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Abstract—The problem of optimal real-time transmission of
a Markov source under constraints on the expected number
of transmissions is considered, both for the discounted and
long term average cases. This setup is motivated by applica-
tions where transmission is sporadic and the cost of switching
on the radio and transmitting is significantly more important
than the size of the transmitted data packet. For this model,
we characterize the distortion-transmission function, i.e., the
minimum expected distortion that can be achieved when the
expected number of transmissions is less than or equal to a
particular value. In particular, we show that the distortion-
transmission function is a piecewise linear, convex, and de-
creasing function. We also give an explicit characterization of
each vertex of the piecewise linear function. The results are
illustrated using an example of a birth-death Markov chain.

I. INTRODUCTION

In many applications of real-time communication systems,
the transmitter is a battery powered device that transmits over a
wireless packet-switched network; the cost of switching on the
radio and transmitting a packet is significantly more important
than the size of the data packet. Therefore, the transmitter
does not transmit all the time; but when it does transmit,
the transmitted packet is as big as needed to communicate
the current source realization. In this paper, we characterize a
fundamental trade-off between the real-time (i.e. zero-delay) dis-
tortion and the average number of transmissions in such systems.

In particular, we consider a transmitter that observes a
first-order Markov source. At each time instant, based on the
current source symbol and the history of its past decisions,
the transmitter determines whether or not to transmit the
current source symbol. If the transmitter does not transmit, the
receiver must estimate the source symbol using the previously
transmitted values. A per-step distortion function measures the
fidelity of estimation. We are interested in characterizing the
optimal transmission and estimation strategies that minimize the
expected distortion over an infinite horizon under a constraint
on the expected number of transmissions.

The communication system described above is much simpler
than the general real-time communication setup due to the
following feature: whenever the transmitter transmits, it sends
the current realization of the source to the receiver. These
transmitted events reset the system. In addition, we impose
certain symmetry assumptions on the model, which ensure
that there is a single reset state. Exploiting these special
features we show that threshold-based strategies are optimal at
the transmitter; the optimal transmission strategy randomizes

between two threshold-based strategies; the randomization takes
place only at one state.

Several variations of the communication system described
above have been considered in the literature. The most closely
related models are [1]–[5] (where transmission is assumed to
be unconstrained but expensive). Other related work includes
censoring sensors [6], [7] (where a sensor takes a measurement
and decides whether to transmit it or not; in the context of
sequential hypothesis testing), estimation with measurement
cost [8], [9] (where the receiver decides when the sensor should
transmit), sensor sleep scheduling [10], [11] (where the sensor is
allowed to sleep for a pre-specified amount of time); and event-
based communication [12], [13] (where the sensor transmits
when a certain event takes place).

Throughout this paper, we use the following notation. Z,
Z≥0 and Z>0 denote the set of integers, the set of non-
negative integers and the set of strictly positive integers
respectively. Upper-case letters (e.g., X , Y ) denote random
variables; corresponding lower-case letters (e.g. x, y) denote
their realizations. X1:t is a short hand notation for the vector
(X1, . . . , Xt). Given a matrix A, Aij denotes its (i, j)-th
element, Ai denotes its i-th row, A⊺ denotes its transpose.
We index the matrices by sets of the form {−k, . . . , k}; so the
indices take both positive and negative values. Ik denotes the
identity matrix of dimension k×k, k ∈ Z>0. 1k denotes k× 1
vector of ones. 〈v, w〉 denotes the inner product between vectors
v and w, E[·] denotes the expectation of a random variable, and
1{·} denotes the indicator function of a statement. We follow
the convention of calling a sequence {ak}

∞
k=0 increasing when

a1 ≤ a2 ≤ · · · . If all the inequalities are strict, then we call
the sequence strictly increasing.

II. PROBLEM FORMULATION

A. The communication system

In this paper, we investigate the following communication
setup. A transmitter causally observes a first-order Markov
source {Xt}

∞
t=0, where Xt ∈ Z and the initial state X0 = 0.

At each time, it may choose whether or not to transmit the
current source observation. This decision is denoted by Ut ∈
{0, 1}, where Ut = 0 denotes no transmission and U1 = 1
denotes transmission. The decision to transmit is made using a
transmission strategy f = {ft}

∞
t=0, where

Ut = ft(X0:t, U0:t−1). (1)
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Fig. 1: A block diagram depicting the communication system
considered in this paper.

We use the short-hand notation X0:t to denote the sequence
(X0, . . . , Xt). Similar interpretations hold for U0:t−1.

The transmitted symbol, which is denoted by Yt, is given
by

Yt =

{

Xt, if Ut = 1;

E, if Ut = 0,

where Yt = E denotes no transmission.

The receiver causally observes {Yt}
∞
t=0 and generates a

source reconstruction {X̂t}
∞
t=0 (where X̂t ∈ Z) in real-time

using an estimation strategy g = {gt}
∞
t=0, i.e.,

X̂t = gt(Y0:t). (2)

The fidelity of the reconstruction is measured by a per-step
distortion d(Xt − X̂t), where d : Z → R≥0.

Fig. 1 shows a communication system as described above.
We impose the following assumptions on the model.

(A1) The transition matrix P of the Markov source is a
Toeplitz matrix with decaying off-diagonal terms, i.e.,
Pij = p|i−j|, where {pn}

∞
n=0 is a decreasing non-

negative sequence and p1 > 0.
(A2) The distortion function is even and increasing on

Z≥0, i.e., for all e ∈ Z≥0, d(e) = d(−e) and d(e) ≤
d(e+1). Furthermore, d(0) = 0 and d(e) 6= 0, ∀e 6= 0.

An example of a source and a distortion function that satisfy
the above assumptions is the following:

Example 1 Consider an aperiodic, symmetric, birth-death
Markov chain defined over Z with the transition probability
matrix as given by the following:

Pij =







p, if |i− j| = 1;

1− 2p, if i = j;

0, otherwise,

where we assume that p ∈ (0, 1
2 ). Let the distortion function

be d(e) = |e|. P satisfies (A1) and d(e) satisfies (A2). ✷

B. The optimization problem

The objective is to choose the transmission and estimation
strategies (called the communication strategy in short) to
minimize the expected distortion under a constraint on the
expected number of transmissions. We investigate two variations
of this objective: the discounted setup and the long-term
average setup. In order to do that, let us first define the
performance measures corresponding to a transmission and
estimation strategy (f, g), denoted by Dβ(f, g) and Nβ(f, g),
β ∈ (0, 1] as follows:

1) Performance measures for the discounted setup: Given a
communication strategy (f, g) and a discount factor β ∈ (0, 1),
let

Dβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

denote the expected discounted distortion and

Nβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

denote the expected discounted number of transmissions.

2) Performance measures for the long-term average setup:
The long-term average setup is similar. Given a communication
strategy (f, g), let

D1(f, g) := lim sup
T→∞

1

T
E

(f,g)
[

T−1
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

denote the expected long-term average distortion and

N1(f, g) := lim sup
T→∞

1

T
E

(f,g)
[

T−1
∑

t=0

Ut

∣

∣

∣
X0 = 0

]

denote the expected long-term average number of transmissions.

We now state the constrained optimization problem as
follows:

Problem Given α ∈ (0, 1) and β ∈ (0, 1], find a strategy
(f∗, g∗) such that,

D∗
β(α) := Dβ(f

∗, g∗) := inf
(f,g):Nβ(f,g)≤α

Dβ(f, g) (CON)

where the infimum is taken over all history-dependent commu-
nication strategies of the form (1) and (2).

C. The main result

The function D∗
β(α), β ∈ (0, 1], represents the minimum

expected distortion that can be achieved when the expected
number of transmissions are less than or equal to α. It is
analogous to the distortion-rate function in classical Information
Theory; for that reason, we call it the distortion-transmission
function.

By definition, D∗
β(α) is convex and decreasing in α. In

this paper, we characterize the shape of D∗
β(α) for a class

of Markov sources and distortion functions (those that satisfy
(A1) and (A2)). In particular, we show that D∗

β(α) is piecewise
linear (in addition to being convex and decreasing). We derive
closed form expressions for each vertices; thus, completely
characterizing the curve.

Specifically, we show that each point on the distortion-
transmission function (i.e. the optimal distortion for a given
value of α) is achieved by a communication strategy that is of
the following form:

• Let Zt be the most recently transmitted symbol up to
time t. Then, the optimal estimation strategy is

g∗(Y0:t) = Zt. (3)
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Fig. 2: The distortion-transmission function D∗
β(α) for a

symmetric Markov source and even and increasing distortion
function. D∗

β(α) is piecewise linear, convex, and decreasing.

• Let Et = Xt − Zt−1 and f (k) be a threshold-based
strategy given by

f (k)(Xt, Y0:t−1) =

{

1, if |Et| ≥ k;

0, if |Et| < k.
(4)

Then, the optimal transmission strategy is a possibly
randomized strategy that, at each stage, picks f (k∗)

with probability θ∗ and picks f (k∗+1) with proba-
bility (1 − θ∗); where k∗ is the largest k such that
Nβ(f

(k), g∗) ≥ α and θ∗ is chosen such that

θ∗Nβ(f
(k∗), g∗) + (1− θ∗)Nβ(f

(k∗+1), g∗) = α.

Note that this randomized strategy can also be written as

f∗(e) =















0, if |e| < k∗;

0, w.p. 1− θ∗, if |e| = k∗;

1, w.p. θ∗, if |e| = k∗;

1, if |e| > k∗.

(5)

Thus, it randomizes only at states {−k∗, k∗}.

The corresponding distortion-transmission function is a
piecewise-linear function with vertices given by (N

(k)
β , D

(k)
β ),

where

D
(k)
β = Dβ(f

(k), g∗) and N
(k)
β = Nβ(f

(k), g∗).

In addition, D(1)
β = 0. Therefore,

D∗
β(α) = 0, ∀α > αc := N

(1)
β = β(1− p0).

We show that {N
(k)
β }∞k=0 is a decreasing sequence and

{D
(k)
β }∞k=0 is an increasing sequence. Consequently, the

distortion-transmission function is convex and decreasing. See
Fig. 2 for an illustration.

III. PROOF OF THE MAIN RESULT

A. Lagrange relaxations

The Lagrange relaxation of Problem (CON) is the following:
for any β ∈ (0, 1] and λ ≥ 0, find a strategy (f∗, g∗) such that

C∗
β(λ) := Cβ(f

∗, g∗;λ) := inf
(f,g)

Cβ(f, g;λ) (LAG)

where Cβ(f, g;λ) = Dβ(f, g) + λNβ(f, g) and the infimum
is taken over all history-dependent communication strategies
of the form (1) and (2).

It is shown in [14] and [15] for discounted setup and long-
term average setup respectively, that for problem (LAG) the
optimal estimation strategy is time homogeneous, Kalman-like
and is independent of the transmission startegy (as given by (3)).
The optimal transmission strategy is of threshold-type and the
optimal thresholds are time homogeneous (as given by (4)).

Furthermore, the optimal thresholds are characterized as
follows. Let λ(k)

β be the value of the Lagrange multiplier for
which one is indifferent between strategies f (k) and f (k+1)

when starting from state 0, i.e., λ(k)
β is such that

C
(k)
β (λ

(k)
β ) = C

(k+1)
β (λ

(k)
β ), (6)

where C
(k)
β (λ) = D

(k)
β + λN

(k)
β denotes the Lagrange perfor-

mance of strategy (f (k), g∗). Such a sequence of {λ
(k)
β }∞k=0

can be computed based on D
(k)
β and N

(k)
β as follows:

Proposition 1 For any β ∈ (0, 1], the sequence {λ
(k)
β }∞k=0

given by

λ
(k)
β

:=
D

(k+1)
β −D

(k)
β

N
(k)
β −N

(k+1)
β

(7)

satisfies (6) for all k ∈ Z≥0. Under (A2), λ
(k)
β > 0 for all

k ∈ Z≥0. ✷

Proposition 1 is a strainght forward consequence of [14, Lemma
7] and [15, Eq. (20)]. Also, please see [16] for the proof.

B. The constrained optimization problems

We now analyze the constrained optimization prob-
lem (CON). For that matter, define Bernoulli randomized
strategy and Bernoulli randomized simple strategy.

Definition 1 Suppose we are given two (non-randomized)
time-homogeneous strategies f1 and f2 and a randomization
parameter θ ∈ (0, 1). The Bernoulli randomized strategy
(f1, f2, θ) is a strategy that randomizes between f1 and f2
at each stage; choosing f1 with probability θ and f2 with
probability (1 − θ). Such a strategy is called a Bernoulli
randomized simple strategy if f1 and f2 differ on exactly one
state i.e. there exists a state e0 such that

f1(e) = f2(e), ∀e 6= e0. ✷

Define

k∗β(α) = sup{k ∈ Z≥0 : Nβ(f
(k), g∗) ≥ α} (8)

and

θ∗β(α) =
α−Nβ(f

(k∗

β(α)+1), g∗)

Nβ(f
(k∗

β
(α)), g∗)−Nβ(f

(k∗

β
(α)+1), g∗)

. (9)

For ease of notation, we use k∗ = k∗β(α) and θ∗ = θ∗β(α). By
definition, θ∗ ∈ [0, 1] and

θ∗Nβ(f
(k∗), g∗) + (1− θ∗)Nβ(f

(k∗+1), g∗) = α. (10)

Theorem 1 Let f∗ be the Bernoulli randomized simple strategy
(f (k∗), f (k∗+1), θ∗). of the form (5). Then (f∗, g∗) is optimal
for the constrained Problem (CON) when β ∈ (0, 1]. ✷



TABLE I: Values of D(k)
β , N (k)

β and λ
(k)
β for different values of k and β for the birth-death Markov chain of Example 1 with

p = 0.3.

(a) For β = 0.9

k D
(k)
β

N
(k)
β

λ
(k)
β

0 0 1 0
1 0 0.5400 1.0989
2 0.4576 0.1236 4.1021
3 0.7695 0.0475 9.2839
4 1.0066 0.0220 16.2509
5 1.1844 0.0111 24.4478
6 1.3130 0.0058 33.4121
7 1.4029 0.0031 42.8289
8 1.4638 0.0017 52.5042
9 1.5040 0.0009 62.3245

10 1.5298 0.0005 72.2255

(b) For β = 0.95

k D
(k)
β

N
(k)
β

λ
(k)
β

0 0 1 0
1 0 0.5700 1.1050
2 0.4790 0.1365 4.3657
3 0.8282 0.0565 10.6058
4 1.1218 0.0288 19.9550
5 1.3715 0.0163 32.0869
6 1.5811 0.0098 46.4727
7 1.7536 0.0061 62.5651
8 1.8927 0.0039 79.8921
9 2.0028 0.0025 98.0854
10 2.0884 0.0016 116.8739

(c) For β = 1.0

k D
(k)
β

N
(k)
β

λ
(k)
β

0 0 1 0
1 0 0.6000 1.1111
2 0.5000 0.1500 4.6667
3 0.8889 0.0667 12.3810
4 1.2500 0.0375 25.9259
5 1.6000 0.0240 46.9697
6 1.9444 0.0167 77.1795
7 2.2857 0.0122 118.2222
8 2.6250 0.0094 171.7647
9 2.9630 0.0074 239.4737

10 3.0000 0.0060 323.0159

Proof: The proof relies on the following characterization
of the optimal strategy stated in [17, Proposition 1.2]. The
characterization was stated for the long-term average setup
but a similar result can be shown for the discounted case as
well, for example, by using the approach of [18]. Also, see
[19, Theorem 8.1] for a similar sufficient condition for general
constrained optimization problem.

A (possibly randomized) strategy (f◦, g◦) is optimal for
a constrained optimization problem with β ∈ (0, 1] if the
following conditions hold:

(C1) Nβ(f
◦, g◦) = α,

(C2) There exists a Lagrange multiplier λ◦ ≥ 0 such that
(f◦, g◦) is optimal for Cβ(f, g;λ

◦).

We will show that the strategies (f∗, g∗) satisfy (C1) and (C2)
with λ◦ = λ

(k∗)
β .

The strategy (f∗, g∗) satisfies (C1) due to (10). For
λ = λ

(k∗)
β , both f (k∗) and f (k∗+1) are optimal for Cβ(f, g;λ).

Hence, any strategy randomizing between them, in particular
f∗, is also optimal for Cβ(f, g;λ). Hence (f∗, g∗) satisfies
(C2). Therefore, by [17, Proposition 1.2], (f∗, g∗) is optimal
for Problem (CON).

Theorem 2 The distortion-transmission function is given by

D∗
β(α) = θ∗Dβ(f

(k∗), g∗) + (1− θ∗)Dβ(f
(k∗+1), g∗). (11)

Furthermore, D∗
β(α) is a continuous, piecewise linear, decreas-

ing, and convex function of α. ✷

Proof: The form of D∗
β(α) given in (11) follows imme-

diately from the fact that (f∗, g∗) is a Bernoulli randomized
simple strategy. By definition, D∗

β(α) is decreasing and convex
in α.

To show piecewise linearity, define for any k ∈ Z≥0, α(k) =
Nβ(f

(k), g∗), and consider any α ∈ (α(k+1), α(k)). Then,

k∗β(α
(k)) = k, and θ∗β(α

(k)) = 1.

Hence D∗
β(α

(k)) = Dβ(f
(k), g∗). Thus, by (9), θ∗ = (α −

α(k+1))/(α(k) − α(k+1)), and by (11),

D∗
β(α) = θ∗D∗

β(α
(k)) + (1− θ∗)D∗

β(α
(k+1)).

Therefore D∗
β(α) is piecewise linear and continuous.

It follows from the argument given in the proof above that
{(α(k), D∗

β(α
(k)))}∞k=0 are the vertices of the piecewise linear

function D∗
β . See Fig. 2 for an illustration.

IV. AN EXAMPLE: APERIODIC, SYMMETRIC BIRTH-DEATH
MARKOV CHAIN

We state the main results for Example 1 here. The proofs,
however, are not given here due to page limit. Please refer
to [16] for the detailed proofs.

Lemma 1 1) For β ∈ (0, 1),

D
(k)
β =

sinh(kmβ)− k sinh(mβ)

2 sinh2(kmβ/2) sinh(mβ)
;

N
(k)
β =

2βp sinh2(mβ/2) cosh(kmβ)

sinh2(kmβ/2)
− (1− β).

2) For β = 1,

D
(k)
1 =

k2 − 1

3k
; N

(k)
1 =

2p

k2
, and

λ
(k)
1 =

k(k + 1)(k2 + k + 1)

6p(2k + 1)
. ✷

When p = 0.3, the values of D
(k)
β , N

(k)
β , and λ

(k)
β for

different values of k and β are shown in Table I.

Lemma 2 1) For β ∈ (0, 1), k∗β is given by the maxi-
mum k that satisfies the following inequality

2 cosh(kmβ)

cosh(kmβ)− 1
≥

1 + α− β

βp(cosh(mβ)− 1)
.

2) For β = 1, k∗1 is given by the following equation

k∗1 =
⌊

√

2p

α

⌋

.
✷

Using the above results, we can plot the distortion-
transmission function D∗

β(α). See Fig. 3 for the plot of D∗
β(α)

vs α for different values of β (all for p = 0.3). An alternative
way to plot this curve is to draw the vertices (N

(k)
β , D

(k)
β )

using the data in Table I to compute the optimal (randomized)
strategy for a particular value of α.
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Fig. 3: Plots of D∗
β(α) vs α for different β for the birth-death Markov chain of Example 1 with p = 0.3.

As an example, suppose we want to identify the optimal
strategy at α = 0.5 for the birth-death Markov chain of Exam-
ple 1 with p = 0.3 and β = 0.9. Recall that k∗ is the largest
value of k such that N (k)

β ≤ α. Thus, from (8), we get that k∗ =

1. Then, by (9), θ∗ = (α−N
(2)
β )/(N

(1)
β −N

(2)
β ) = 0.9039. Let

f∗ = (f (1), f (2), θ∗). Then the Bernoulli randomized simple
strategy (f∗, g∗) is optimal for Problem (CON) with β = 0.9.
Furthermore, by (11), D∗

β(α) = 0.044.

V. CONCLUSION

We characterized the distortion-transmission function for
transmitting a first-order symmetric Markov source in real-time
with constraints on the expected number of transmissions.

Our result depends critically on establishing the following
structure of optimal communication strategies. There is no
loss of optimality in restricting attention to threshold based
transmission strategies and as long as the transmission strategy
belongs to this class, the optimal estimation stratgey is
independent of the choice of the threshold.

As a consequence of this structure, the optimal estimation
strategy is known, and we only have to identify the optimal
transmission strategy. We look at the Lagrange relaxation,
compute the performance of an arbitrary threshold based
transmission strategy, identify the set of Lagrange multipliers
for which an arbitrary threshold based strategy is optimal, and
then use these features to identify the optimal strategy for the
constrained optimization problem.
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