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Abstract—In this paper we consider an interactive commu-
nication system with two users, who sequentially observe two
correlated sources, and send the quantized observation symbol
to each other. The sources are functions of a random variable,
which the users wish to estimate. The transmission is costly and
the fidelity of reconstruction is measured by a distortion function.
We model this problem using dynamic team theory. The two users
are viewed as two decision makers that have access to different
information but need to coordinate their actions to minimize a
common objective. Through a series of simplifications, we identify
time-homogeneous information states (sufficient statistics) for the
encoding and decoding strategies and a dynamic programming
decomposition to compute the optimal strategies.

I. INTRODUCTION

In recent years, there has been an increasing interest in

interactive communication in the context interactive computing

and interactive source coding.

In interactive computing (or communication complexity),

which was introduced in [1], two users who have access to

different random variables want to compute a function of these

random variables. Communication complexity refers to the

minimum number of bits the two users must communicate

to compute the function with high reliability. See [2], [3] for

detailed overview.

In interactive source coding, each user is interested in

reproducing the source outputs, either exactly or with loss, of

the other user [4], [5]. Interactive source coding for function

computation is considered in [6]–[8].

Interactive communication is also important in information

theorectic security for generating secret keys [9]. See [10],

[11] for detailed overview.

Most of the above models assume that the variable of

interest is a function of the observations of the two users.

Moreover, it is assumed that the users observe either a single

random variable or a large block of random variables at once.

In this paper, we consider a model where the variable of

interest is not observed by either of the users. Rather, the

users sequentially obtain noisy observations of a static random

variable. At each time, after making its observation, user 1

sends a quantized symbol to user 2; after receiving user 1’s

symbol and its own observation, user 2 sends a quantized

symbol to user 1. Then both users generate an estimate of the

underlying static random variable. This process repeats over

a finite time horizon. At each stage, the users quantize and

User 1 User 2u�2u�
u�1u�u�1u�û�1u�

u�2u�û�2u�
Fig. 1. Block diagram of an interactive communication system.

estimate based on the history of their source observations and

the quantized symbols from the other user. The per-step cost

consists of two parts: a cost associated with each quantized

symbol and a distortion cost between the underlying random

variable and the estimate made by the two users at that time.

The objective is to minimize the total expected cost over a

finite horizon.

The above model is related to real-time (or zero-delay) com-

munication. Real-time source coding was considered in [12];

joint source channel coding with noiseless feedback was con-

sidered in [13]; joint source channel coding without feedback

was considered in [14], [15].

Notation

Random variables are denoted by uppercase letters, e.g.,

X , Y ; their realizations are denoted by corresponding low-

ercase letters, e.g., x, y. x1:t is a short hand for the

vector (x1, . . . , xt). xt is a short hand for the vector

(x1t , x
2
t . . . ). P(·) denotes the probability of an event, E[·]

denotes the expectation of a random variable, and 1{·}
denotes the indicator function of a statement. For a set

X , ∆(X ) denotes set of all probability distributions on X .

II. MODEL AND PROBLEM FORMULATION

Consider an interactive communication system as shown in

Fig. 1. The system consists of two users that observe correlated

sources {Xi
t}

∞
t=1, Xi

t ∈ X i, i ∈ {1, 2}. The sources are

generated according to

Xi
t = hit(Z,W

i
t ), (1)

where hi is a known function, Z ∈ Z is a random variable

of interest and {W 1
t }

∞
t=1, {W 2

t }
∞
t=1 are i.i.d. sequence that

are independent of each other and also independent of Z.

{X1
t }

∞
t=1, {X2

t }
∞
t=1 are correlated across time and also corre-

lated with each other. For ease of exposition, we assume that

the alphabets Z , X 1, and X 2 are finite.
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The users sequentially quantize their observations and send

a symbol to the other user over a finite-rate noiseless channel.

In particular, during time slot t, first user 1 sends a symbol

U1
t ∈ U1 to user 2, then user 2 sends a symbol U2

t ∈ U2

to user 1. Both U1 and U2 are finite sets and the quantized

symbols are generated based on all the information available

to users, i.e.,

U1
t = f1t (X

1
1:t, U

1
1:t−1, U

2
1:t−1), U

2
t = f2t (X

2
1:t, U

1
1:t, U

2
1:t−1).

where f it is called the encoding rule of user i at time t. Cost

functions ci : U i → R≥0 measure the cost of transmission.1

During time slot t, after observing the quantized symbol

from user 1, user 2 generates an estimate Ẑ2
t ∈ Z; after

observing the quantized symbol from user 2, user 1 generates

an estimate Ẑ1
t ∈ Z . These estimates are generated based on

all the information available to the users, i.e.,

Ẑ1
t = g1t (X

1
1:t, U

1
1:t, U

2
1:t−1), Ẑ

2
t = g2t (X

2
1:t, U

1
1:t, U

2
1:t), (2)

where git is called the decoding rule of user i at time t.

Distortion functions dit : Z × Z → R≥0 measure the fidelity

of reconstruction at time t

The sequence f i := (f i1, · · · , f
i
T ), i ∈ {1, 2} is called the

encoding strategy of user i. Similarly, the sequence gi :=
(gi1, · · · , g

i
T ), i ∈ {1, 2} is called the decoding strategy of

user i. The tuple (f1, f2,g1,g2) is called the communication

strategy.

The performance J(f1, f2,g1,g2) of a communication

strategy (f1, f2,g1,g2) is given by the expected total trans-

mission cost and distortion under that strategy, i.e.,

J(f1, f2,g1,g2) = E

[

T
∑

t=1

2
∑

i=1

[

ci(U i
t ) + dit(Z, Ẑ

i
t)
]

]

, (3)

where the expectation is with respect to a joint measure on all

system variables induced by the choice of (f1, f2,g1,g2).
We are interested in the following optimization problem.

Problem 1 For the interactive communication system

described above, choose a communication strategy

(f1, f2,g1,g2) that minimizes total expected cost

J(f1, f2,g1,g2) defined in (3).

A key feature of the above model is that both users must

generate an estimate of Z at each step. This feature makes

our model different from the standard model of interactive

communication, where there are multiple rounds of commu-

nication and each user generates a single estimate at the end

of communication.

Due to this sequential nature of estimation, the standard

information theoretic arguments cannot be used. Instead, we

directly analyze the optimization problem. The above op-

timization problem has two decision makers—user 1 and

1Assuming a transmission cost allows us to model different scenarios. For
example, in variable rate communication, the cost function c

i(ui) = log |ui|
is used (see [20]). Even in fixed rate communication, a user may not transmit
at each time and the transmission cost is zero for not transmitting and a
constant for transmitting.

user 2—that have access to different information but need to

cooperate and coordinate their actions to minimize a common

objective. Therefore, it belongs to the category of dynamic

team problems [21].

The main conceptual difficulty in solving the above op-

timization problem is that the information available at both

users is increasing with time, and hence, so is the domain of

their stratgies. For example, suppose all alphabets are binary.

Then there are 22
3t−2

possibilities for encoding and decoding

strategies at each user at time t. Thus, even for a horizon of 3,

there are about 10175 possible communication strategies (with

the dominant term being (22
7

)4 possibilities at stage 3). Thus,

a brute force search is computationally intractable.

In single agent muti-stage optimization problem, such a

difficulty is resolved by identifying a time-homogeneous in-

formation state at the decision maker. It is difficult to identify

such information states in multi-agent multi-stage decision

problems because the different decision makers have access

to different information.

We resolve this difficulty in two steps using ideas from

team theory. In the first step, we take a person-by-person

approach. We arbitrarily fix the strategy of one user, say

user 2, and search for the best response strategy at user 1.

By showing that X1
1:t and X2

1:t are conditionally independent

given (Z,U1
1:t, U

2
1:t), we identify a sufficient statistic ξi

t|t−1 (to

be defined later) of xi1:t. This means that there is no loss of

optimality in restricting attention to encoders of the form:

U1
t = f̂1t (Ξ

1
t|t−1, U

1
1:t−1, U

2
1:t−1), U

2
t = f̂2t (Ξ

2
t|t−1, U

1
1:t, U

2
1:t−1).

A similar structure for the decoders is also identified.

In the second step, we use the common-information ap-

proach of [22] and identify a sufficient statistic π1
t (to be

defined later) of (u11:t−1, u
2
1:t−1) at user 1 and a sufficient

statistic π2
t (to be defined later) of (u11:t, u

2
1:t−1) at user 2.

This means that there is no loss of optimality in restricting

attention to encoders of the form:

U1
t = f̃1t (Ξ

1
t|t−1,Π

1
t ), U2

t = f̃2t (Ξ
2
t|t−1,Π

2
t ).

We also identify a dynamic program that determines optimal

encoding and decoding strategies of the above form.

III. THE MAIN RESULTS

A. A conditional independence result

The sources are conditionally independent given Z. Our

main results rely on the fact that the sources remain condi-

tionally independent when conditioned on Z and the com-

municated symbols. For ease of notation, P(X1:t = x11:t |Z =
z, U1

1:t = u11:t, U
2
1:t = u21:t) is denoted by P(x11:t | z, u

1
1:t, u

2
1:t).

We use similar notation for other probability expressions as

well.
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Lemma 1 For any arbitrary encoding strategies (f1, f2) and

any realization z of Z, xi1:t of Xi
1:t, and ui1:t ∈ U i

1:t, i ∈ {1, 2},

we have the following:

P(x11:t, x
2
1:t | z, u

1
1:t, u

2
1:t) (4)

= P(x11:t | z, u
1
1:t, u

2
1:t)P(x

2
1:t | z, u

1
1:t, u

2
1:t)

and

P(x11:t, x
2
1:t | z, u

1
1:t−1, u

2
1:t−1) (5)

= P(x11:t | z, u
1
1:t−1, u

2
1:t−1)P(x

2
1:t | z, u

1
1:t−1, u

2
1:t−1)

Lemma 1 can be proved using algebraic calculations involving

chain rule of probability and total probability. The details of

the proof is omitted here due to the limitation of space. Similar

results on conditional independence is discussed in [23] (for

decentralized control systems with control sharing), in [24],

[25] (for secret key argument and secure computing) and

in [26] (for CEO problems).

B. Belief states and their update

For ease of notation, define Ut = (U1
t , U

2
t ).

Definition 1 For any realization xi1:t of Xi
1:t and ui1:t of U i

1:t,

i ∈ {1, 2} define belief states ξi
t|t−1, ξ

i
t|t ∈ ∆(Z) as follows:

for any z ∈ Z ,

ξit|t−1(z) = P(Z = z |Xi
1:t = xi1:t, U1:t−1 = u1:t−1),

ξit|t(z) = P(Z = z |Xi
1:t = xi1:t, U1:t = u1:t),

where ut = (u1t , u
2
t ).

ξi
t|t−1 denote user i’s belief on Z after it has observed the

source realization of time t but before the communication

of that time slot takes place; ξi
t|t denotes the belief after

the communication has taken place. For a specific realization

of (xi1:t, u1:t), ξ
i
t|t−1 and ξi

t|t are probability distributions.

When the conditioning is on random variables (Xi
1:t, U1:t),

the beliefs are ∆(Z) valued random variables that we denote

by the corresponding uppercase letters Ξi
t|t−1 and Ξi

t|t.

In order to derive the structural results, it is important to

identify how these beliefs depend on the strategy. To do so,

we determine how the beliefs evolve with time. In the sequel,

we use −i to denote the user different from user i.

Lemma 2 There exist functions F i
t|t, F

i
t+1|t, i ∈ {1, 2}, such

that

ξit|t = F i
t|t

(

ξit|t−1, u1:t, f
−i
)

, ξit+1|t = F i
t+1|t

(

ξit|t, u1:t, x
i
t+1

)

.

(6)

By combining these two, we get that there exists a function F i
t

such that

ξit+1|t+1 = F i
t (ξ

i
t|t, u1:t, x

i
t+1, f

−i). (7)

The proof of Lemma 2 is given in the Appendix.

C. Step 1: The person-by-person approach

As explained earlier, we follow a two-step approach to

derive the structure of optimal strategies. In the first step,

we follow a person-by-person approach. We arbitrarily fix the

strategy of one user and then investigate the best response

strategy at the other user.

First, we identify the structure of optimal decoding strate-

gies. Since decoding is a filtering problem, we have:

Proposition 1 (Structure of optimal decoding strategies)

There is no loss of optimality to restrict the attention to

decoding strategies of the form:

Ẑi
t = ĝi(Ξi

t|t), i ∈ {1, 2}, (8)

where ĝit is given by

ĝi(ξi) = arg min
ẑi∈Z

∑

z∈Z

di(z, ẑi)ξi(z).

Now, we fix the decoders at both users according to (8)

and find the best response encoder. By combining Lemmas 1

and 2, we show the following:

Lemma 3 Fix decoding strategies g1,g2 to be of the form (8).

Arbitrarily fix the communication strategy f2 of user 2. Then,

R1
t = (Ξi

t|t−1, U1:t−1) is an information state for the encoder

at user 1. In particular, R1
t satisfies the following properties:

1) R1
t is a function of the information (X1

1:t, U1:t−1) avail-

able at user 1.

2) The conditional distribution of R1
t+1 given all the avail-

able information (X1
1:t, U1:t−1) and the current action

U1
t depends only on R1

t and U1
t , i.e.,

P(R1
t+1 |X

1
1:t, U1:t−1, U

1
t ) = P(R1

t+1 |R
1
t , U

1
t ). (9)

3) R1
t is a sufficient statistic for the current cost. In

particular,

E

[

∑

i∈{1,2}

(ci(U i
t ) + di(Z, Ẑi

t)) |X
1
1:t, U1:t−1, U

1
t

]

(10)

= E

[

∑

i∈{1,2}

(ci(U i
t ) + di(Z, Ẑi

t)) |R
1
t , U

1
t

]

The proof of Lemma 4 involves some standard algebraic

calculations, and is skipped here due to limitation of space.

A similar result holds if (f1,g1) is fixed and we consider

the best response at user 2.

Lemma 3 implies that {R1
t }t≥1 is a controlled Markov

process with control action U1
t . Therefore, there is no loss

of optimality to restrict attention to Markov strategies

U1
t = f̂1t (Ξ

1
t|t−1, U1:t−1).

By repeating the argument at user 2, we get the following:

Proposition 2 (Structure of optimal encoding strategies)

There is no loss of optimality to restrict the attention to

encoding strategies of the form:

U1
t = f̂1t (Ξ

1
t|t−1, U1:t−1), U

2
t = f̂2t (Ξ

2
t|t−1, U1:t−1, U

1
t ).

(11)
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D. Step 2: The common-information approach

We have identified the structure of optimal decoders in

closed form and simplified the structure of optimal encoders.

In this section, we refine the structural result of Proposition 2

by following the common-information approach of [22].

We fix the decoding strategies as specified in Proposition 1

and consider the problem of optimally selecting encoding

strategies that are of the form (11). Following [22], define

the common information to be the data that is observed by all

future decision makers, i.e., define the common information

Ci
t at user i at time t as:

C1
t = U1:t−1, C2

t = (U1:t−1, U
1
t ).

Define the remaining information at user i as local information

Li
t, i.e., Li

t = ξi
t|t−1. Thus, we can say

U i
t = f it (L

i
t, C

i
t).

The main idea of [22] is to consider Problem 1 from the

point of view of a virtual decision maker that observes Ci
t and

chooses prescriptions φit : L
i
t 7→ U i

t that map local information

to actions. The encoders simply use these mappings and their

local information to generate U i
t .

It is shown in [22] that the above coordinated system is

equivalent to the original system. Since the coordinated system

has only one decision maker, it can be solved using tools from

Markov decision theory. To describe the results, we first note

that:

Lemma 4 For the encoders are of the form given in Propo-

sition 2, the update of Lemma 2 can be written as

ξit|t = F i
t|t

(

ξit|t−1, u
−i
t , φ−i

t

)

. (12)

Definition 2 For any realization xi1:t of Xi
1:t and ui1:t of U i

1:t,

i ∈ {1, 2} define belief states πi
t ∈ ∆(∆(X 1) × ∆(X 2)) as

follows: for any ξ1
t|t−1, ξ

2
t|t−1 ∈ ∆(Z),

π1
t (ξ

1, ξ2) = P(Ξ1
t|t−1 = ξ1,Ξ2

t|t−1 = ξ2 |U1:t−1 = u1:t−1),

π2
t (ξ

1, ξ2) = P(Ξ1
t|t−1 = ξ1,Ξ2

t|t−1 = ξ2 |U1:t−1 = u1:t−1, U
1
t = u1t ),

where ut = (u1t , u
2
t ).

Then, similar to Lemma 4, we can show the following

Lemma 5 There exist functions F̃ i
t , i ∈ {1, 2}, such that

π1
t+1 = F̃ 1

t

(

π2
t , U

2
t , φ

2
t

)

, π2
t = F̃ 2

t

(

π1
t , U

1
t , φ

1
t

)

. (13)

According to the discussion above, we fix the decoding

strategy to be of the form Proposition 1 and restrict encoding

strategy to be of the form Proposition 2. The optimization

problem then satisfies the partial history sharing model of [22].

Therefore, from [22], we get the following:

Theorem 1 There is no loss of optimality in restricting atten-

tion to encoding strategies of the form:

U1
t = f̃1t (ξ

1
t|t−1,Π

1
t ), U2

t = f̃2t (ξ
2
t|t−1,Π

2
t ).

Moreover, optimal strategies of this form may be determined

from the following dynamic program. Define

Di
t(ξ

i
t|t) =

∑

z∈Z

dit(z, ĝ
i(ξit|t))ξ

i
t|t(z), i ∈ {1, 2}.

Then, recursively define value functions {V 1
t }t≥1 and

{V 2
t }t≥1 as follows:

V 2
T+1(π

2) = 0 (14)

and for t = T , T − 1, . . . , 1

V 2
t (π

2) = min
φ2

t
: ∆(Z)→U2

E[c2(U2
t )+D

2
t (Ξ

2
t|t)+V

1
t+1(Π

1
t+1) |

Π2
t = π2, U2

t = φ2t (Ξ
2
t|t−1)], (15)

and

V 1
t (π

1) = min
φ1

t
: ∆(Z)→U1

E[c1(U1
t ) +D1

t (Ξ
1
t|t) + V 2

t (Π
2
t ) |

Π1
t = π1, U1

t = φ1t (Ξ
1
t|t−1)]. (16)

Let ψ2
t (π

2) denote the arg min of (15) and ψ1(π1) denote the

arg min of (16). Then, the optimal strategy f̃1, f̃2 is given by

f̃ it (ξ
i
t|t−1, π

i
t) = ψi

t(π
i
t)(ξ

i
t|t−1). (17)

Note that the expectations in (16) and (15) can be computed

using the update rules in Lemmas 2 and 5.

IV. DISCUSSION AND CONCLUSION

Theorem 1 identifies a sufficient statistic at the encoder and

the decoder; the domain of which does not depend on time.

Moreover, the dynamic program provides a way to identify

optimal (or sub-optimal) strategies. As a consequence, the

search complexity increases linearly with time horizon (rather

than double exponentially, as for brute force search). If Z is

finite, say of cardinality n, then ∆(X i) may be viewed as an

element of R
n−1; and hence the belief space is the space of

probability distributions on R
2n−2.

Note that the dynamic program is similar to the dynamic

programs for partially observable Markov decision processes

(POMDP). So, it is possible to use point-based algorithms for

continuous state POMDPs to numerically solve the resultant

dynamic program. Another option is to use discretization

based algorithms developed for real-time communication [27].

Following [28], it may be possible to establish that threshold-

based strategies are optimal when all random variables are

Gaussian and the transmitter has the option of not transmitting.

Since the domain of the encoding and decoding strategies

is not changing with time, the result of Theorem 1 naturally

extends to infinite horizon setups as well. We expect that

under appropriate regularity conditions, the optimal strategy is

time homogeneous and given by the fixed point of a dynamic

program. It may be possible to use such a dynamic program

to find bounds on time average distortion.

Although the results of this paper were derived for a two-

user interactive communication system, they generalize to

the following multi-terminal setup. Consider n users with
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observations similar to (1). During time-slot t, first user 1

broadcasts a symbol U1
t to all users. Then user 2 broadcasts

U2
t to all users, and so on, until user n broadcasts Un

t to

all users. All users generate an estimate of Z and the process

repeats at t+1. Such a multi-user setup can be analyzed using

the same approach as presented in this paper.
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APPENDIX

Proof of Lemma 2: Let us arbitrarily fix the strategy of

user 2. Consider the following:

ξ1t|t(z) = P(z |x11:t, u1:t) =
P(z, x11:t, u1:t)

P(x11:t, u1:t)
.

Now, by total probability we get,

P(z, x11:t, u1:t) = P(u2t | z, x
1
1:t, u

1
1:t, u

2
1:t−1)ξ

1
t|t−1(z)

P(u2t | z, x
1
1:t, u

1
1:t, u

2
1:t−1)

=
∑

x2

1:t

1{U2
t = f2t (x

2
1:t, u1:t−1, u

1
t )}P(x

2
1:t | z, u1:t−1, u

1
t )

Note that the RHS of the last equation depends on the

communication strategy f1, f2,g1,g2 only through f2. Also,

by total probability,

P(x11:t, u1:t) =
∑

z

∑

x2

1:t

P(u2t | z, x
2
1:t, u

1
1:t, u

2
1:t−1)P(x

2
1:t | z, u1:t−1).

Substituting this in the expression for ξ1
t|t and simplifying, we

get that ξ1
t|t is a function of (ξ1

t|t−1, u1:t, f
2)

Now consider the following,

ξ1t+1|t(z) = P(z |x11:t+1, u1:t) =
P(z, x1t+1 |x

1
1:t, u1:t)

P(x1t+1 |x
1
1:t, u1:t)

. (18)

Also, it can be shown by similar calculation that

P(z, x1t+1 |x
1
1:t, u1:t) = P(x1t+1 | z)ξ

1
t|t(z). Substituting back

in (18), we have

ξ1t+1|t(z) =
P(x1t+1 | z, u1:t)ξ

1
t|t

∑

z P(x
1
t+1 | z, u1:t)ξ

1
t|t(z)

=: F 1
t+1|t(ξ

1
t|t, u1:t, x

1
t+1).

This completes the proof for user 1. The results for user 2 can

be derived similarly.
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