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1. INTRODUCTION

Remote-state estimation refers to a scenario in which
a sensor observes a stochastic process and determines
whether or not to transmit each observation to a remote
receiver. In this paper, we consider a model where the
communication takes place over a TCP-like protocol; so
either the transmitted packet is delivered without any
error to the receiver or the packet is dropped.
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Fig. 1. The remote state estimation setup

Several variations of this setup has been considered in the
literature. When the communication channel is ideal (i.e.,
there is no packet-drop), suboptimal and optimal trans-
mission and estimation strategies are proposed in Imer and
Basar (2005); Xu and Hespanha (2004); Lipsa and Martins
(2011); Nayyar et al. (2013b); Molin and Hirche (2012);
Chakravorty and Mahajan (2017). When there are packet
drops, Li et al. (2013) consider the case when the transmit-
ter can transmit only a fixed number of times, Xiaoqiang
et al. (2016) consider the case when the probability of
the packet-drop depends on the transmission power. Shi
and Xie (2012) considers a similar setup with two energy
levels and Dey et al. (2013) consider the case when the
transmissions are noisy.

In this paper, we characterize the structure of optimal
communication strategies as well as two fundamental
trade-offs between communication and estimation: first
when communication is costly and second when there is
a constraint on the number of communications. In both
cases, we identify communication strategies that achieve
the optimal trade-offs.

2. PROBLEM FORMULATION

2.1 Remote estimation model

Consider the remote estimation setup shown in Fig. 1.
A sensor observes a first-order time-homogeneous Markov
process {Xt}t≥0 with initial state X0 = 0 and for t ≥ 0,

Xt+1 = aXt +Wt, (1)

where {Wt}t≥0 is an i.i.d. innovations process. For simplic-
ity, in this paper we restrict attention to a,Xt,Wt ∈ Z.
The results extend naturally to the case when a,Wt, Xt ∈
R. We assume that Wt is distributed according to a uni-
modal and symmetric probability mass function p, i.e., for
all e ∈ Z≥0, pe = p−e and pe ≥ pe+1. To avoid the trivial
case, we assume p0 < 1.

After observing Xt, the sensor decides whether or not to
transmit the current state. This decision is denoted by
Ut ∈ {0, 1}, where Ut = 0 denotes no transmission and
Ut = 1 denotes transmission.

If the transmitter decides to transmit (i.e., Ut = 1), Xt

is transmitted over a wireless erasure channel and there
is a probability ε ∈ (0, 1) that the transmitted packet is
dropped. Let Ht ∈ {0, 1} denote the state of the channel
at time t. Ht = 0 denotes that the channel is in the OFF
state and a transmitted packet will be dropped; Ht = 1
denotes that channel is in the ON state and a transmitted
packet will be received. We assume that {Ht}t≥0 is an
i.i.d. process with P(Ht = 0) = ε. Moreover, {Ht}t≥0 is
independent of {Xt}t≥0.

Transmission takes place using a TCP-like protocol, so
there is an acknowledgment from the receiver to the
transmitter when a packet is received successfully. This
means that the transmitter observes Kt = UtHt, which
indicates whether the packet was successfully received by
the receiver (Kt = 1) or not (Kt = 0).

The received symbol, which is denoted by Yt, is given by
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Yt =

{

Xt, if Kt = 1

E, if Kt = 0,
(2)

where Yt = E denotes that no packet was received. Note
that by observing Kt, the transmitter can compute Yt. The
transmitter uses this information to decide whether or not
to transmit. In particular,

Ut = ft(X0:t, Y0:t−1), (3)

where X0:t and Y0:t−1 are short-hand notations for
(X0, . . . , Xt) and (Y0, . . . , Yt−1). The collection f :=
{ft}t≥0 of decision rules is called the transmission strategy.

After observing Yt, the receiver generates an estimate
{X̂t}t≥0, X̂t ∈ Z, using an estimation strategy g :=
{gt}t≥0, i.e.,

X̂t = gt(Y0:t). (4)

The fidelity of estimation is measured by a per-step
distortion d(Xt − X̂t). We assume that:

• d(0) = 0 and for e �= 0, d(e) �= 0
• d(·) is even, i.e., d(e) = d(−e)
• d(e) is increasing for e ∈ Z≥0.

2.2 The optimization problems

We are interested in two performance measures: expected
total distortion and expected total number of transmis-
sion. Given any finite horizon strategy (f, g) for horizon
T , the expected distortion is defined as

DT (f, g) := E
(f,g)

[

T
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

and the expected number of transmissions is defined as

NT (f, g) := E
(f,g)

[

T
∑

t=0

Ut

∣

∣

∣
X0 = 0

]

.

Given any infinite horizon strategy (f, g) for discount
factor β, β ∈ (0, 1), the expected distortion is defined as

Dβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

and the expected number of transmissions is defined as

Nβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

.

We are interested in the following three optimization
problems:
Problem 1 (Costly communication, finite-horizon) In
the model of Sec. 2.1, given a communication cost λ ∈ R>0

and a horizon T , find a transmission and estimation strat-
egy (f∗, g∗) such that

C∗
T (λ) := CT (f

∗, g∗;λ) = inf
(f,g)

CT (f, g;λ), (5)

where CT (f, g;λ) := DT (f, g) + λNT (f, g) is the total
communication cost and the infimum in (5) is taken over
all history-dependent strategies of the form (3) and (4).
Problem 2 (Costly communication, infinite-horizon) In
the model of Sec. 2.1, given a discount factor β ∈ (0, 1)
and a communication cost λ ∈ R>0, find a transmission
and estimation strategy (f∗, g∗) such that

C∗
β(λ) := Cβ(f

∗, g∗;λ) = inf
(f,g)

Cβ(f, g;λ), (6)

where Cβ(f, g;λ) := Dβ(f, g) + λNβ(f, g) is the total
communication cost and the infimum in (6) is taken over
all history-dependent strategies of the form (3) and (4).
Problem 3 (Constrained communication) In the model
of Sec. 2.1, given a discount factor β ∈ (0, 1) and a
constraint α ∈ (0, 1), find a transmission and estimation
strategy (f∗, g∗) such that

D∗
β(α) := Dβ(f

∗, g∗) = inf
(f,g):Nβ(f,g)≤α

Dβ(f, g), (7)

where the infimum is taken over all history-dependent
strategies of the form (3) and (4).

Problems 1–3 are decentralized control problems. The
system has two controllers or agents—the transmitter and
the receiver—who have access to different information.
In particular, the transmitter at time t has access to
(X0:t, Y0:t−1) while the receiver at time t has access to
Y0:t. These two agents need to cooperate to minimize
a common cost function given by (5), (6), or (7). Such
decentralized control problems are investigated using team
theory Mahajan et al. (2012).

In this paper we use the person-by-person approach in tan-
dem with the common information approach to identify
information states for both agents and obtain a dynamic
programming decomposition. Then we use a partial order
based on majorization to identify the structure of optimal
transmission strategy. In particular, we show that optimal
estimation strategy is similar to Kalman filtering and op-
timal transmission strategy is threshold-based. For Prob-
lems 2 and 3, we use ideas from renewal theory and con-
strained optimization to identify the optimal thresholds.

3. STRUCTURE OF OPTIMAL STRATEGIES

3.1 Person-by-person approach to remove irrelevant infor-
mation at the transmitter

Proposition 1 In Problem 1, there is no loss of optimal-
ity to restrict attention to transmission strategies of the
form:

Ut = ft(Xt, Y0:t−1).

Proof Arbitrarily fix the estimation strategy g and con-
sider the best response strategy at the transmitter. Similar
to the argument given in Witsenhausen (1979); Teneketzis
(2006), it can be shown that (Xt, Y0:t−1) is an informa-
tion state at the transmitter and therefore the result of
proposition follows from Markov decision theory. �

3.2 Common-information based sufficient statistic for the
transmitter and the receiver

Following Nayyar et al. (2013a), we split the information
at the transmitter and the receiver into two parts: common
information (which is the data that that is known to all
future decision makers) and local information (which is the
total data minus the common information). In particular,
at the transmitter the common information is Y0:t−1 and
the local information is Xt while at the receiver the
common information is Y0:t and the local information is
empty. Now, consider the following centralized stochastic
control problem, which we call the coordinated system. At
time t, a virtual coordinator observes Y0:t−1 (the common
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information at the transmitter at time t) and chooses a
prescription φt : Z → {0, 1} according to a coordination
strategy ψt, i.e.,

φt = ψt(Y0:t−1).

The decision Ut to transmit is generated according to
Ut = φt(Xt). The received symbol Yt is still given by (2).
After observing Yt, the coordinator generates an estimate
X̂t according to (4). The communication cost and the
distortion function are the same as in Sec. 2.1.

As shown in Nayyar et al. (2013a) that the above central-
ized coordinated system is equivalent to the decentralized
system considered in Problem 1. Since the coordinated
system is centralized, an optimal coordinated strategy may
be identified from an appropriate dynamic program. For
that matter, define the following beliefs.
Definition 1 For any coordination strategy ψ = (ψ1, . . . ,
ψt), define Πt|t−1,Πt|t ∈ ∆(Z) as follows: for any x ∈ Z,

Πt|t−1(x) := P
ψ(Xt = x |Y0:t−1)

Πt|t(x) := P
ψ(Xt = x |Y0:t),

where ∆(Z) denotes the space of distributions on Z. ✷

Note that when we condition on a particular realization
of Y0:t−1, then the realizations πt|t−1 and πt|t of Πt|t−1

and Πt|t are conditional distributions on Xt given Y0:t−1.
When we condition on the random variables Y0:t−1, then
Πt|t−1 and Πt|t are distribution-valued random variables.

Based on Bayes rule, the update of πt|t−1 and πt|t are given
as follows.
Lemma 1 There exists functions Q1

t and Q2
t such that for

any coordination strategy ψ and any realization y0:t of Y0:t,

πt|t = Q1
t (πt|t−1, φt, yt) and πt+1|t = Q2

t (πt|t),

where

Q1
t (πt|t−1, φt, yt)(x)

=







δ(yt), if yt �= E

πt|t−1(x)[εφt(x)+(1−φt(x))]∑

x′∈Z

πt|t−1(x′)[εφt(x′)+(1−φt(x′))] , if yt = E, (8)

and

Q2
t (πt|t)(x) =

∑

w∈Z

pwπt|t(ax+ w),

where δ(x′) is the delta-distribution with unit mass at x′.✷

The next proposition follows from (Nayyar et al., 2013b,
Theorem 1).
Proposition 2 Define recursively the following functions
for a finite horizon T :

VT+1|T (πt|t−1) := 0,

and for t ∈ {T, · · · , 1},

Vt|t(πt|t) := min
x̂t∈Z

E
[

d(Xt − x̂t)
∣

∣Πt|t = πt|t

]

+ Vt+1|t(πt+1|t),

(9)

where Πt+1|t = Q2
t (πt|t) as given in (8), and

Vt|t−1(πt|t−1) := min
φt∈G

E
[

λ1{Ut=1} + Vt|t(Πt|t)
∣

∣

Πt|t−1 = πt|t−1, φt

]

,
(10)

where Πt|t = Q1
t (πt|t−1, φt, Yt) is given in (8) and G is the

set of all functions φ̃t from Z to {0, 1}.

Then, for each realization of the post-transmission belief
πt|t at time t, the minimizer in (9) exists and gives the
optimal estimate at time t; for each realization of the pre-
transmission belief πt|t−1, the minimizer in (10) exists and
gives the optimal prescription φt at time t. ✷

3.3 Structure of optimal strategies

To establish the structure of optimal transmission and
estimation strategies, we state the following definitions
from Nayyar et al. (2013b).
Definition 2 (ASU and even) A probability distribu-
tion ν on Z is said to be almost symmetric and unimodal
(ASU) about a point a ∈ Z, if for any k ∈ Z≥0,

ν(a+ k) ≥ ν(a− k) ≥ ν(a+ k + 1).

If a distribution ν is ASU about 0 and ν(x) = ν(−x), for
all x ∈ Z, then ν is said to be ASU and even. ✷

Definition 3 (ASU Rearrangement) The ASU rear-
rangement of a probability distribution ν, denoted by ν+,
is a permutation of ν such that for every n ∈ Z≥0,

ν+n ≥ ν+−n ≥ ν+n+1.

Definition 4 (Majorization) Given two probability dis-
tributions ν1 and ν2 defined over Z, ν1 is said to majorize
ν2, which is denoted by ν1 �m ν2, if for all n ∈ Z≥0,

n
∑

−n

ν+1 (x) ≥

n
∑

−n

ν+2 (x),

n+1
∑

−n

ν+1 (x) ≥

n+1
∑

−n

ν+2 (x).

Definition 5 (Relation R) Given two probability dis-
tributions µ and µ̃ defined over Z, we say that a relation R

exists between them, which is denoted by µ̃Rµ, if µ̃ �m µ
and µ̃ is ASU about some point b ∈ Z. ✷

Definition 6 (ASU Schur-concavity) Let H : ∆(Z) →
R be a function that maps distributions on Z to real num-
bers. Then, H is said to be ASU Schur-concave if for any
two distributions µ̃ and µ, µ̃Rµ implies H(µ̃) ≤ H(µ). ✷

The value functions defined in Prop. 2 satisfy the following:
Lemma 2 Vt|t−1 and Vt|t are ASU Schur-concave. ✷

The proof is similar to (Nayyar et al., 2013b, Claim 1).

Using the above property, we can show the following:
Lemma 3 If πt|t is ASU around θ, then θ is an arg min
of the right hand side of (9). ✷

Lemma 4 If πt|t−1 is ASU around θ, then the arg min of
the right hand side of (10) is given by

φt(x) =

{

1, if |x− aθ| > kt(πt|t−1)

0, if |x− aθ| < kt(πt|t−1)

where kt is a threshold that depends on πt|t−1. When |x−
aθ| = kt(πt|t−1), either 0 or 1 may be chosen with an
appropriate randomization probability. ✷

Definition 7 Define a processes {Zt}t≥0 and {Et}t≥0 as
follows: Z0 = 0,

Zt =

{

Xt, if Yt �= E,

aZt−1, if Yt = E,

and Et = Xt − aZt−1. ✷

Theorem 1 (Structure of optimal strategies) The
optimal strategies have the following structure:

(1) Structure of optimal estimation strategy: For Prob-
lems 1–3, the optimal estimation strategy is time-
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homogeneous and Kalman-like, as given below: X̂0 =
Z0 = 0 and

X̂t = g∗t (Zt) = Zt =

{

Xt, if Yt �= E,

aX̂t−1, if Yt = E;
(11)

(2) Structure of optimal transmission strategy: For Prob-
lem 1, the optimal transmission strategy is a threshold-
based strategy given by

Ut = f∗
t (Et) =

{

1, if |Et| ≥ kt;

0, if |Et| < kt,

where kt ∈ Z≥0 are the time-varying thresholds that
do not depend on Et.

For Problem 2, the optimal transmission strategy is
threshold-based strategy given by

Ut = f∗
t (Et) =

{

1, if |Et| ≥ k;

0, if |Et| < k,

where k ∈ Z≥0 is a time-homogeneous threshold.
For Problem 3, the optimal strategy is a threshold-

based randomized strategy given by

Ut = f∗
t (Et) =















1, if |Et| > k;

1, w.p. θ∗ if |Et| = k;

0, w.p. 1− θ∗ if |Et| = k;

0, if |Et| < k,

where k ∈ Z≥0 is a time-homogeneous threshold and
θ∗ ∈ [0, 1] is an appropriate constant that depends
on α ✷

Proof The results for Problem 1 follow from a forward
induction argument. It can be recursively shown that
πt|t−1 is ASU about Zt−1 and πt|t is ASU about Zt.
The structure of the optimal transmission and estimation
strategy follows from Lemmas 3 and 4.

The results for Problem 2 can be shown by establishing
appropriate regularity conditions under which the solu-
tion of infinite horizon Markov decision processes is time
homogeneous (Puterman, 1994, Lemma 4.7.2).

For the proof for Problem 3, see Theorem 3. �

The implication of Theorem 1 is the following. In general,
in remote-state estimation problems, the structure of op-
timal estimation strategy depends on that of the optimal
transmission strategy. However, as is shown in Theorem 1,
the optimal estimation strategy can be characterized in
closed form, independent of that of optimal transmission
strategy. Thus, we can fix an estimation strategy of the
form (11) and consider the optimization problem of find-
ing the best transmission strategy corresponding the fixed
estimation strategy. Since there is only one decision-maker
(the transmitter), this optimization problem is centralized
in nature. Since the optimal estimation strategy given
by (11) is time-homogeneous, it can be shown that the
optimal transmission strategy for infinite horizon is time-
homogeneous and is given by the following dynamic pro-
gram:

Vβ(e) = min{V 0
β (e), V

1
β (e)} (12)

where

V 0
β (e) = (1− ε)

(

λ+ βE[Vβ(Et+1) |Et = e, Ut = 1, Ct = 1]

+ ε(λ+ d(e) + βE[Vβ(Et+1) |Et = e, Ut = 1, Ct = 0]
)

and

V 1
β (e) = d(e) + βE[Vβ(Et+1) |Et = e, Ut = 0].

The above dynamic program has a unique solution due
to the following reasons. When the per-step distortion
d(·) is bounded, the existence of a unique and bounded
solution follows from (Sennott, 1999, Proposition 4.7.1,
Theorem 4.6.3). When d(·) is unbounded, then for any
communication cost λ, we first define e0 ∈ Z≥0 < ∞ as:

e0 := min
{

e : d(e) ≥
λ

1− β

}

.

Let E∗ := {e : |e| ≥ e0}. Then the countable-state state-
process is equivalent to a finite-state Markov chain with
state space {−e0+1, · · · , e0−1}∪e∗ (where e∗ is a generic
state for all states in the set E∗). Since the state space
is now finite, the dynamic program (12) has a unique
and bounded time-homogeneous solution by the argument
given for bounded d(·).

In the remainder of this paper, we show how to find an
explicit solution of (12). For that matter, we first evaluate
the performance of an arbitrary threshold-based strategy.

4. COMPUTING THE PERFORMANCE OF AN
ARBITRARY THRESHOLD BASED STRATEGY

Let f (k) denote the threshold-based transmission strategy:

f (k)(Et) :=

{

1, if |Et| ≥ k

0, if |Et| < k.

For β ∈ (0, 1) and e ∈ Z, define the following for a system
that starts in state e and follows strategy f (k):

• L
(k)
β (e): the expected distortion until the first trans-

mission
• M

(k)
β (e): the expected time until the first transmission

• D
(k)
β (e): the expected distortion

• N
(k)
β (e): the expected number of transmissions

• C
(k)
β (e;λ): the expected total cost, i.e.,

C
(k)
β (e;λ) = D

(k)
β (e) + λN

(k)
β (e), λ ≥ 0.

Note that under f (k), {Et}t≥0 is a Markov chain. From the
balance equations, we get: for all a, e ∈ Z and k ∈ Z≥0

L
(k)
β (e) =















ε
[

d(e) + β
∑

n∈Z

pn−aeL
(k)
β (n)

]

, if |e| ≥ k

d(e) + β
∑

n∈Z

pn−aeL
(k)
β (n), if |e| < k.

(13)
and

M
(k)
β (e) =















ε
[

1 + β
∑

n∈Z

pn−aeM
(k)
β (n)

]

, if |e| ≥ k

1 + β
∑

n∈Z

pn−aeM
(k)
β (n), if |e| < k.

(14)
Following the proof technique adopted in Chakravorty and
Mahajan (2017), one can show the following:
Lemma 5 Equations (13) and (14) have unique solutions

L
(k)
β and M

(k)
β that are strictly increasing in k. ✷

These solutions L
(k)
β and M

(k)
β can be computed using the

techniques for finding fixed points of Bellman operators
in countable state Markov decision processes; see Sennott
(1999); White (1982); Cavazos-Cadena (1986).
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Using ideas from renewal theory, we can evaluate the

performance of f (k)) (i.e., compute D
(k)
β , N

(k)
β , and C

(k)
β )

from L
(k)
β and M

(k)
β .

Proposition 3 For any β ∈ (0, 1), the performance of
strategy f (k) for costly communication is given as follows:
For k ∈ Z>0,

D
(k)
β (0) := Dβ(f

(k), g∗) =
L
(k)
β (0)

M
(k)
β (0)

,

N
(k)
β (0) := Nβ(f

(k), g∗) =
1

M
(k)
β (0)

− (1− β),

and

C
(k)
β (0;λ) := Cβ(f

(k), g∗;λ) =
L
(k)
β (0) + λ

M
(k)
β (0)

− λ(1− β).

Using Proposition 3, we can show the following:

Lemma 6 For any β ∈ (0, 1), D
(k)
β (0) is increasing in k

and N
(k)
β (0) is decreasing in k. ✷

5. OPTIMAL THRESHOLDS FOR COSTLY AND
CONSTRAINED COMMUNICATION

Finally, we characterize the optimal strategies and optimal
performances for Problems 2, and 3.
Definition 8 Given two (non–randomized) time–homo-
geneous strategies f1 and f2 and a randomization pa-
rameter θ ∈ (0, 1), the Bernoulli randomized strategy
(f1, f2, θ) is a strategy that randomizes between f1 and f2
at each stage; choosing f1 with probability θ and f2 with
probability (1 − θ). Such a strategy is called a Bernoulli
randomized simple strategy if f1 and f2 differ on exactly
one state i.e. there exists a state e0 such that for all e �= e0,
f1(e) = f2(e). ✷

The next two theorems characterize the performances for
costly and constrained communication for infinite-horizon
setup under the optimal communication strategies as given
by Theorem 1. The proofs are omitted due to space
constraints; the proof idea is similar to that in Chakravorty
and Mahajan (2017) (which may be considered as a special
case with ε = 0).
Theorem 2 (Characterization of optimal costly perfor-
mance) For β ∈ (0, 1], let K denote {k ∈ Z≥0 :

D
(k+1)
β (0) > D

(k)
β (0)}. For kn ∈ K, define:

λ
(kn)
β

:=
D

(kn+1)
β (0)−D

(kn)
β (0)

N
(kn)
β (0)−N

(kn+1)
β (0)

.

Then, we have the following.

(1) For any kn ∈ K and any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ],

the strategy f (kn) is optimal for Problem 2 with
communication cost λ.

(2) The optimal performance C∗
β(λ) is continuous, con-

cave, increasing and piecewise linear in λ. The cor-

ner points of C∗
β(λ) are given by {(λ

(kn)
β , D

(kn)
β (0) +

λ
(kn)
β N

(kn)
β (0))}kn∈K (see Fig. 2). ✷

Theorem 3 (Characterization of optimal constrained per-
formance) For any β ∈ (0, 1) and α ∈ (0, 1), define

λ

C
(k)

β
(0;λ)

D
(k)

β
(0)

D
(k+1)

β
(0)

λ
(k)

β

D
(k+2)

β
(0)

λ
(k+1)

β

(λ
(k)

β
, C

(k)

β
(0;λ

(k)

β
))

(λ
(k+1)

β
, C

(k+1)

β
(0;λ

(k+1)

β
))

Fig. 2. The optimal costly performance as a function of λ.

α

D∗

β(α)

αc0 1

(N
(k+1)

β
(0), D

(k+1)

β
(0))

(N
(k)

β
(0), D

(k)

β
(0))

Fig. 3. D∗
β(α) as a function of α.

k∗β(α) = sup
{

k ∈ Z≥0 : M
(k)
β ≤

1

1 + α− β

}

θ∗β(α) =
M

(k∗+1)
β − 1

1+α−β

M
(k∗+1)
β −M

(k∗)
β

.

For ease of notation, we use k∗ = k∗β(α) and θ∗ = θ∗β(α).

Let f∗ be the Bernoulli randomized simple strategy (f (k∗),
f (k∗+1), θ∗), i.e.,

f∗(e) =















0, if |e| < k∗;

0, w.p. 1− θ∗, if |e| = k∗;

1, w.p. θ∗, if |e| = k∗;

1, if |e| > k∗.

Then,

(1) (f∗, g∗) is optimal for Problem 3 with constraint α.
(2) Let α(k) = Nβ(f

(k), g∗). Then, for α ∈ (α(k+1), α(k)),

k∗ = k and θ∗ = (α − α(k+1))/(α(k) − α(k+1)), and
the distortion-transmission function is given by

D∗
β(α) = θ∗D

(k)
β + (1− θ∗)D

(k+1)
β .

Moreover, the distortion-transmission function is
continuous, convex, decreasing and piecewise linear
in α. Thus, the corner points of D∗

β(α) are given by

{(N
(k)
β (0), D

(k)
β (0))}∞k=1 (see Fig. 3). ✷

6. AN EXAMPLE: SYMMETRIC BIRTH-DEATH
MARKOV CHAIN

In this section, we verify with a numerical example the
main results for Problem 3 and analyze the variation of
the distortion-transmission function with the packet-drop
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Fig. 4. Plots of D∗
β(α) versus α, for β = 0.99 and ε ∈

{0, 0.3, 0.7}.

probability, ε. Consider an aperiodic, symmetric, birth-
death Markov chain defined over Z with the transition
probability matrix as given by:

Pij =







p, if |i− j| = 1;

1− 2p, if i = j;

0, otherwise,

where we assume that p ∈ (0, 1

2
). Let the distortion

function be d(e) = |e|. The model satisfies (1) with a = 1.
We verify the main results for p = 0.3, β = 0.99. Fig. 4
shows the distortion-transmission function as a function
of α for ε ∈ {0, 0.3, 0.7}. We see from the plots that the
optimal distortion increases with increase in the value of
ε, which is in consistent with the intuition.

7. CONCLUSION

In this paper, we study the remote-state estimation prob-
lem for costly and constrained communication setup for
erasure channel, where a transmitted packet is dropped
with a known probability ε. We analyze the decentralized
control problem with two decision makers—the transmit-
ter and the receiver—in the light of person-by-person and
common information approach to establish the structure
of optimal communication strategies. Also, we provide the
closed-form expressions for optimal thresholds and char-
acterize the optimal performance.

For simplicity, we assumed that the observations are in-
teger valued. But the results extend to real-valued obser-
vations in a manner similar to Chakravorty and Mahajan
(2017). We also assumed that the sensor has perfect obser-
vations of the state. The results are also applicable when
the sensor observes the state with noise. In that case, the
sensor generates a local estimate of the state and whenever
it transmits, it sends the local estimate.
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