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Abstract—We investigate remote estimation over a Gilbert-
Elliot channel with feedback. The channel is modelled as an
ON/OFF channel, where the state of the channel evolves as a
Markov chain. The channel state is observed by the receiver and
fed back to the transmitter with one unit delay. In addition, the
transmitter gets ACK/NACK feedback for successful/unsuccessful
transmission. Using ideas from team theory, we establish the
structure of optimal transmission and estimation strategies and
identify a dynamic program to determine optimal strategies
with that structure. We then consider first-order autoregressive
sources where the noise process has unimodal and symmetric
distribution. Using ideas from majorization theory, we show that
the optimal transmission strategy has a threshold structure and
the optimal estimation strategy is Kalman-filter like.

I. INTRODUCTION

A. Motivation and literature overview

We consider a remote estimation system in which a sen-

sor/transmitter observes a first-order Markov process and

causally decides which observations to transmit to a remotely

located receiver/estimator. Communication is expensive and

takes place over a Gilbert-Elliot channel (which is used to

model channels with burst erasures). The channel has two

states—OFF state and ON state—and the state evolves as a

Markov chain. When the channel is in the OFF state, a packet

transmitted from the sensor to the receiver is dropped. When

the channel is in the ON state, a packet transmitted from the

sensor to the receiver is received without error. We assume that

the channel state is causally observed at the receiver and is fed

back to the transmitter with one-unit delay. Whenever there is

a successful reception, the receiver sends an acknowledgment

to the transmitter. The feedback is assumed to be noiseless.

At the time instances when the receiver does not receive a

packet (either because the sensor did not transmit or because

the transmitted packet was dropped), it needs to estimate the

state of the source process. There is a fundamental trade-off

between communication cost and estimation accuracy. Trans-

mitting all the time minimizes the estimation error but incurs

a high communication cost; not transmitting at all minimizes

the communication cost but incurs a high estimation error.

The motivation of remote estimation comes from networked

control systems. The earliest instance of the problem was

perhaps considered by Marschak [1]. In recent years, several

variations of remote estimation has been considered. These

include models that consider idealized channels without packet

drops [2]–[9] (also see references therein), models that con-

sider channels with packet drops [10]–[12] and models that

consider channels with noise [13]–[15].

The salient features of remote estimation are as follows:

(F1) The decisions are made sequentially. (F2) The reconstruc-

tion/estimation at the receiver must be done with zero-delay.

(F3) When a packet does get through, it is received without

noise (this feature is absent in channels with noise).

Remote estimation problems may be viewed as a special

case of real-time communication [16]–[19] (and references

therein). As in real-time communication, the key conceptual

difficulty is that the data available at the transmitter and the

receiver is increasing with time. Thus, the domain of the

transmission and the estimation function increases with time.

To circumvent this difficulty one needs to identify sufficient

statistics for the data at the transmitter and the data at the

receiver. In the real-time communication literature, dynamic

team theory (or decentralized stochastic control theory) is

used to identify such sufficient statistics as well as to identify

a dynamic program to determine the optimal transmission

and estimation strategies. Similar ideas are also used in

remote-estimation literature. In addition, feature (F3) allows

one to further simplify the structure of optimal transmission

and estimation strategies. When the source is a first-order

autoregressive process, majorization theory is used to show

that the optimal transmission strategies is characterized by

a threshold [5]–[7], [9]–[11]. In particular, it is optimal to

transmit when the instantaneous distortion due to not trans-

mitting is greater than a threshold. The optimal thresholds can

be computed either using dynamic programming [5], [6] or

using renewal relationships [9], [10]. In this paper, we consider

packet drop channels with Markovian memory. We identify

sufficient statistics at the transmitter and the receiver. When

the source is a first-order autoregressive process, we show that

threshold-based strategies (where the threshold depends on the

previous channel-state) are optimal.

A model very close to ours is considered in [11], which

investigates remote estimation over a fading channel. The

fading gains evolve as a Markov chain and the objective is to

choose the transmission power (the binary transmission model

that is considered here is then a special case). In [11], it is

assumed that the transmitter knows the current realization of

the channel state; in our model we assume that the transmitter



knows the one-step delayed channel state information. In [6],

an infinite horizon long-term average cost model is considered;

we consider a finite horizon model.

Another closely related model is considered in [12], which

investigates remote estimation of a hidden Markov state pro-

cess over a Gilbert-Elliot channel. However, in [12] attention is

restricted to a stochastic event triggered transmission strategy

and the performance of such strategies is evaluated using a

change of measure argument. In contrast, we do not assume a

specific form of transmission strategy.

B. The communication system

1) Source model: The source is a first-order time-

homogeneous Markov process {Xt}t≥0, Xt ∈ X . For ease

of exposition, in the first part of the paper we assume that

X is a finite set. We will later argue that a similar argument

works when X is a general measurable space. The transition

probability matrix of the source is denoted by P , i.e., for any

x, y ∈ X , Pxy := P(Xt+1 = y | Xt = x).

2) Channel model: The channel is a Gilbert-Elliott chan-

nel [20], [21]. The channel state {St}t≥0 is a binary-valued

time-homogeneous Markov process. We use the convention

that St = 0 denotes that the channel is in the OFF state

and St = 1 denotes that the channel is in the ON state. The

transition probability matrix of the channel state is denoted by

Q, i.e., for r, s ∈ {0, 1}, Qrs := P(St+1 = s|St = r).

The input alphabet X̄ of the channel is X ∪ {E}, where E

denotes the event that there is no transmission. The channel

output alphabet Y is X ∪ {E0,E1}, where the symbols E0

and E1 are explained below. At time t, the channel input is

denoted by X̄t and the channel output is denoted by Yt.

The channel is a channel with state. In particular, for any

realization (x̄0:T , s0:T , y0:T ) of (X̄0:T , S0:T , Y0:T ), we have

P(Yt = yt | X̄0:t = x̄0:t, S0:t = s0:t)

= P(Yt = yt | X̄t = x̄t, St = st) (1)

and

P(St = st | X̄0:t = x̄0:t, S0:t−1 = s0:t−1)

= P(St = st | St−1 = st−1) = Qst−1st (2)

Note that the channel output Yt is a deterministic function

of the input X̄t and the state St. In particular, for any x̄ ∈ X̄
and s ∈ {0, 1}, the channel output y is given as follows:

y =











x̄, if x̄ ∈ X and s = 1

E1, if x̄ = E and s = 1

E0, if s = 0

This means that if there is a transmission (i.e., x̄ ∈ X ) and

the channel is on (i.e., s = 1), then the receiver observes x̄.

However, if there is no transmission (i.e., x̄ = E) and the

channel is on (i.e., s = 1), then the receiver observes E1. If

the channel is off, then the receiver observes E0.

3) The transmitter: There is no need for channel coding in

a remote-estimation setup. Instead, the role of the transmitter is

to determine which source realizations need to be transmitted.

Let Ut ∈ {0, 1} denote the transmitter’s decision. We use the

convention that Ut = 0 denotes that there is no transmission

(i.e., X̄t = E) and U1 = 1 denotes that there is transmission

(i.e., X̄t = Xt).

Transmission is costly. Each time the transmitter transmits

(i.e., Ut = 1), it incurs a cost of λ.

4) The receiver: At time t, the receiver generates an esti-

mate X̂t ∈ X of Xt. The quality of the estimate is determined

by a distortion function d : X × X → R≥0.

C. Information structure and problem formulation

It is assumed that the receiver observes the channel state

causally. Thus, the information available at the receiver1 is

I2t = {S0:t, Y0:t}.

The estimate X̂t is chosen according to

X̂t = gt(I
2
t ) = gt(S0:t, Y0:t), (3)

where gt is called the estimation rule at time t. The collection

g := (g1, . . . , gT ) for all time is called the estimation strategy.

It is assumed that there is one-step delayed feedback from

the receiver to the transmitter.2 Thus, the information available

at the transmitter is

I1t = {X0:t, U0:t−1, S0:t−1, Y0:t−1}.

The transmission decision Ut is chosen according to

Ut = ft(I
1
t ) = ft(X0:t, U0:t−1, S0:t−1, Y0:t−1), (4)

where ft is called the transmission rule at time t. The collec-

tion f := (f1, . . . , fT ) for all time is called the transmission

strategy.

The collection (f , g) is called a communication strategy.

The performance of any communication strategy (f , g) is

given by

J(f , g) = E

[ T
∑

t=0

λUt + d(Xt, X̂t)

]

(5)

where the expectation is taken with respect to the joint measure

on all system variables induced by the choice of (f , g).

We are interested in the following optimization problem.

Problem 1 In the model described above, identify a com-

munication strategy (f∗, g∗) that minimizes the cost J(f , g)
defined in (5).

1We use superscript 1 to denote variables at the transmitter and superscript 2
to denote variables at the receiver.

2Note that feedback requires two bits: the channel state St is binary and
the channel output Yt can be communicated by indicating whether Yt ∈ X

or not (i.e., transmitting an ACK or a NACK).



II. MAIN RESULTS

A. Structure of optimal communication strategies

Two-types of structural results are established in the real-

time communication literature: (i) establishing that part of

the data at the transmitter is irrelevant and can be dropped

without any loss of optimality; (ii) establishing that the com-

mon information between the transmitter and the receiver

can be “compressed” using a belief state. The first structural

results were first established by Witsenhausen [16] while the

second structural results were first established by Walrand

Varaiya [17]. We establish both types of structural results for

remote estimation.

Lemma 1 For any estimation strategy of the form (3), there

is no loss of optimality in restricting attention to transmission

strategies of the form

Ut = ft(Xt, S0:t−1, Y0:t−1). (6)

The proof idea is similar to [18]. We show that

{Xt, S0:t−1, Y0:t−1}t≥0 is a controlled Markov process con-

trolled by {Ut}t≥0. See [22] for proof.

Now, following the common information approach of [23],

for any transmission strategy f of the form (6) and any

realization (s0:T , y0:T ) of (S0:T , Y0:T ), define ϕt : X → {0, 1}
as

ϕt(x) = ft(x, s0:t−1, y0:t−1), ∀x ∈ X .

Furthermore, define conditional probability measures π1
t and

π2
t on X as follows: for any x ∈ X ,

π1
t (x) := P

f (Xt = x | S0:t−1 = s0:t−1, Y0:t−1 = y0:t−1),

π2
t (x) := P

f (Xt = x | S0:t = s0:t, Y0:t = y0:t).

We call π1
t the pre-transmission belief and π2 the post-

transmission belief. Note that when (S0:T , Y0:T ) are random

variables, then π1
t and π2

t are also random variables which we

denote by Π1
t and Π2

t .

For the ease of notation, for any ϕ : X → {0, 1} and i ∈
{0, 1}, define the following:

• Bi(ϕ) = {x ∈ X : ϕ(x) = i}.

• For any probability distribution π on X and any subset

A of X , π(A) denotes
∑

x∈A π(x).
• For any probability distribution π on X , ξ = π|ϕ means

that ξ(x) = 1{ϕ(x)=0}π(x)/π(B0(ϕ)).

Lemma 2 Given any transmission strategy f of the form (6):

1) there exists a function F 1 such that

π1
t+1 = F 1(π2

t ) = π2
tP. (7)

2) there exists a function F 2 such that

π2
t = F 2(π1

t , ϕt, yt) =











δyt
if yt ∈ X

π1
t |ϕt

, if yt = E1

π1
t , if yt = E0.

(8)

Note that in (7), we are treating π2
t as a row-vector and

in (8), δyt
denotes a Dirac measure centered at yt. The

update equations (7) and (8) are standard non-linear filtering

equations. See [22] for proof.

Theorem 1 In Problem 1, we have that:

1) Structure of optimal strategies: There is no loss of opti-

mality in restricting attention to optimal transmission and

estimation strategies of the form:

Ut = f∗
t (Xt, St−1,Π

1
t ), (9)

X̂t = g∗t (Π
2
t ). (10)

2) Dynamic program: Let ∆(X ) denote the space of

probability distributions on X . Define value functions

V 1
t : {0, 1} ×∆(X ) → R and V 2

t : {0, 1} ×∆(X ) → R

as follows.

V 1
T+1(s, π

1) = 0, (11)

and for t ∈ {T, . . . , 0}

V 1
t (s, π

1) = min
ϕ : X→{0,1}

{

λπ1(B1(ϕ))

+W 0
t (π

1, ϕ)π1(B0(ϕ)) +
∑

x∈B1(ϕ)

W 1
t (π

1, ϕ, x)π1(x)
}

(12)

V 2
t (s, π

2) = min
x̂∈X

∑

x∈X

d(x, x̂)π2(x) + V 1
t+1(s, π

2P ),

(13)

where,

W 0
t (π

1, ϕ) = Qs0V
2
t (0, π

1) +Qs1V
2
t (1, π

1|ϕ),

W 1
t (π

1, ϕ, x) = Qs0V
2
t (0, π

1) +Qs1V
2
t (1, δx).

Let Ψt(s, π
1) denote the arg min of the right hand side

of (12). Then, the optimal transmission strategy of the

form (9) is given by

f∗
t (·, s, π

1) = Ψt(s, π
1).

Furthermore, the optimal estimation strategy of the

form (10) is given by

g∗t (π
2) = argmin

x̂∈X

∑

x∈X

d(x, x̂)π2(x). (14)

The proof idea is as follows. Once we restrict attention

to transmission strategies of the form (6), the information

structure is partial history sharing [23]. Thus, one can use the

common information approach of [23] and obtain the structure

of optimal strategies. See [22] for proof.

Remark 1 Although the above model and result are stated

for sources with finite alphabets, they extend naturally to gen-

eral state spaces (including Euclidean spaces) under standard

technical assumptions. See [24] for details.



B. Optimality of threshold-based strategies for autoregressive

source

In this section, we consider a first-order autoregressive

source {Xt}t≥0, Xt ∈ R, where the initial state X0 = 0
and for t ≥ 0, we have that

Xt+1 = aXt +Wt, (15)

where a ∈ R and Wt ∈ R is distributed according to a

symmetric and unimodal distribution with probability density

function µ. Furthermore, the per-step distortion is given by

d(Xt − X̂t), where d(·) is an even function that is increasing

on R≥0. The rest of the model is the same as before.

For the above model, we can further simplify the result of

Theorem 1, as given by Theorem 2. See Section III for the

proof.

Theorem 2 For a first-order autoregressive source with sym-

metric and unimodal disturbance,

1) Structure of optimal estimation strategy: The optimal

estimation strategy is given as follows: X̂0 = 0, and for

t ≥ 0,

X̂t =

{

aX̂t−1, if Yt ∈ {E0,E1}

Yt, if Yt ∈ R
(16)

2) Structure of optimal transmission strategy: There exist

threshold functions kt : {0, 1} → R≥0 such that the

following transmission strategy is optimal:

ft(Xt, St−1,Π
1
t ) =

{

1, if |Xt − aX̂t−1| ≥ kt(St−1)

0, otherwise.
(17)

Remark 2 It can be shown that under the optimal strategy,

Π2
t is symmetric and unimodal (SU) (Definition 1) around X̂t

and, therefore, Π1
t is SU around aX̂t−1. Thus, the transmission

and estimation strategies in Theorem 2 depend on the pre- and

post-transmission beliefs only through their means.

III. PROOF OF THEOREM 2

A. A change of variables

Define a process {Zt}t≥0 as follows: Z0 = 0 and for t ≥ 0,

Zt =

{

aZt−1, if Yt ∈ {E0,E1}

Yt, if Yt ∈ X

Note that Zt is a function of Y0:t−1. Next, define processes

{Et}t≥0, {E+
t }t≥0, and {Êt}t≥0 as follows:

Et := Xt − aZt−1, E+
t := Xt − Zt, Êt := X̂t − Zt

The processes {Et}t≥0 and {E+
t }t≥0 are related as follows:

E0 = 0, E+
0 = 0, and for t ≥ 0

E+
t =

{

Et, if Yt ∈ {E0,E1}

0, if Yt ∈ X
and Et+1 = aE+

t +Wt.

Since Xt − X̂t = E+
t − Êt, we have that d(Xt − X̂t) =

d(E+
t − Êt).

Next, redefine the pre- and post-transmission beliefs in

terms of the error process. With a slight abuse of notation,

we still denote the probability density of the pre- and post-

transmission beliefs as π1
t and π2

t . In particular, π1
t is the

conditional pdf of Et given (s0:t−1, y0:t−1) and π2
t is the

conditional pdf of E+
t given (s0:t, y0:t).

Let Ht ∈ {E0,E1, 1} denote the event whether the transmis-

sion was successful or not. In particular, Ht is E0 if Yt = E0,

is E1 if Yt = E1, and is 1 if Yt ∈ R. We use ht to denote the

realization of Ht.

The time-evolutions of π1
t and π2

t is similar to Lemma 2.

In particular, there exists a function F 2 such that

π2
t = F 2(π1

t , ϕt, ht) =











δ0, if ht = 1

π1
t |ϕt

, if ht = E1

π1
t , if ht = E0.

(18)

Consequently, the dynamic program of Theorem 1 is now

given by

V 1
T+1(s, π

1) = 0, (19)

and for t ∈ {T, . . . , 0}

V 1
t (s, π

1) = min
ϕ : R→{0,1}

{

λπ1(B1(ϕ))

+W 0
t (π

1, ϕ)π1(B0(ϕ)) +W 1
t (π

1, ϕ)π1(B1(ϕ))
}

,
(20)

V 2
t (s, π

2) = D(π2) + V 1
t+1(s, F

1(π2)), (21)

where,

W 0
t (π

1, ϕ) = Qs0V
2
t (0, π

1) +Qs1V
2
t (1, π

1|ϕ),

W 1
t (π

1, ϕ) = Qs0V
2
t (0, π

1) +Qs1V
2
t (1, δ0),

D(π2) = min
ê∈R

∫

R

d(e− ê)π2(e)de.

Note that due to the change of variables, the expression for

W 1
t does not depend on the transmitted symbol. Consequently,

the expression for V 1
t is simpler than that in Theorem 1.

Definition 1 (Symmetric and unimodal density) A proba-

bility density function π on reals is said to be symmetric

and unimodal (SU) around c ∈ R if for any x ∈ R,

π(c− x) = π(c+ x) and π is non-decreasing in the interval

(−∞, c] and non-increasing in the interval [c,∞).

Definition 2 (Threshold based prescription) Given c ∈ R,

a prescription ϕ : R → {0, 1} is called threshold based around

c if there exists k ∈ R such that ϕ(e) = 1 if |e− c| ≥ k, else

ϕ(e) = 0.

Let F(c) denote the family of all threshold-based prescription

around c.
We first prove a weaker version of the structure of optimal

transmission strategies. In particular, there exist threshold

functions k̃t : {0, 1} ×∆(R) → R≥0 such that the following

transmission strategy is optimal:

ft(Et, St−1,Π
1
t ) =

{

1, if |Et| ≥ k̃t(St−1,Π
1
t )

0, otherwise.
(22)



We prove (22) by induction. Note that π1
0 = δ0 which

is SU(0). Therefore, by [22, Lemma 3, (P2)], there exists a

threshold-based prescription ϕ0 ∈ F(0) that is optimal. This

forms the basis of induction. Now assume that until time t−1,

all prescriptions are in F(0). By [22, Properties 2 and 3], Π1
t

is SU(0). Therefore, by [22, Lemma 3, (P2)], there exists

a threshold-based prescription ϕt ∈ F(0) that is optimal.

This proves the induction step and, hence, by the principle

of induction, threshold-based prescriptions of the form (22)

are optimal for all time.

Observe that [22, Properties 2 and 3] also imply that for

all t, Π2
t is SU(0). Therefore, by [22, Property 1], the optimal

estimate Êt = 0. Recall that Êt = X̂t − Zt. Thus, X̂t = Zt.

This proves the first part of Theorem 2.

To prove that there exist optimal transmission strategies

where the thresholds do not depend on Π1
t , we fix the

estimation strategy to be of the form (16) and consider the

problem of finding the best transmission strategy at the sensor.

This is a single-agent (centralized) stochastic control problem

and the optimal solution is given by the following dynamic

program: JT+1(e, s) = 0 and for t ∈ {T, . . . , 0},

Jt(e, s) = min{J0
t (e, s), J

1
t (e, s)} (23)

where

J0
t (e, s) = d(e) +Qs0EW [Jt+1(ae+W, 0)]

+Qs1EW [Jt+1(ae+W, 1)], (24)

J1
t (e, s) = λ+Qs0d(e) +Qs0EW [Jt+1(ae+W, 0)]

+Qs1EW [Jt+1(W, 1)], (25)

Using ideas similar to [25], one can show that the threshold

based transmission strategy (17) is optimal.

IV. CONCLUSION

In this paper, we identify the structure of optimal trans-

mission and estimation strategies for remote estimation over

Gilbert-Elliot channel with feedback. When the source is first-

order autoregressive process with symmetric and unimodal

noise distribution, the optimal strategy has a threshold struc-

ture and the optimal estimation strategy is Kalman-like. A

natural question is how to determine the optimal thresholds.

For finite horizon setup, these can be determined using the

dynamic program of (23)–(25). For infinite horizon setup, we

expect that the optimal threshold will not depend on time. We

believe that it should be possible to evaluate the performance

of a generic threshold based strategy using an argument similar

to the renewal theory based argument presented in [9] for

channels without packet drops.

The argument in [9] relied on the distortion and time until

the first successful reception, which were computed using

Fredholm integral equations of the second time. However,

in the current model, the corresponding Fredholm integral

equations will be difficult to solve numerically. We believe

that it would be possible to adapt the sampling based stochastic

approximation techniques of [10] to the current setup.
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