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Abstract—The problem of optimal real-time transmission of a
Gauss-Markov source under constraints on the expected number
of transmissions is considered. This setup is motivated by applica-
tions where transmission is sporadic and the cost of switching on
the radio and transmitting is significantly more important than
the size of the transmitted data packet. The structure of optimal
transmission and estimation strategies had been established in
the literature. We use these structural results to determine
the distortion-transmission function, i.e., the minimum expected
distortion that can be achieved when the expected number of
transmissions is less than or equal to a particular value. We
characterize how the distortion-transmission function scales with
the variance of the source and show that it can be computed
numerically by solving two Fredholm integral equations of the
second kind.

I. INTRODUCTION

In many real-time communication systems such as net-
worked control systems, sensor and surveillance networks,
and transportation networks, etc., the transmitter is often a
battery-powered device that transmits over a wireless packet-
switched network. In such systems, the cost of switching
on the radio and transmitting is significantly more important
than the size of the data packet. This motivates the study
of the fundamental trade-off between the distortion incurred
when transmitting a source with real-time (or zero-delay)
reconstruction under constraints on the expected number of
transmissions. Chakravorty and Mahajan [1] recently investi-
gated such a setup for Markov chains defined over integers
and characterized the “distortion-transmission” trade-off. In
this paper, we characterize the distortion-transmission function
for scalar Gauss-Markov sources.

A. Problem formulation

We investigate the following communication setup. Let
{Xt}∞t=0, Xt ∈ R, be a scalar first-order Gauss-Markov
source. The initial state X0 = 0 and for t > 0,

Xt+1 = Xt +Wt, (1)

where {Wt}∞t=0 are i.i.d. zero-mean Gaussian random variables
with variance σ2.

A transmitter causally observes this source and at each time
chooses whether or not to transmit the current source observa-
tion. This decision is denoted by Ut ∈ {0, 1}, where Ut = 0
denotes no transmission and Ut = 1 denotes transmission.

The decision to transmit is made using a transmission strategy
f = {ft}∞t=0, where

Ut = ft(X0:t, U0:t). (2)

We use the short hand notation X0:t to denote the sequence(
X0, · · · , Xt

)
. Similar interpretation holds for U0:t−1.

The transmitted symbol, which is denoted by Yt, is given
by

Yt =

{
Xt, if Ut = 1

E, if Ut = 0,
(3)

where Yt = E denotes no transmission.

The receiver causally observes {Yt}∞t=0 and generates a

source reconstruction {X̂t}∞t=0 (where X̂t ∈ R) in real-time
using an estimation strategy g = {gt}∞t=0, i.e.

X̂t = gt(Y0:t). (4)

The fidelity of reconstruction is measured by squared error
distortion (Xt − X̂t)

2.

The objective is to choose the transmission and estimation
strategies (called the communication strategy in short) to
minimize the expected distortion under a constraint on the
expected number of transmissions. Given a communication
strategy, let

D(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

(Xt − X̂t)
2
∣∣∣ X0 = 0

]

denote the expected long-term average distortion and

N(f, g) := lim sup
T→∞

1

T
E(f,g)

[ T−1∑
t=0

Ut

∣∣∣ X0 = 0
]

denote the expected long-term average number of transmis-
sions.

We are interested in the following constrained long-term
average cost problem: given α ∈ (0, 1), find a strategy (f∗, g∗)
such that

D∗(α) := D(f∗, g∗) := inf
(f,g):N(f,g)≤α

D(f, g), (AVG)

where the infimum is taken over all history-dependent com-
munication strategies of the form (2) and (4).

The function D∗(α) represents the minimum expected dis-
tortion that can be achieved when the number of transmissions
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is less than α. It is analogous to the distortion-rate function;
for that reason we call it the distortion-transmission function.

Problem (AVG) is constrained optimization problem. We
will first investigate its Lagrange relaxation. For any Lagrange
multiplier λ ≥ 0 and any (history dependent) communication
strategy (f, g), define C(f, g;λ) as

lim sup
T→∞

E(f,g) 1

T

[ T−1∑
t=0

[
(Xt − X̂t)

2 + λUt

] ∣∣∣ X0 = 0
]
.

The Lagrange relaxation of Problem (AVG) is the follow-
ing: for any λ ≥ 0, find a strategy (f∗, g∗) such that

C(f∗, g∗;λ) := inf
(f,g)

C(f, g;λ) (LAG)

where the infimum is taken over all history-dependent com-
munication strategies of the form (2) and (4).

B. Literature overview

The communication system described above is similar to
the classical information theory setup. In particular, it may be
viewed as minimizing the average distortion while transmitting
over a channel under an average-power constraint. However,
unlike the classical information theory setup, the source recon-
struction must be done in real-time (i.e. with zero delay). Due
to this real-time constraint on source reconstruction, traditional
information theoretic approach does not apply.

Two approaches have been used in the literature to in-
vestigate real-time or zero-delay communication. The first
approach considers coding of individual sequences [2]–[4]; the
second approach considers coding of Markov sources [5]–[10].
The model presented above fits with the latter approach. In
particular, it may be viewed as real-time transmission over a
noiseless channel with input cost. In most of the results in the
literature on real-time coding of Markov sources, the focus
has been on identifying sufficient statistics (or information
states) at the transmitter and the receiver; for some of the
models, a dynamic programming decomposition has also been
derived. However, very little is known about the solution of
these dynamic programs.

The communication system described above is much sim-
pler than the general real-time communication setup due to
the following feature: whenever the transmitter transmits, it
sends the current realization of the source to the receiver.
These transmitted events reset the system. Variations of the
above communication systems have been considered in [11]–
[14]. The authors in [11] assume a specific form of the
transmitter and identify the optimal receiver. The authors in
[12] assume a specific form of the receiver and identify the
optimal transmitter. The authors in [13] and [14] do not make
any assumptions on the transmitter or the receiver and show
that threshold based strategies are optimal at the transmitter
and optimal estimation strategies are Kalman-like. We use
these structural results and obtain the optimal thresholds for
an arbitrary Lagrange multiplier. We then use the continuity of
the optimal value function to find the optimal thresholds for
the constrained optimization problem (AVG), and use that to
completely characterize the distortion-transmission function.

II. FINITE HORIZON SETUP AND THE STRUCTURE OF

OPTIMAL STRATEGIES

To identify the structure of the optimal communication
strategy, consider the finite-horizon setup of Problem (LAG).
Given a time horizon T ∈ Z>0, a Lagrange multiplier λ, the
performance of a strategy (f, g), where f = (f0, . . . , fT ) and
g = (g0, . . . , gT ), is given by

CT (f, g;λ) := E(f,g)
[ T∑

t=0

[
(Xt − X̂t)

2 + λUt

] ∣∣∣ X0 = 0
]
.

The finite-horizon optimization problem is to find a finite-
horizon strategy (f∗, g∗) such that

CT (f
∗, g∗;λ) = inf

(f,g)
CT (f, g;λ) (FIN)

where the infimum is taken over all history-dependent com-
munication strategies of the form (2) and (4).

Problem (FIN) is a dynamic team (or a decentralized
control) problem with two decision-makers—the transmitter
and the receiver—who have to coordinate to achieve a common
objective. A slight variation of Problem (FIN) was investigated
in [13] and [14], where the authors identified the structure
of optimal strategies. To explain these results, we define the
following processes.

Definition 1 Let Zt denote the most recently transmitted value
of the Markov source. The process {Zt}∞t=0 evolves in a
controlled Markov manner as follows: Z0 = 0 and

Zt =

{
Xt, if Ut = 1;

Zt−1, if Ut = 0.
�

Definition 2 (Error process) Let Et = Xt − Zt−1. The
process {Et}∞t=0 evolves in a controlled Gauss-Markov manner
as follows: E0 = 0 and

Et+1 =

{
Et +Wt, if Ut = 0

Wt, if Ut = 1.
(5)

. �

The following structure was proved in [13]) and [14].

Theorem 1 In Problem (FIN), {Zt}Tt=0 and {Et}Tt=0 are
sufficient statistics for the receiver and the transmitter respec-
tively. In particular, there is no loss of optimality in considering
transmission strategies of the form

Ut = ft(Et) =

{
1, if |Et| ≥ kt;

0, if |Et| < kt,
(6)

and estimation strategies of the form

X̂t = g∗t (Zt) = Zt. (7)

�

III. MAIN RESULTS

A. Performance of a threshold based strategy

The structural results of Theorem 1 extend to the infinite
horizon setup as well. The optimal estimation strategy is
completely specified by Theorem 1. Note that the optimal
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estimation strategy does not depend on the choice of the
transmission strategy. Therefore, we can fix the estimation
strategy and seek to find a transmission strategy that is the
best response to this estimation strategy. Identifying such a best
response strategy is a centralized stochastic control problem.
Since the optimal estimation strategy is time-homogeneous,
it can be shown that the best response optimal transmission
strategy (i.e., the choice of the optimal thresholds {kt}∞t=0) is
time-homogeneous as well 1. Thus, we can search within the
class of all time-homogeneous transmission strategies (denoted
by F) to solve Problem (LAG).

Let f (k) ∈ F denote the strategy with threshold k, k ∈
R≥0, i.e.,

f (k)(e) :=

{
1, if |e| ≥ k;

0, if |e| < k.

Let D(k)(e) and N (k)(e) denote the expected long-term
average distortion and the expected long-term average number
of transmissions under strategy f (k) when the system starts in
state e. Note that,

D(k)(0) = D(f (k), g∗) and N (k)(0) = N(f (k), g∗),

where g∗ is the strategy given by (7).

Similarly, let C(k)(e;λ) denote the long-term average per-
formance of strategy f (k) for the Lagrange relaxation with
Lagrange multiplier λ ≥ 0 when the system starts in state e.
Then,

C(k)(e;λ) = D(k)(e) + λN (k)(e), (8)

and

C(k)(0;λ) = C(f (k), g∗;λ). (9)

Let τ (k) denote the stopping time when the Gauss-Markov
process starting at state 0 at time t = 0 enters the set {e ∈ R :
|e| ≥ k}. Note that τ (0) = 1 and τ (∞) =∞.

Let L(k)(e) and M (k)(e) respectively denote the expected
distortion incurred until stopping and expected stopping time
under f (k). Then, using balance equations, we can show the
following:

Lemma 1 L(k) and M (k) satisfy the following:

L(k)(e) = e2 +

∫ k

−k

φ(w − e)L(k)(w)dw; (10)

M (k)(e) = 1 +

∫ k

−k

φ(w − e)M (k)(w)dw, (11)

where φ(w) is the pdf of a zero-mean normal variable w with
variance σ2. �

Equations (10) and (11) are Fredholm integral equations of
second kind [15]. We discuss the numerical solution of these
equations in Section IV.

1The general idea behind the proof is as follows. The model satisfies [18,
Assumptions 4.2.1, 4.2.2]. Therefore, by [18, Theorem 4.2.3], the structural
results extend to the infinite horizon discounted cost setup. It can be shown that
the discounted model satisfies [18, Assumptions 4.2.1, 5.4.1] and therefore the
structural results extend to the long-term average setup due to [18, Theorem
5.4.3].

Let C(k) denote the space of bounded functions from
[−k, k] to R. Define the operator B(k) : C(k) → C(k) as
follows. For any v ∈ C(k),

[B(k)v
]
(e) =

∫ k

−k

φ(w − e)v(w)dw. (12)

Then (10) and (11) can be written as[
L(k) − B(k)L(k)

]
(e) = e2, (13)[

M (k) − B(k)M (k)
]
(e) = 1. (14)

Let ‖·‖∞ denote the sup-norm, i.e., for any v ∈ C(k), ‖v‖∞ =
supe∈[−k,k] v(e).

Lemma 2 The operator B(k) is a contraction, i.e., for any
v ∈ C(k), ‖B(k)v‖∞ < ‖v‖∞. Therefore, for any h ∈ C(k), the
equation

[
v −B(k)v

]
= h has a unique bounded solution v.�

Proof: By the definition of sup-norm, we have that

‖B(k)v‖∞ = sup
e∈[−k,k]

∫ k

−k

φ(w − e)v(w)dw

≤ sup
e∈[−k,k]

‖v‖∞
∫ k

−k

φ(w − e)dw

< ‖v‖∞, (since φ is a pdf).

Now, consider the operator B′ given as: B′v = h + Bv.
Then we have,

‖B′(v1 − v2)‖∞ = ‖B(v1 − v2)‖∞ < ‖v1 − v2‖∞.

Hence, by Banach fixed point theorem, B′ has a unique fixed
point.

Lemma 3 The solution L(k) and M (k) of (10) and (11) are
continuous, differentiable and monotonically increasing in k.�

Proof: Consider k, l ∈ R≥0 such that k < l and the set
S(k) := (−k, k). A sample path starting from e ∈ S(k) must
escape S(k) before it escapes S(l). Thus

L(l)(e) ≥ L(k)(e).

In addition, the above inequality is strict because Wt has
a unimodal distribution. The differentiability can be proved
from elementary algebra using the definition and the fact that
the operator B(k) is a contraction. Continuity follows from
differentiabilty. The detailed proof is omitted here due to lack
of space and can be found in [19].

The process {Et} is a regenerative process that resets at
each transmission. Therefore, by standard results in renewal
theory, we can show the following:

Lemma 4 D(k)(0) and N (k)(0) can be expressed in terms of
L(k)(0) and M (k)(0) as follows:

D(k)(0) =
L(k)(0)

M (k)(0)
and N (k)(0) =

1

M (k)(0)
. (15)

�

The proof is omitted due to lack of space. An immediate
consequence of Lemma 3 and 4 is the following.
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Corollary 1 D(k)(0) and N (k)(0) are continuous and differ-
entiable in k. Furthermore, N (k)(0) is strictly decreasing in
k. �

Lemma 5 D(k)(0) is increasing in k. �

The proof follows in the following manner. The strict mono-
tonicity in k is proved for the discounted cost setup. The result
then follows by taking limit β ↑ 1. See [19] for a detailed
proof.

B. Solution of Problem (LAG)

We use L
(k)
k , M

(k)
k , D

(k)
k , N

(k)
k and C

(k)
k to denote the

derivative of L(k), M (k), D(k), N (k) and C(k) with respect to
k.

Theorem 2 If the pair (λ, k) satisfy the following

λ = −D
(k)
k (0)

N
(k)
k (0)

, (16)

then the strategy (f (k), g∗) is λ-optimal for Problem (LAG).
Furthermore, for any k > 0, there exists a λ ≥ 0 that
satisfies (16). �

Proof: The choice of λ implies that C
(k)
k (0;λ) = 0. Hence

strategy (f (k), g∗) is λ-optimal.

Note that, (16) can also be written as λ =(
(M (k)(0))2D

(k)
k (0)

)
/M

(k)
k (0). By Lemma 3, M

(k)
k (0) > 0

and by Lemma 5, D
(k)
k (0) ≥ 0. Hence, for any k > 0, λ

given by (16) is positive. This completes the proof.

C. Solution of Problem (AVG)

By definition, the distortion-transmission function D∗(α) is
continuous and decreasing function of α. It can be completely
characterized as follows:

Theorem 3 For any α ∈ (0, 1), there exists a k∗(α) such that

N (k∗(α))(0) = α. (17)

The strategy (f (k∗(α)), g∗) is optimal for Problem (AVG).
Moreover, the distortion-transmission function D∗(α) is given
by

D∗(α) = D(k∗(α))(0). (18)

�

Proof: A strategy (f◦, g◦) is optimal for a constrained
optimization problem if the following conditions hold [16]:

(C1) N(f◦, g◦) = α,
(C2) There exists a Lagrange multiplier λ◦ ≥ 0 such that

(f◦, g◦) is optimal for C(f, g;λ◦).

We will show that for a given α, there exists a k∗(α) ∈ R≥0

such that (f (k∗(α)), g∗) satisfy conditions (C1) and (C2).

By Corollary 1, N (k)(0) is continuous and strictly de-

creasing in k. It is easy to see that lim
k→0

N (k)(0) = 1 and

lim
k→∞

N (k)(0) = 0. Hence, for a given α ∈ (0, 1), there exists

a k∗(α) such that N (k∗(α))(0) = N(f (k∗(α)), g∗) = α. Thus,
(f (k∗(α)), g∗) satisfies (C1).

Now, for k∗(α), we can find a λ satisfying (16) and
hence we have by Theorem 2 that (f (k∗(α)), g∗) is opti-
mal for C(f, g;λ). Thus, (f (k∗(α)), g∗) satisfies (C2). Hence,
(f (k∗(α)), g∗) is optimal for Problem (AVG).

Lastly, the optimal distortion, namely the distortion-
transmission function, which is function of α, is given by
D∗(α) := D(f (k∗(α)), g∗) = D(k∗(α))(0). This completes the
proof.

IV. SCALING AND COMPUTATION

A. Scaling with variance

In this section, we investigate the scaling of the distortion-
transmission function with the variance σ2 of the increments
Wt. So, we parameterize L(k), M (k), D(k), N (k), B(k), k∗,
and D∗ by subscript σ to show the dependence on σ.

Lemma 6 Let L(k)
σ and M

(k)
σ be the solutions of (13) and (14)

respectively, when the variance of Wt is σ2. Then

L(k)
σ (e) = σ2L

(k/σ)
1

( e

σ

)
, M (k)

σ (e) = M
(k/σ)
1

( e

σ

)
, (19)

D(k)
σ (e) = σ2D

(k/σ)
1

( e

σ

)
, N (k)

σ (e) = N
(k/σ)
1

( e

σ

)
. (20)

�

Proof: L(k)
σ is the solution of the following equation

[
L(k)
σ − B(k)

σ L(k)
σ

]
(e) = e2.

Define L̂
(k)
σ (e) := σ2L

(k/σ)
1 (e/σ). Then, it can be shown that

[B(k)
σ L̂(k)

σ

]
(e) = σ2

[B(k/σ)
1 L

(k/σ)
1

]( e

σ

)
. (21)

Therefore

[
L̂(k)
σ −B(k)

σ L̂(k)
σ

]
(e) = σ2

[
L
(k/σ)
1 −B(k/σ)

1 L
(k/σ)
1

]( e

σ

)
= e2.

This proves the scaling of L
(k)
σ . The scaling of M

(k)
σ can be

proved similarly. The scaling of D
(k)
σ and N

(k)
σ follow from

Lemma 4. This completes the proof.

Theorem 4 D∗σ(α) = σ2D∗1(α). �

Proof: By definition of k∗(α) in Theorem 3 and the
scaling properties shown in Lemma 6, we have that k∗σ(α) =
σk∗1(α). Therefore,

D∗σ(α) = D
(k∗

σ(α))
σ (0) = D

(σk∗
1 (α))

σ (0)
(a)
= σ2D

(k∗
1 (α))

1 (0) = σ2D∗1(α),

where equality (a) is obtained by using (20).

An implication of the above theorem is that we only need
to numerically compute D∗1(α). The distortion-transmission
function for any other value of σ2 can be obtained by simply
scaling D∗1(α).
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Fig. 1: The distortion-transmission function D∗(α) for σ2 = 1.

B. Numerical computation of D∗1(α)

The computation of D∗1(α) depends on the fixed point
solutions L(k) and M (k) as given by the Fredholm equations
(10) and (11). There are various methods to solve Fredholm
equation of second kind. A standard approach is to use the
resolvent kernel of the integral equation; such a solution is
known as the Liouville-Neumann series [15]. Another method
is to use quadrature method to discretize the integral. The
authors of [17] describe Matlab implementation, which uses
Simpsons rule to discretize the integral equation with smooth
kernels and the natural interpolant of Nystrōm to get an
approximate solution. We use their implementation to obtain
D∗(α). Since N (k∗(α))(0) is decreasing and continuous in
k, we use the bisection method to find the value of k∗(α)
for which (17) holds. This requires solving (11) for a dif-
ferent value of k at each iteration. Once k∗(α) is obtained,
D∗(α) is computed using (18), which requires solving (10)
for k = k∗(α). Fig. 1 shows the plot of D∗(α) for different
values of α with variance σ2 = 1.

V. CONCLUSION

In this paper, we characterize the distortion-transmission
function of a Gauss-Markov source. The problem is set-
up as a constrained decentralized control problem. Previous
results [13] and [14] had characterized the structure of optimal
transmission and estimation strategies. These results show
that the optimal transmission strategy is threshold-based and
the optimal estimation strategy is Kalman-like. An interesting
feature of these results is that the estimation strategy does not
depend on the thresholds used by the transmission strategy.
This allows us to investigate the choice of optimal thresholds as
a centralized constrained stochastic control problem. We char-
acterize the Lagrange performance of an arbitrary threshold-
based strategy and use that to find the optimal threshold for
any value of the Lagrange multiplier. By showing that the
optimal performance is continuous in the thresholds, we obtain
a solution to the constrained optimization problem as well.

We establish the scaling property of the distortion-
transmission function, which enables one to compute the value
of the distortion-transmission function for a given variance,
using the knowledge of the standard distortion-transmission
function, i.e., the distortion-transmission function with vari-
ance 1.

The results are derived under an idealized system model. In
particular, we assume that when the transmitter does transmit,
it sends the complete state of the source; the channel is
noiseless and does not introduce any delay. Relaxing these
assumptions to analyze the effects of quantization, channel
noise and delay are important future directions.
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