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Abstract— A remote-state estimation system consisting of a
sensor and an estimator is considered. The sensor observes
a scalar Gauss-Markov process and at each time determines
whether or not to transmit the state of the process. The
transmission takes place over a packet drop channel. Previous
results have established that the optimal transmission strategies
are threshold based and optimal estimation strategies are
Kalman-like. We propose stochastic approximation algorithms
to compute the optimal thresholds for two setups: a Keifer-
Wolfowitz based algorithm for the case when there is a cost
associated with each transmission and a Robbins-Monro based
algorithm for the case when there is a constraint on the expected
number of transmissions. The results are verified by comparing
against existing results for the no packet drop case.

I. INTRODUCTION

In many real-time communication systems such as net-

worked control systems, sensor surveillance networks, and

transportation networks, etc., sequential data transmission

takes place from node to node. In such applications the

transmitter is often a battery powered device that transmits

over a wireless packet-switched network, where the cost of

turning the device on and transmitting a packet is much more

significant compared to the size of the data packet. Therefore,

the transmitter transmits intermittently but the transmitted

packet is adequately big to communicate the current source

realization. A remote estimator upon receiving the transmit-

ted packet generates an estimate of the source realization in

real-time. In such systems, there is a fundamental trade-off

between communication cost and estimation accuracy.

When there are no packet-drops in the channel and the

observed process is a first-order autoregressive process with

unimodal and symmetric distribution, the structure of the

suboptimal and optimal transmission and estimation strate-

gies is known [1]–[5]. In particular, the optimal transmission

scheme is threshold based and the optimal estimation scheme

is Kalman-like.

The structural results mentioned above were generalized

to channels with packet drops in [6]–[8]. Other variations of

remote-state estimation over packet drop channels have been

considered in [9]–[11].

In [12], algorithms for computing the optimal thresholds

are proposed for channels with no packet drops. In particular,

it is shown that for discrete-valued processes, the optimal

thresholds can be computed by simple matrix calculations;

for continuous-valued processes, the optimal thresholds can

be computed by solving Fredholm integral equations of the

second kind. In [6], the computational approach of [12]

is generalized to channels with packet drops for discrete-

valued processes. In principle, the results of [12] could

work for continuous-valued processes. However, the resultant

Fredholm integral equation would not be easy to solve

because the kernel is discontinuous and the domain of the

integral equation is (−∞,∞).
In this paper, we propose stochastic approximation based

methods to compute optimal thresholds for continuous-

valued processes (and channels with packet drops). The

proposed algorithms exploit the renewal property of the error

process. For the case of no packet drops, the numerical

results match the analytic results obtained in [12].

A. Model

Consider the following model of a discrete-time Markov

process {Xt}
∞
t=0 with the initial state X0 = 0 and for t ≥ 0,

Xt+1 = aXt + Wt, where a ∈ R is the system parameter

and {Wt}
∞
t=0 is an i.i.d. Gaussian process with mean zero

and variance σ2. Let φ(·) denote the probability distribution

function of Wt.

A transmitter sequentially observes the process and at each

time, chooses whether or not to transmit the current state.

This decision is denoted by Ut ∈ {0, 1}, where Ut = 0
denotes no transmission and Ut = 1 denotes transmission.

The decision to transmit is made using a transmission

strategy f = {ft}
∞
t=0, where

Ut = ft(X0:t, U0:t−1). (1)

We use the short-hand notation X0:t to denote the sequence

(X0, . . . , Xt). Similar interpretations hold for U0:t−1.

If the transmitter decides to transmit (i.e., Ut = 1), Xt

is transmitted over a wireless erasure channel and there is a

probability pd ∈ (0, 1) that the transmitted packet is dropped.

Let St ∈ {0, 1} denote the state of the channel at time t.
St = 0 denotes that the channel is in the OFF state and

a transmitted packet will be dropped; St = 1 denotes that

channel is in the ON state and a transmitted packet will be

received. We assume that {St}t≥0 is an i.i.d. process with

P(St = 0) = pd. Moreover, {St}t≥0 is independent of

{Xt}t≥0.

Transmission takes place using a TCP-like protocol, so

there is an acknowledgement from the receiver to the trans-

mitter when a packet is received successfully.1 This means

that the transmitter observes Ht = UtSt, which indicates

whether the packet was successfully received by the receiver

(Ht = 1) or not (Ht = 0)

When Ht = 1, the received symbol Yt equals Xt; when

Ht = 0, no symbol is received, which we denote by Yt = E.

1The lack of an acknowledgement constitutes a negative acknowledge-
ment (NACK), so a NACK does not need to be explicitly sent.



The receiver sequentially observes {Yt}
∞
t=0 and generates

an estimate {X̂t}
∞
t=0, X̂t ∈ R, using an estimation strategy

g = {gt}
∞
t=0, i.e.,

X̂t = gt(Y0:t). (2)

The fidelity of the estimation is measured by a per-step

distortion d(Xt − X̂t) = (Xt − X̂t)
2.

B. Performance metrics

Given a transmission and estimation strategy (f, g) and a

discount factor β ∈ (0, 1], we define the expected distortion

and the expected number of transmissions as follows. For

β ∈ (0, 1), the expected discounted distortion is given by

Dβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

(3)

and for β = 1, the expected long-term average distortion is

given by

D1(f, g) := lim sup
T→∞

1

T
E

(f,g)
[

T−1
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

.

(4)

Similarly, for β ∈ (0, 1), the expected discounted number

of transmissions is given by

Nβ(f, g) := (1− β)E(f,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

(5)

and for β = 1, the expected long-term average number of

transmissions is defined similar to (4).

C. Problem formulations

Problem 1 (Costly communication) Given a communica-

tion cost λ ∈ R>0, find a transmission and estimation

strategy (f∗, g∗) such that

C∗
β(λ) := Cβ(f

∗, g∗;λ) = inf
(f,g)

Cβ(f, g;λ), (6)

where Cβ(f, g;λ) := Dβ(f, g) + λNβ(f, g) is the total

communication cost and the infimum in (6) is taken over

all history-dependent strategies.

Problem 2 (Constrained communication) Given a con-

straint α ∈ (0, 1), find a transmission and estimation strategy

(f∗, g∗) such that

D∗
β(α) := Dβ(f

∗, g∗) = inf
(f,g):Nβ(f,g)≤α

Dβ(f, g), (7)

where the infimum is taken over all history-dependent strate-

gies.

II. PRELIMINARY RESULTS

A. Structure of optimal communication strategy

Theorem 1 (Structural results) In Problem 1, we have:

1) Structure of optimal estimation strategy: The optimal

estimation strategy for X̂0 = 0 and for t > 0 is as

follows:

X̂t =

{

Yt, if Yt 6= E

aX̂t−1, if Yt = E.

We denote this strategy by g∗.

2) Structure of optimal transmission strategy: Define

Et := Xt − aX̂t−1, which we call the error process.

Then there exists a time-invariant threshold k such that

the transmission strategy

Ut = f (k)(Et) :=

{

1, if |Et| ≥ k

0, if |Et| < k
(8)

is optimal.

The proof of a finite horizon version of Theorem 1

follows from arguments similar to [3]–[5] (which considered

channels with no packet drops). Generalization to infinite

horizon follows from arguments similar to [12]. Similar

results are proved in [6] for discrete sources and in [8] for

channels with Markov packet drops.

Note that Et is a regenerative process, whose time evolu-

tion can be written as

Et+1 =

{

aEt +Wt, if Yt = E

Wt, if Yt 6= E.
, (9)

B. Performance of a threshold-based strategy

Let F (k) denote the class of all time-homogeneous

threshold-based strategies of the form (8). For β ∈ (0, 1]
and e ∈ R, define the following for a system that starts in

state e and follows strategy f (k):

• L
(k)
β (e): the expected discounted distortion until the first

successful reception;

• M
(k)
β (e): the expected discounted time until the first

successful reception;

• K
(k)
β (e): the expected discounted number of transmis-

sions until the first successful reception;

• D
(k)
β (e): the expected discounted distortion;

• N
(k)
β (e): the expected discounted number of transmis-

sions;

• C
(k)
β (e;λ): the expected discounted total cost, i.e.,

C
(k)
β (e;λ) = D

(k)
β (e) + λN

(k)
β (e), λ ≥ 0.

(L
(k)
β ,M

(k)
β ,K

(k)
β ) and (D

(k)
β , N

(k)
β ) are related through

renewal relationships. In particular, we have the following

theorem:

Theorem 2 (Renewal relationships) For any β ∈ (0, 1]
and k ∈ R>0, we have:

Dβ(f
(k), g∗) =

L
(k)
β (0)

M
(k)
β (0)

, Nβ(f
(k), g∗) =

K
(k)
β (0)

M
(k)
β (0)

.

The proof is similar to [12, Theorem 2].

C. Characterization of the optimal solutions

Let ∂kD
(k)
β , ∂kN

(k)
β and ∂kC

(k)
β denote the derivative2 of

D
(k)
β , N

(k)
β and C

(k)
β with respect to k.

2Following [12], one can show that D
(k)
β

, N
(k)
β

and C
(k)
β

are differ-

entiable in k.



The following two theorems characterize the optimal per-

formance for Problems 1 and 2. The proof is similar to [12].

Theorem 3 For β ∈ (0, 1], we have the following.

1) If the pair (λ, k) satisfies the following

λ∂kN
(k)
β (0) + ∂kD

(k)
β (0) = 0, (10)

then, the strategy (f (k), g∗) is optimal for Problem 1

with communication cost λ. Furthermore, for any k >
0, there exists a λ ≥ 0 that satisfies (10).

2) The optimal performance C∗
β(λ) is continuous, con-

cave and increasing function of λ.

Theorem 4 For any β ∈ (0, 1] and α ∈ (0, 1), let k∗β(α) ∈
R≥0 be such that

N
(k∗

β(α))

β (0) = α. (11)

Such a k∗β(α) exists and we have the following:

1) The strategy (f (k∗

β(α)), g∗) is optimal for Problem 2

with constraint α.

2) The distortion-transmission function D∗
β(α) is contin-

uous, convex and decreasing in α and is given by

D∗
β(α) = D

(k∗

β(α))

β (0). (12)

III. MOTIVATION FOR THE CURRENT WORK

According to Theorem 2, computing L
(k)
β (0), K

(k)
β (0) and

M
(k)
β (0) is sufficient to compute D

(k)
β (0) and N

(k)
β (0) (and

therefore, compute the performance of strategy f (k)). In [12],

which considers the case of no packet drops (i.e., pd = 0),

L
(k)
β (0) and M

(k)
β (0) were computed by solving the balance

equations for the truncated Markov chain. These balance

equations corresponded to Fredholm integral equations of the

second kind. Using this exact policy evaluation, the optimal

thresholds were identified by a binary search over k.

When pd 6= 0, the balance equations for the truncated

Markov chain still correspond to Fredholm integral equations

of the second kind, but it is not straightforward to solve them

numerically because the integration kernel is discontinuous

and the integration domain is (−∞,∞). For this reason,

we investigate an alternative computational approach. The

main idea behind our proposed solution is to replace the

exact policy evaluation by a Monte Carlo based approximate

policy evaluation and to replace the binary search for the

optimal threshold by a stochastic approximation iteration.

In particular, we use Kiefer-Wolfowitz algorithm [13] to

solve (10) and Robbins-Monro algorithm [14] to solve (11).

The details are presented in the next section.

IV. STOCHASTIC APPROXIMATION ALGORITHMS

A. Noisy policy evaluation

The first step to develop a stochastic approximation al-

gorithm to identify the optimal thresholds is to replace the

exact policy evaluation by an approximate policy evaluation.

The simplest way to do so is to use sample path average.

In particular, let {(E
(k)
t , U

(k)
t )}t≥0 denote the sample paths

of the error process and the transmission process under

Algorithm 1: Algorithm for noisy policy evaluation

1 function MonteCarloEvaluation(k, K)
input : Threshold k ∈ R>0

Number of episodes K ∈ Z>0

output : Estimate L̂
(k,K)
β of L

(k)
β (0)

Estimate M̂
(k,K)
β of M

(k)
β (0)

Estimate K̂
(k,K)
β of K

(k)
β (0)

initialize: L̂ = 0, M̂ = 0, K̂ = 0
2 for iteration i = 1 upto K do

3 Set t = 0, ℓ = 0, m = 0, k = 0, E0 = 0
4 while true do

5 St+1 ∼ Bernoulli(pd)
6 if |Et| < k or St+1 = 0 then

7 ℓ← ℓ+ βtE2
t

8 m← m+ βt

9 k ← k + βt
1{|Et|≥k}

10 else

11 k ← k + βt

12 break

13 Et+1 = aEt +Wt, where Wt ∼ N (0, σ2)
14 t← t+ 1

15 L̂← L̂+ ℓ, M̂ ← M̂ +m, K̂ ← K̂ + k

16 return (L̂/K, M̂/K, K̂/K)

policy f (k) and T be a large number. Then, D
(k)
β (0) ≈

(1 − β)
∑T

t=0 β
td(E

(k)
t ), N

(k)
β (0) ≈ (1 − β)

∑T
t=0 β

tU
(k)
t ,

and C
(k)
β (0;λ) = D

(k)
β (0) + λN

(k)
β (0).

For the discounted case, using naive approach leads to

numerical difficulties as one needs to compute βt for large

t, which makes the term very small. To circumvent this, we

estimate L
(k)
β (0), M

(k)
β (0) and K

(k)
β (0) by Monte Carlo eval-

uations and then use the renewal relationship of Theorem 2

to approximate D
(k)
β (0) and N

(k)
β (0).

The Monte Carlo evaluations are done by averaging over

K episodes. In each episode, the error process starts at

E0 = 0 and evolves under strategy f
(k)
t . The episode ends

at the stopping time τ (k) of the first successful reception.

Let {(E
(k)
n,t , U

(k)
n,t )}t≥0 denote the sample path of the error

process and the transmission process in episode n. Then,

L
(k)
β (0) ≈

1

K

K
∑

n=1

τ (k)−1
∑

t=0

βtd(E
(k)
n,t ), (13)

M
(k)
β (0) ≈

1

K

K
∑

n=1

τ (k)−1
∑

t=0

βt, (14)

K
(k)
β (0) ≈

1

K

K
∑

n=1

τ (k)
∑

t=0

βtU
(k)
n,t . (15)

Then, D
(k)
β (0), N

(k)
β (0), and C

(k)
β (0;λ) can be computed

using the expressions in Theorem 2. The complete details

for this evaluation are shown in Algorithm 1.



Algorithm 2: Algorithm for costly communication

input : Initial guess kinit ∈ R>0;

Number of episodes K ∈ Z>0

Number of iterations Niterations ∈ Z>0

output : Optimal threshold k◦

initialize: k◦ = kinit

1 for iteration i = 1 upto Niterations do

2 Pick δ as a small non-negative real

3 k◦+ = k◦ + δ
4 k◦− = k◦ − δ

5 [L̂+, M̂+, K̂+] = MonteCarloEvaluation
(

k◦+, K
)

6 [L̂−, M̂−, K̂−] = MonteCarloEvaluation
(

k◦−, K
)

7 Compute C+, C− using Theorem 2

8 ∂kC = (C+ − C−)/2δ
9 Compute γi using ADAM [15]

10 k◦ ← k◦ − γi∂kC

11 return k◦

Let L̂
(k,K)
β , M̂

(k,K)
β and K̂

(k,K)
β denote the right hand sides

of (13), (14) and (15). Then, (13)–(15) can be written as

L
(k)
β (0) = L̂

(k,K)
β + ξL

K
, M

(k)
β (0) = M̂

(k,K)
β + ξM

K
,

K
(k)
β (0) = K̂

(k,K)
β + ξK

K
,

where ξL
K

, ξM
K

and ξK
K

are approximation errors that go to

zero as K goes to infinity. Define estimates D̂
(k,K)
β , N̂

(k,K)
β ,

and Ĉ
(k,K)
β (λ) for D

(k)
β (0), N

(k)
β (0), and C

(k)
β (0;λ) in terms

of L̂
(k)
β , M̂

(k)
β and K̂

(k)
β using renewal expressions given in

Theorem 2.

Note that the stochastic approximation algorithms that we

describe next work under mild assumptions on ξL
K

, ξM
K

and

ξK
K

. Therefore, the number K of episodes need not be large.

In our experiments that we report later, we choose K as 1000.

B. Computing thresholds for costly communication using

stochastic approximation

In our subsequent discussion, we assume the following:

(A1) C
(k)
β (0;λ) is convex in k.

(A2) E[C
(k,K)
β (λ)] = C

(k)
β (0;λ).

We verified through simulation that (A1) holds. (A2) holds

if C
(k,K)
β (λ) is an unbiased estimator of C

(k)
β (0;λ), which

we verified through simulations.

According to Theorem 3, a threshold k is optimal if

∂kC
(k)
β (0;λ) = 0. Using Algorithm 1, we can obtain a

noisy “measurement” Ĉ
(k,K)
β (λ) of C

(k)
β (0;λ). Using this

noisy measurement, it is possible to search for the optimal

threshold using the Kiefer-Wolfowitz algorithm [13], which

is a first-order stochastic gradient descent algorithm that

works as follows.

We start with an initial guess k◦0 of the optimal threshold.

Let k◦i denote our guess at the beginning of iteration i.
During iteration i, we obtain a noisy measurement of the

gradient ∂kC
(k)
β (0;λ) using the finite difference ∆

(k◦

i ,K)
i =

Ĉ
(k◦

i +δ,K)
β (λ) − Ĉ

(k◦

i −δ,K)
β (λ) and update our guess as fol-

lows:

k◦i+1 = k◦i − γi∆
(k◦

i ,K)
i , (16)

where γi are learning rates that satisfy
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i <∞. See Algorithm 2 for details.

Theorem 5 Under assumptions (A1)–(A2), the threshold

iterates k◦i of Algorithm 2 converge almost surely to the

optimal threshold, i.e., limi→∞ k◦i = k∗(λ), a.s., where

k∗(λ) is optimal threshold for Problem 1.

The proof follows immediately from [13].

The rate of convergence of the Kiefer-Wolfowitz algorithm

is sensitive to the choice of learning rates. We use ADAM

(Adaptive Moments) [15] to adaptively tune the learning rate

based on the “measurements” ∆
(k◦

i ,K)
i .

C. Computing thresholds for constrained communication

using stochastic approximation

First, we note the following facts:

(F1) M
(k,K)
β is increasing with k and K

(k,K)
β is decreasing

with k.

(F2) E[M
(k,K)
β ] = M

(k)
β (0) and E[K

(k,K)
β ] = K

(k)
β (0).

(F1) can be proved using an argument similar to the one used

in [12]. (F2) holds by definition.

According to Theorem 4, a threshold k is optimal if

αM
(k)
β (0) = K

(k)
β (0). Using Algorithm 1, we can obtain

noisy “measurements” of M
(k)
β (0) and K

(k)
β (0). Using these

noisy measurements, it is possible to search for the optimal

threshold using the Robbins-Monro algorithm [14], which is

a first-order stochastic root-finding algorithm that works as

follows.

We start with an initial guess k◦0 of the optimal threshold.

Let k◦i denote our guess at the beginning of iteration i.

During iteration i, we obtain a noisy measurement M̂
(k,K)
β

of M
(k)
β (0) and K̂

(k,K)
β of K

(k)
β (0) and update our guess as

follows:

k◦i+1 = k◦i − γi

(

αM̂
(k◦

i ,K)
i − K̂

(k◦

i ,K)
i

)

, (17)

where γi are learning rates that satisfy
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i <∞. See Algorithm 3 for details.

Algorithm 3: Algorithm for constrained communication

input : Initial guess kinit ∈ R>0;

Number of episodes K ∈ Z>0

Number of iterations Niterations ∈ Z>0

output : Optimal threshold k◦

initialize: k◦ = kinit

1 for iteration i = 1 upto Niterations do

2 γi = 1/i

3 [L̂, M̂ , K̂] = MonteCarloEvaluation
(

k◦, K
)

4 k◦ ← k◦ − γi
(

αM̂ − K̂)
)

5 return k◦



TABLE I: Comparative results for costly communication using Stochastic Approximation (SA) and Fredholm Integral

Equations of second kind (FIE) for a = 1 and pd = 0.

(a) β = 0.9

Threshold k∗ Performance C∗

β
(λ)

SA FIE
Error

SA FIE
Error

λ (Absolute) (Absolute)

100 4.9355 4.9298 5.7 ×10−3 5.2511 5.2511 9.1 ×10−6

200 6.3221 6.3086 1.4 ×10−2 6.5221 6.5221 3.5 ×10−5

300 7.3421 7.3289 1.3 ×10−2 7.2208 7.2208 2.4 ×10−5

400 8.2118 8.1764 3.5 ×10−2 7.6654 7.6652 1.4 ×10−4

500 8.9469 8.9177 2.9 ×10−2 7.9700 7.9700 7.2 ×10−5

600 9.5830 9.5854 2.5 ×10−3 8.1886 8.1886 4.7 ×10−7

700 10.0803 10.1984 1.2 ×10−1 8.3515 8.3507 8.0 ×10−4

(b) β = 1.0

Threshold k∗ Performance C∗

β
(λ)

SA FIE
Error

SA FIE
Error

λ (Absolute) (Absolute)

100 4.3438 4.3446 7.9 ×10−4 7.8540 7.8540 4.2 ×10−7

200 5.283 5.2841 8.3 ×10−4 11.2327 11.2327 4.2 ×10−7

300 5.9340 5.9136 2.0 ×10−2 13.8265 13.8262 2.7 ×10−4

400 6.4079 6.4004 7.5 ×10−3 16.0131 16.0131 3.7 ×10−5

500 6.8028 6.8028 4.4 ×10−5 17.9399 17.9399 4.4 ×10−9

600 7.1487 7.1485 1.1 ×10−4 19.6810 19.6810 1.9 ×10−9

700 7.4569 7.4534 3.5 ×10−3 21.2829 21.2829 8.0 ×10−6

TABLE II: Comparative results for constrained communication using Stochastic Approximation (SA) and Fredholm Integral

Equations of second kind (FIE) for a = 1 and pd = 0.

(a) β = 0.9

Threshold k∗ Performance D∗

β
(α)

SA FIE
Error

SA FIE
Error

α (Absolute) (Absolute)

0.1 2.2230 2.2217 1.3 ×10−3 0.9293 0.9283 9.9 ×10−4

0.2 1.4416 1.4404 1.2 ×10−3 0.3954 0.3947 7.0 ×10−4

0.3 1.0586 1.0620 3.4 ×10−3 0.1974 0.1989 1.5 ×10−3

0.4 0.8014 0.8057 4.3 ×10−3 0.0989 0.1003 1.4 ×10−3

0.5 0.6017 0.5981 3.5 ×10−3 0.0460 0.0453 7.4 ×10−4

0.6 0.4357 0.4395 3.7 ×10−3 0.0186 0.0190 4.6 ×10−4

0.7 0.2823 0.2808 1.5 ×10−3 0.0052 0.0052 8.1 ×10−5

0.8 0.1396 0.1465 6.8 ×10−3 0.0006 0.0007 9.9 ×10−5

(b) β = 1.0

Threshold k∗ Performance D∗

β
(α)

SA FIE
Error

SA FIE
Error

α (Absolute) (Absolute)

0.1 2.5396 2.5391 5.7 ×10−4 1.3677 1.3671 5.8 ×10−4

0.2 1.6020 1.5991 2.9 ×10−3 0.5485 0.5464 2.0 ×10−3

0.3 1.1713 1.1719 6.2 ×10−4 0.2767 0.2770 3.4 ×10−4

0.4 0.9014 0.9033 1.9 ×10−3 0.1477 0.1485 7.7 ×10−4

0.5 0.6994 0.6958 3.6 ×10−3 0.0767 0.0756 1.0 ×10−3

0.6 0.5334 0.5371 3.7 ×10−3 0.0365 0.0373 7.2 ×10−4

0.7 0.3884 0.3906 2.2 ×10−3 0.0148 0.1500 2.4 ×10−4

0.8 0.2540 0.2563 2.3 ×10−3 0.0043 0.0044 1.2 ×10−4

Theorem 6 The threshold iterates k◦i of Algorithm 3

converge almost surely to the optimal thresholds, i.e.,

limi→∞ k◦i = k∗(α), a.s., where k∗(α) is optimal threshold

for Problem 2.

The proof follows immediately from [14].

Here we found that using the learning rates γi = 1/i yields

fast convergence and hence we did not use ADAM to adapt

the learning rates.

V. NUMERICAL RESULTS

In all the results reported below, a = 1 and σ2 = 1. The

code for the experiments is available at [16].

A. Channels with no packet drops (for validation)

We start by comparing the proposed stochastic approxi-

mation algorithms with the exact algorithm of [12].

For costly communication, we consider β ∈ {0.9, 1.0}
and λ ∈ {100, 200, . . . , 700}. We set the number of episodes

in Algorithm 1 to 1000 and number of iterations in Algo-

rithm 2 to 10,000. The corresponding thresholds are shown

in Table I.

The optimal thresholds obtained by Fredholm integral

equations (as proposed in [12]) are also shown in Table I. The

thresholds obtained by stochastic approximation are within

10−2 of the optimal for most cases. We also compute the total

cost C
(k)
β (0;λ) (by solving Fredholm integral equation) for

both cases. The cost of the thresholds obtained by stochastic

approximation is less than 10−3 from the optimal cost.

For constrained communication, we consider β ∈
{0.9, 1.0} and α ∈ {0.1, 0.2, . . . , 0.8}. The number of

episodes in Algorithm 1 is set to 1. The corresponding

thresholds are shown in Table II.

As in the case of costly communication, we compare

the thresholds and the performance D
(k)
β (0) obtained by

stochastic approximation with those obtained by Fredholm

integral equations. The thresholds obtained by stochastic

approximation are within 10−3 or less of the optimal.

These results show that the results obtained by stochastic

approximation algorithms are accurate.

B. Channel with packet drops

We repeat the experiments of the previous section with

pd = 0.3. To understand the variability of stochastic approx-

imation across different runs, we run each experiment 100

times and plot the mean and standard deviation of the thresh-

olds versus the number of iterations in Fig. 2. For ease of

visualization, we only show the results for a subset of values

of λ and α. For both costly and constrained communication,

there is very little variation across multiple runs. It takes

about 9000 iterations to converge for costly communication

and 3000 iterations for constrained communication.

VI. CONCLUSION AND DISCUSSION

We present stochastic approximation algorithms to com-

pute optimal thresholds for remote state estimation over

communication channels with packet drops. The inner loops



✷❀✵✵✵ ✹❀✵✵✵ ✻❀✵✵✵ ✽❀✵✵✵ ✶✵❀✵✵✵

✺

✶✵

✕ ❂ ✶✵✵

✕ ❂ ✸✵✵

✕ ❂ ✺✵✵

Iterations

T
h
re

sh
o
ld

(a) Costly case: β = 0.9

✷❀✵✵✵ ✹❀✵✵✵ ✻❀✵✵✵ ✽❀✵✵✵ ✶✵❀✵✵✵

✺

✶✵

✕ ❂ ✶✵✵

✕ ❂ ✸✵✵

✕ ❂ ✺✵✵

Iterations

T
h
re

sh
o
ld

(b) Costly case: β = 1.0

✶❀✵✵✵ ✷❀✵✵✵ ✸❀✵✵✵ ✹❀✵✵✵ ✺❀✵✵✵

✶

✷

✸

☛ ❂ ✵✿✶

☛ ❂ ✵✿✸

☛ ❂ ✵✿✺

Iterations

T
h

re
sh

o
ld

(c) Constrained case: β = 0.9

✶❀✵✵✵ ✷❀✵✵✵ ✸❀✵✵✵ ✹❀✵✵✵ ✺❀✵✵✵

✶

✷

✸
☛ ❂ ✵✿✶

☛ ❂ ✵✿✸

☛ ❂ ✵✿✺

Iterations

T
h

re
sh

o
ld

(d) Constrained case: β = 1.0

Fig. 2: The sample paths for costly and constrained cases for pd = 0.3. Here the bold lines represent the sample means for 100 runs and
the shaded regions correspond to mean ± twice the standard deviation across the runs (i.e., the 95% confidence interval).

of these algorithms use Monte Carlo evaluation to get a noisy

estimate of the performance of a threshold-based strategy.

Stochastic approximation algorithms scale well to multi-

dimensional setup, where the Kiefer-Wolfowitz algorithm

can be replaced by Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithm [17] which requires only

two random samples to estimate the gradient.
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