is received. Then the receiver knows that the

source output St belongs to the set
{

s̃t ∈

n
∏

i=1

Si : ht(s̃t, πt|t−1) = k and fk
t (s

k
t , πt|t−1) = qt

}

To update of the posterior Πt|t, the receiver needs to know

the observed quantization symbol (k, skt ) and the scheduling

function ht. Thus, the dynamic program to find the optimal

scheduling strategy will be similar to the dynamic program

to find the optimal quantization strategy. In particular, the

information state of this dynamic program will be Πt|t−1, the

joint posterior on the n sources.

To simplify the optimization problem, we restrict attention

to oblivious update rules of the posterior distribution. More

precisely, the transmitter and the receiver keep track of the

marginal distributions Πt|t−1 = (Π1
t|t−1, . . . ,Π

n
t|t−1) and

Πt|t = (Π1
t|t, . . . ,Π

n
t|t). These marginal distributions are

updated as follows: for all i ∈ {1, . . . , n}

Πi
t|t =

{

ℓit(Π
i
t|t, q

i
t), if Qt = (i, qit)

Πi
t|t−1, otherwise

(10)

and

Πi
t+1|t = Πi

t|tP
i (11)

where P i is the transition matrix of source {Si
t}

∞
t=1 and

ℓit(π
i
t|t−1, q

i
t)(s

i) =
πi
t|t−1(s

i)1{f i
t (s

i, πi
t|t−1) = qit}

∑

s̃i∈Si

πi
t|t−1(s̃

i)1{f i
t (s̃

i, πi
t|t−1) = qit}

(12)

2We assume that Ut can be sent over a side-channel. If not, we can assume
that the quantization of individual sources {Si

t
}∞
t=1

is done to a quantization
alphabet of size |Q| − log2 n and the additional log2 n bits are used to
convey Ut.
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The above specified oblivious update of the posterior is the

second simplifying assumption (A2) that we make. As with

our previous assumption, restricting attention to such update

rules is not optimal.

Thus, given the individual (Walrand-Varaiya-type)

encoding-decoding schemes {(f i,gi)}ni=1 for each source

and rules (10) and (11) for updating the receiver’s posterior

on each source, we are interested in finding an optimal

scheduling strategy h to minimize the expected discounted

distortion

Jβ(h) = E
h

[ ∞
∑

t=1

βt−1d(St, Ŝt)

∣

∣

∣

∣

S0 = s0

]

(13)

where β ∈ (0, 1) is the discount factor.

Our motivation for the two simplifying assumptions is

threefold. Firstly, as mentioned above, without these assump-

tions the problem is too unwieldy. Secondly, we believe that

it is possible to identify models of sources for which the

assumptions (A1) and (A2) do not result in a loss of optimality.

Thirdly, in certain applications such as data communication in

smart grids, there are privacy concerns that forces the use of

such separated strategies.

The scheduling problem under (A1) and (A2) is also related

to real-time broadcast over a half-duplex communication net-

work (i.e., a network in which each node can either transmit

or receive at a given time, but not both).

II. DYNAMIC PROGRAMMING DECOMPOSITION AND ITS

SIMPLIFICATION FOR A SPECIAL CASE

A. Dynamic programming decomposition

Let (f i,gi) be a time-homogeneous optimal strategy for

source {Si
t}

∞
t=1, i ∈ {1, . . . , n}. Under assumptions (A1)

and (A2), the choice of an optimal scheduling strategy is a

centralized stochastic control problem which can be solved

using a dynamic program. To simplify the notation of the

dynamic program, define

Di(πi) =
∑

si∈Si

di(si, gi(πi))πi(si). (14)

as the expected distortion at source i when the posterior Πi
t|t is

πi. Note that this expected distortion and the posterior update

rule ℓi(·) given by (12) do not depend on time since the

encoding-decoding strategy is time-homogeneous.

Theorem 3: Let V :
∏n

i=1(S
i×∆(Si)) → R be the unique

bounded fixed point of the following equation: for all si ∈ Si,

πi ∈ ∆(Si), i ∈ {1, . . . , n}

V (s,π) = min
u∈{1,...,n}

{ n
∑

i=1

Di(πi
−)+β

∑

s+

π+(s+)V (s+,π+)

}

(15)

where π− = (π1
−, . . . , π

n
−), π+ = (π1

+, . . . , π
n
+) and

π+(s+) =
n
∏

i=1

πi
+(s

i
+)

with

πi
− =

{

ℓi(πi, f i(si, πi)), if i = u;

πi, otherwise

and

πi
+ = πi

−P
i.

Moreover, let h∗(s,π) denote (any of the) arg min of the right

hand side of (15). Then, the time-homogeneous scheduling

strategy h∗ = (h∗, h∗, . . . ) is optimal for Problem (13).

Proof: To prove the result, we need to show that the

process {(St,Πt|t−1)}
∞
t=1 is a controlled Markov process

controlled by {Ut}
∞
t=1. Then the result follows from standard

results for controlled Markov processes [12]. The details of

establishing the controlled Markov property are omitted due

to space limitations.

B. A special case

To get some insight into the nature of the solution, consider

the following special case:

Assumption (A3): The alphabet sizes of all the sources are

equal to the quantization alphabet, i.e., |Si| = |Q| (or if a side-

channel is not available to send Ut, then |Si| = |Q|− log2 n).

For this special case, the optimal encoding-decoding strat-

egy for a single source is straight forward. The optimal

encoding strategy is to send the source uncoded, i.e.,

f i
t (S

i
t ,Π

i
t|t−1) = Si

t ;

the optimal decoding strategy is the solution to a filtering

problem, i.e.,

gi(Πi
t|t) = argmin

ŝ∈S

∑

s∈S

di(s, ŝ)Πi
t|t(s).

Note that both the encoding and decoding strategies are time-

invariant.

When source i is transmitted, the update function of the

posterior distribution Πi
t|t−1 simplifies as follows:

ℓi(πi
t|t−1, qt) = δiqt

where δiqt denotes the Dirac distribution on Si with the unit

mass at qt.

Under assumption (A3), the dynamic program of Theorem 3

simplifies as follows. When the transmitter decides to transmit

source u, then:

1) πu
− = δusu , therefore Du(πu

−) = 0 and πu
+ = δusuP

u.

Since the size of all the sources is the same, we drop

the superscript u in δusu and simply denote it as δsu .

2) for i 6= u, πi
− = πi, therefore Di(πi

−) = Di(πi) and

πi
+ = πiP i.

Thus, the dynamic program of (15) simplifies to

V (s,π) = min
u∈{1,...,n}

{

∑

i 6=u

Di(πi) + β
∑

s+

π+(s+)V (s+,π+)

}

(16)

where π+(s+) is defined as before and

πi
+ =

{

δsiP
i, if u = i

πiP i, otherwise.
(17)
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Even after all these simplifications, the above dynamic

program is difficult to solve because part of the state space,

π, is a vector of probability distributions. Such dynamic

programs may either be solved by working with piecewise-

linear and concave envelop of the value function (see [13] and

its generalizations), or by discretizing the state-space [14], or

by using point-based methods [15], [16].

We take an alternative approach and present a simpler

method to solve the above dynamic program. We show that

under any policy, the reachable set of information states (s,π)
is countable and an optimal solution may be found based on

a finite state approximation of the countable state.

III. FINITE STATE APPROXIMATION OF THE DYNAMIC

PROGRAM

A. Reachability analysis and countable state-space represen-

tation

For notational convenience, in this section we restrict at-

tention to the case of two sources (i.e., n = 2). The results

extend naturally to multiple sources as well. For two sources,

the dynamic program of (16) may be written as

V (s1, s2, π1, π2) = min
{

W 1(s1, π2),W 2(s2, π1)
}

(18)

where Wu corresponds to continuation cost for choosing

action u and is given by

W 1(s1, π2) = D2(π2)

+ β
∑

(s1
+
,s2

+
)

[δs1P
1]s1s1

+
[π2P 2]s2s2

+
V (s1+, s

2
+, P

1δ1s1 , P
2π2)

and W 2 defined in a symmetric manner.

Proposition 1: Under any scheduling strategy, the reachable

set of {(Π1
t ,Π

2
t )}

∞
t=1 is given by R1 ×R2 where

Ri = {δz(P
i)k ∈ ∆(Si) : z ∈ Si and k ∈ Z>0}

Note that Ri is countable and isomorphic to Si×Z>0 and any

πi = δz(P
i)k ∈ Ri may be denoted by (z, k) ∈ Si ×Z>0.

Proof: We prove the result using induction. In particular,

1) The initial state πi
1 = δsi

0
P i belongs to Ri.

2) For any realization πi
t of Πi

t and any choice ut+1 of

Ut+1, πi
t+1 is given by (17). Thus, if πi

t ∈ Ri, then so

does πi
t+1.

A consequence of the above result is the following.

Proposition 2: An optimal scheduling strategy is given

as follows. Let V̂ : (S1,S2,S1,Z>0,S
2,Z>0) → R be the

unique bounded fixed point of the following equation. For any

si, zi ∈ Si and ki ∈ Zm

V̂ (s1, s2, z1, k1, z2, k2) = min{Ŵ 1(s1, z2, k2),

Ŵ 2(s2, z1, k1)} (19)

where

Ŵ 1(s1, z2, k2) = D2(δz2(P 2)k
2

)

+β
∑

(s1
+
,s2

+
)

[δs1P
1]s1

+
[δz2(P 2)k

2+1]s2
+
V (s1+, s

2
+, s

1, 1, z2, k2+1)

and Ŵ 2 is defined in a symmetric manner. Let

ĥ∗(s1, s2, z1, k1, z2, k2) denote (any of the) arg min

of the right hand side of (19). For any s1 ∈ Si and

πi = δzi(P i)k
i

∈ Ri, define

h∗(s1, s2, π1, π2) = ĥ∗(s1, s2, z1, k1, z2, k2). (20)

Then, the stationary strategy h = (h∗, h∗, . . . ) is optimal for

Problem (13) under assumption (A3).

B. Finite state approximation

The dynamic program described above is a countable

state dynamic program and it can be solved by finite state

approximation methods described in [17], [18]. One such

approximation method is as follows.

Let Zm denote the set {1, . . . ,m}. Define an

approximation sequence {V̂m}∞m=1 of V̂ where

V̂m : (S1,S2,S1,Zm,S2,Zm) → R is the unique bounded

fixed point of the equation

V̂m(s1, s2, z1, k1, z2, k2) = min{Ŵ 1
m(s1, z2, k2),

Ŵ 2
m(s2, z1, k1)}

and Ŵ i
m has a definition similar to Ŵ i in which ki + 1 is

replaced by min{ki+1,m}. Let ĥ∗
m denote the corresponding

optimal strategy and h∗
m be defined similar to (20).

Proposition 3: limm→∞ V̂m → V̂ . Furthermore, any limit

point of the sequence of scheduling functions {h∗
m}∞m=1 is

optimal for Problem (13) under assumption (A3).

Proof: The sequence of finite-state models described

above is a augmentation type approximation sequence (see [18,

Definition 2.5.3]). Therefore, the existence of a limit point of

{ĥ∗
m}∞m=1 follows from [18, Proposition B.5].

The underlying state spaces Si are finite; hence the expected

distortion Di(·) is finitely bounded. Therefore, the DC(β)

conditions hold [18, Proposition 4.7.1]. It follows from [18,

Theorem 4.6.3] that any of the limit points of {ĥ∗
m}∞m=1 is

optimal for (19). The result follows from Proposition 2.

As stated in the beginning of this section, these results

extend naturally to multiple sources as well.

IV. NUMERICAL EXAMPLES

We investigate the setup of simultaneously transmitting two

binary sources with the Hamming distortion and discount

factor β = 0.9. We consider three cases, and for each case

simulations suggest that the strategy has converged when

m = 30. We describe the features of the strategy ĥ∗
30 and h∗

30.

The strategy ĥ∗
m is a mapping from

(S1,S2,S1,Zm,S2,Zm) to {1, 2}. We fix the value of

(s1, s2, z1, z2) and show ĥ∗
m(s1, s2, z1, k1, z2, k2) as a

function of (k1, k2) on a two-dimensional scatter plot where

the color of the dot indicates the optimal action: red means

u = 1, blue means u = 2, and black means that both

actions are optimal. We use a similar technique to show the

strategy h∗
m(s1, s2, δz1(P 1)k

1

, δz2(P 2)k
2

) as a function of

δz1(P 1)k
1

, δz2(P 2)k
2

. The cases that we consider are:
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Fig. 1. The optimal strategy for Case 1. The

strategy ĥ∗30 and h∗

30
have the shapes shown

in (a) and (b).
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Fig. 2. The optimal strategy for Case 2. The

strategy ĥ30 has the shape shown in Fig. 1(a).
The shape of h∗

30
is shown in (a) and (b).
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Fig. 3. The optimal strategy for Case 3. The

strategy ĥ∗

30
is not shown while the shape of

h∗

30
is shown in (a) and (b).

Case 1: Identical symmetric sources with P 1 = P 2 =
[ 0.9 0.1
0.1 0.9 ]. The optimal strategy is shown in Fig. 1. Un-

der the optimal strategy, the reachable values of the

states (s1, s2, z1, k1, z2, k2) are of the form: (k1, k2) ∈
{(1, 2), (2, 1)} and other variables take all possible values.

Case 2: Complementary symmetric sources with P 1 =
[ 0.9 0.1
0.1 0.9 ] and P 2 = [ 0.1 0.9

0.9 0.1 ]. The optimal strategy is shown

in Fig. 2. Under the optimal strategy, the reachable values of

the states (s1, s2, z1, k1, z2, k2) are the same as in Case 1.

The reachable values in term of (π1, π2) differ because the

transition matrices are different.

Case 3: One symmetric and one asymmetric source with

P 1 = [ 0.9 0.1
0.1 0.9 ] and P 2 = [ 0.9 0.1

0.7 0.3 ]. The optimal strategy is

shown in Fig. 3. Under the optimal strategy, the reachable

values of (s1, s2, z1, k1, z2, k2) are of the following form:

(k1, k2) ∈ {(1, 2), (2, 1)} or (z2, k1, k2) = (1, 3, 1) or

(z2, k1) = (1, 1), k2 ∈ Zm where the unspecified variables

take all possible values.

In all three cases, for the states that are reachable under the

optimal strategy, the optimal strategy may be represented as a

finite state machine. We do not know if the optimal strategy

always has such a structure.

V. CONCLUSION

We consider the problem of simultaneously transmitting

multiple Markov sources over a common channel. We derive a

dynamic programming decomposition under assumptions (A1)

and (A2). We believe that for certain types of symmetric

sources where the decoding problem decouples from the

encoding strategy [19], [20], these assumptions are without

any loss of optimality. For other cases, it is important to

characterize the sub-optimality introduced by (A1) and (A2).

For the special case when all sources alphabets are equal

(assumption (A3)), we show that the above dynamic program

is equivalent to a countable state MDP. We then provide

a sequence of finite-state approximations of the dynamic

program that converges to the solution of the countable state

MDP. Assumption (A3) limits the applicability of the model;

as such it is worthwhile to investigate other setups where the

dynamic program has tractable solutions.

REFERENCES

[1] H. S. Witsenhausen, “On the structure of real-time source coders,” Bell

Syst. Tech. Journal, vol. 58, no. 6, pp. 1437–1451, July-August 1979.
[2] J. C. Walrand and P. Varaiya, “Optimal causal coding-decoding prob-

lems,” IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 814–820, Nov. 1983.
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