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Abstract—The problem of assigning priorities for scheduling
multiple sensor measurements over a control area network is
considered. A dynamic priority allocation scheme is proposed,
where priorities are assigned according to the value of informa-
tion. The value of information is defined as the fee a receiver is
willing to pay to access that information. It is shown that the
value of information can be computed by solving two Fredholm
integral equations. An efficient computation of the value of
information is proposed. Numerical examples suggest that the
proposed priority assignment scheme outperforms the existing
schemes in the literature.

I. INTRODUCTION

The recent advances in autonomous vehicles are driven

by sophisticated algorithms that rely on measurements from

multiple sensors. As the number of sensors increases, the

effectiveness and efficiency of the intra-vehicle communication

between the sensors and the various electronic control units

(such as engine control, lane following, cruise control, etc.)

becomes critical. The communication between the sensors,

controllers, and actuators takes place over a control area

network (CAN) [1]. Scheduling sensor measurements over a

CAN network is different from sensor scheduling over wireless

networks because the contention resolution method used in

CAN networks is different. CAN networks use a collision-

free contention resolution protocol, in which each data-packet

has a priority index and the network transmits the packet with

the highest priority.

In this paper we consider the problem of assigning pri-

orities for scheduling multiple sensor measurements over

CAN networks. In particular, we consider a system (shown

in Fig. 1) in which multiple sensors transmit their mea-

surements to their respective remote estimators over a CAN

network. At each time, each sensor takes a measurement

and assigns a priority to its measurement. The network

transmits the measurement from the sensor with the highest

priority. All other sensors, simply discard their measure-

ments rather than buffering them.1 At the next time instant,

all sensors take new measurements, assign priorities, and

the above process is repeated. The performance of such a

system depends on the scheme used to assign priorities.

Priority assignment in such a network may either be static

(i.e., priorities do not change with time) or dynamic (i.e.,

priorities may change with time). Dynamic priority assignment

may either be off-line (i.e., priorities depend on time but not

1This approach is sometimes called “try once and discard” [2].
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Fig. 1: Block diagram of a remote estimation system

on sensor measurements) or on-line (i.e., priorities depend on

time as well as on sensor measurements).

The key conceptual difficulty in on-line priority assignment

is that each sensor must determine its priority in a decentral-

ized manner (i.e., based only on its local measurements). Var-

ious on-line priority assignment schemes have been proposed

in the literature [2]–[5]. In [2], the priority is chosen to be

the norm of the instantaneous estimation error; probabilistic

variations where the probability of getting access is propor-

tional to the norm of the instantaneous estimation error are

considered in [3], [4]. In [5], the priority is chosen according to

the difference in performance between transmitting the packet

and not transmitting the packet. To compute this difference,

it is assumed that future scheduling decisions are determined

according to a baseline heuristic.

In this paper we propose an alternative priority assignment

scheme that is based on the economic concept of value of

information. Instead of the networked problem, suppose there

is a single sensor with a dedicated link. However, the sensor

has to pay a cost to access the link. We say that the value of

information at a particular state (and, therefore, the priority at

that state) is equal to the communication cost for which the

sensor is indifferent between transmitting or not transmitting

its current state. This definition of value of information is

inspired by the multi-armed bandit literature [6], [7], where

the Gittins index has a similar interpretation.

II. MODEL AND PROBLEM FORMULATION

A. System model

Consider a system consisting of 𝑛 sensor-estimator pairs

that are connected over a CAN-like network (see Fig. 1). Each

block of this system is described below.

1) Sensors: There are 𝑛 sensors. Sensor 𝑖, 𝑖 ∈ 𝑁 :=
{1, . . . , 𝑛}, observes a first-order autoregressive process

{𝑋𝑖
𝑡}𝑡≥0, 𝑋𝑖

𝑡 ∈ R. In particular, the initial state 𝑋𝑖
0 is

distributed according to known distribution, and for 𝑡 ≥ 0,

𝑋𝑖
𝑡+1 = 𝑎𝑖𝑋𝑖

𝑡 +𝑊 𝑖
𝑡 , (1)



where 𝑎𝑖 ∈ R is a known parameter and {𝑊 𝑖
𝑡 }𝑡≥0 is an i.i.d.

noise process and 𝑊 𝑖
𝑡 is distributed according to probability

density function 𝜑𝑖(⋅).
The observation processes are assumed to satisfy the fol-

lowing:

1) The observation processes across sensors are indepen-

dent.

2) The noise process at sensor is independent across time

and independent of the initial state.

3) The density 𝜑𝑖 of the noise process is even and unimodal

(e.g., a Gaussian distribution satisfies these properties).

An immediate implication is that 𝑊 𝑖
𝑡 is zero-mean.

Assumptions 1) and 2) imply that all the primitive ran-

dom variables (𝑋1
0 , . . . , 𝑋

𝑛
0 , {𝑊

1
𝑡 }𝑡≥0, . . . , {𝑊

𝑛
𝑡 }𝑡≥0) are in-

dependent.

At each time, sensor 𝑖 assigns a priority 𝑍𝑖
𝑡 to its obser-

vation. The priority index 𝑍𝑖
𝑡 is transmitted along with the

data-packet 𝑋𝑖
𝑡 .

2) Network: The network uses the CAN method for con-

tention resolution and transmits the packet with the highest

index. Let 𝑌 𝑖
𝑡 , 𝑖 ∈ 𝑁 , denote the packet received by receiver 𝑖.

Then,

𝑌 𝑖
𝑡 =

{

𝑋𝑖
𝑡 , if sensor 𝑖 has the highest priority

𝔈, otherwise
(2)

where 𝔈 denotes that no packet was received.

3) Receivers: There is a receiver associated with each

sensor. Receiver 𝑖, 𝑖 ∈ 𝑁 , observes {𝑌 𝑖
𝑡 }𝑡≥0 and sequentially

generates estimates {�̂�𝑖
𝑡}𝑡≥0, �̂�𝑖

𝑡 ∈ R. If receiver 𝑖 receives a

packet, then the estimate �̂�𝑖
𝑡 equals the observation 𝑋𝑖

𝑡 ; if the

receiver does not receive a packet, then it needs to estimate

based on observations received in the past. We assume that

the receiver uses a minimum mean squared estimate, which is

given by 𝑎𝑖�̂�𝑖
𝑡−1. Thus,

�̂�𝑖
𝑡 =

{

𝑌 𝑖
𝑡 , if 𝑌 𝑖

𝑡 ∕= 𝔈

𝑎𝑖�̂�𝑖
𝑡−1, if 𝑌 𝑖

𝑡 = 𝔈
(3)

The sensor-receiver pair 𝑖, 𝑖 ∈ 𝑁 , incurs an estimation error

𝑑𝑖(𝑋𝑖
𝑡−�̂�

𝑖
𝑡) at time 𝑡, where 𝑑𝑖 : R → R is the error function.

(For example, 𝑑𝑖(𝑥− �̂�) = (𝑥− �̂�)2 corresponds to the mean

squared error function.) We assume that, for every 𝑖 ∈ 𝑁 , 𝑑𝑖

is continuous, even and quasi-convex.

B. The optimization problem

Let 𝑆𝑡 ∈ 𝑁 denote the sensor with the highest priority at

time 𝑡. We assume that 𝑆𝑡 is observed by all sensors. Thus,

before assigning priority at time 𝑡, sensor 𝑖 has access to

(𝑋𝑖
1:𝑡, 𝑆1:𝑡−1), where 𝑋𝑖

1:𝑡 is a short-hand for (𝑋𝑖
1, . . . , 𝑋

𝑖
𝑡)

and a similar interpretation holds for 𝑆1:𝑡−1. Sensor 𝑖 chooses

priority 𝑍𝑖
𝑡 according to a priority rule

𝑔𝑖𝑡 : (𝑋
𝑖
1:𝑡, 𝑆1:𝑡−1) 
→ 𝑍𝑖

𝑡 . (4)

Let 𝑆𝑡 denote the sensor with the highest priority, i.e.,

𝑆𝑡 = argmax
𝑖∈𝑁

𝑍𝑖
𝑡 .

The network transmits the measurement of the sensor 𝑆𝑡. The

receivers choose an estimate according to (3) and the system

incurs a total error2

∑

𝑖∈𝑁
𝑖∕=𝑆𝑡

𝑑𝑖(𝑋𝑖
𝑡 − �̂�𝑖

𝑡).

The collection 𝑔𝑖 := {𝑔𝑖𝑡}𝑡≥0 is called the priority strategy

of sensor 𝑖 and 𝑔 := (𝑔1, . . . , 𝑔𝑛) is called the priority strategy

profile. The performance of any priority strategy profile is

measured by the average expected error over time, which is

given by

𝐽(𝑔) = lim
𝑇→∞

1

𝑇
E

𝑔

[

𝑇−1
∑

𝑡=0

∑

𝑖∈𝑁
𝑖 ∕=𝑆𝑡

𝑑𝑖(𝑋𝑖
𝑡 − �̂�𝑖

𝑡)

]

. (5)

where �̂�𝑖
𝑡 is chosen according to (3), 𝑆𝑡 is the sensor with the

highest priority, and the expectation is taken with respect to

the joint measure induced on all system variables due to the

choice of 𝑔.

We are interested in the following optimization problem.

Problem 1 In the model described above, choose a priority

strategy profile 𝑔 that minimizes 𝐽(𝑔) given by (5), where the

minimization is over all history dependent priority rules of the

form (4).

In the model described above, there are 𝑛 decision makers

(the 𝑛 sensors) that have different information, yet they have

to cooperate to minimize a common system-wide objective

given by (5). Therefore, the system is a dynamic team or

a decentralized stochastic control problem [8]. Finding the

optimal solution of such problems is notoriously difficult. For

this reason, most existing approaches do not try to find an op-

timal priority assignment and use heuristic priority assignment

instead. We follow the same general approach and propose to

assign priorities based on the value of information. Our notion

of value of information, which we explain in the next section,

is closely related to the notion of calibration in multi-armed

bandits [6], [7].

III. VALUE OF INFORMATION BASED PRIORITY

ASSIGNMENT

A. A change of variables

For the purpose of our analysis, it is more convenient to

work with an “error process” rather than the original state

process {𝑋𝑖
𝑡}𝑡≥0. We define the error process {𝐸𝑖

𝑡}𝑡≥0 as

follows. The initial state 𝐸𝑖
0 has the same distribution as 𝑋𝑖

0

and for 𝑡 ≥ 0, we have

𝐸𝑖
𝑡+1 =

{

𝑊 𝑖
𝑡 , if 𝑆𝑡 = 𝑖

𝑎𝐸𝑖
𝑡 +𝑊 𝑖

𝑡 , if 𝑆𝑡 ∕= 𝑖.
(6)

When 𝑆𝑡 = 𝑖 (i.e., sensor 𝑖 transmits), then �̂�𝑖
𝑡 = 𝑋𝑖

𝑡 and

the estimation error for sensor 𝑖 is zero; when 𝑆𝑡 ∕= 𝑖, then

2Recall that the estimation error of sensor 𝑆𝑡 is zero.



𝑋𝑖
𝑡 − �̂�

𝑖
𝑡 = 𝐸𝑡 and the estimation error for sensor 𝑖 is 𝑑𝑖(𝐸𝑖

𝑡).
Thus, Eq. (5) can be written as

𝐽(𝑔) = lim
𝑇→∞

1

𝑇
E

𝑔
[ 𝑇−1
∑

𝑡=0

∑

𝑖∈𝑁,
𝑖 ∕=𝑆𝑡

𝑑𝑖(𝐸𝑖
𝑡)

]

. (7)

B. Value of information

From the point of view of economics, the value of infor-

mation equals the amount of money someone is willing to

pay to access that information. We capture this intuition using

the following model. Suppose there is a single sensor, say 𝑖,
and a dedicated channel is available to the sensor but the

sensor has to pay an access fee of 𝜆𝑖 each time it uses the

channel to transmit its measurement. If the sensor does not use

the channel, then the receiver generates an estimate according

to (3) and a estimation error 𝑑𝑖(𝑋𝑖
𝑡−�̂�

𝑖
𝑡) = 𝑑𝑖(𝐸𝑖

𝑡) is incurred.

Thus, at each time, the sensor decides whether or not to

transmit. Let 𝑈 𝑖
𝑡 ∈ {0, 1} denote the decision of the sensor,

where 𝑈 𝑖
𝑡 = 1 denotes that the sensor transmits and pays

the access fee 𝜆𝑖; 𝑈 𝑖
𝑡 = 0 denotes that the sensor does not

transmit and incurs the estimation error 𝑑𝑖(𝐸𝑖
𝑡). The controlled

dynamics of the error process are given by

𝐸𝑖
𝑡+1 =

{

𝑊 𝑖
𝑡 , if 𝑈 𝑖

𝑡 = 1

𝑎𝐸𝑖
𝑡 +𝑊 𝑖

𝑡 , if 𝑈 𝑖
𝑡 = 0.

(8)

The objective is to choose a scheduling strategy 𝑓 𝑖 =
(𝑓 𝑖0, 𝑓

𝑖
1, . . . ) where 𝑈 𝑖

𝑡 = 𝑓 𝑖𝑡 (𝐸
𝑖
𝑡) to minimize

𝐽 𝑖(𝑓 𝑖) = lim
𝑇→∞

1

𝑇
E

[ 𝑇−1
∑

𝑡=0

[

𝜆𝑖𝑈 𝑖
𝑡 + (1− 𝑈 𝑖

𝑡 )𝑑
𝑖(𝐸𝑖

𝑡)
]

]

. (9)

Problem (9) is a single agent Markov decision process [9]

and the optimal solution is given by the solution to the fol-

lowing dynamic programming equation. Suppose there exists

a constant ℎ𝑖 and a function 𝑣𝑖 : R → R that satisfy the

following system of equations: for any 𝑒 ∈ R

ℎ𝑖 + 𝑣𝑖(𝑒) = min

{

𝜆𝑖 +

∫

R

𝜑𝑖(𝑤)𝑣𝑖(𝑤)𝑑𝑤,

𝑑𝑖(𝑒) +

∫

R

𝜑𝑖(𝑤)𝑣𝑖(𝑎𝑒+ 𝑤)𝑑𝑤

}

. (10)

It can be shown that the model defined above satisfies the SEN

conditions of [9], [10] (using argument similar to those given

in [11]).

Define a function 𝑓 𝑖∗ : R → {0, 1} such that for any 𝑒 ∈ R,

𝑓 𝑖∗(𝑒) is 1 if the first term in the right hand side of (10) is

smaller than the second term; otherwise 𝑓 𝑖∗(𝑒) is 0.

Then, from Markov decision theory [9], we get that the

time-homogeneous sensor scheduling strategy 𝑓 𝑖,∞∗ given by

(𝑓 𝑖∗, 𝑓
𝑖
∗, . . . ) is optimal for Problem (9) and optimal perfor-

mance 𝐽 𝑖(𝑓 𝑖,∞∗ ) equals ℎ.

The dynamic program of (10) is also useful in identifying

qualitative properties of the optimal strategy. In particular,

since the per-step cost 𝑑𝑖(⋅) is even and quasi-convex and the

noise distribution 𝜑𝑖(⋅) is symmetric and unimodal. Therefore,

from [12, Theorem 1], we get that there exists a threshold

𝑘𝑖(𝜆𝑖) such that the optimal strategy is of the form:

𝑓 𝑖∗(𝑒) =

{

1, if ∣𝑒∣ < 𝑘𝑖(𝜆𝑖)

0, otherwise,
(11)

Furthermore, since the per-step cost 𝑑𝑖(⋅) is continuous,

it can be shown that the function 𝑣𝑖 is also continuous.

Therefore, at the threshold 𝑒𝑖∘ = 𝑘𝑖(𝜆𝑖), the two alternatives

in (10) are equal, i.e.,

𝜆𝑖+

∫

R

𝜑𝑖(𝑤)𝑣𝑖(𝑤)𝑑𝑤 = 𝑑𝑖(𝑒𝑖∘)+

∫

R

𝜑𝑖(𝑤)𝑣𝑖(𝑎𝑒𝑖∘+𝑤)𝑑𝑤.

Therefore, at state 𝑒𝑖∘, the sensor is indifferent between trans-

mitting or not transmitting. (Since 𝑑𝑖 and 𝜑𝑖 are even, we also

get that the sensor is indifferent between transmitting and not

transmitting at state −𝑒𝑖∘.)

Using the above property, we define the value of information

at state 𝑒 to be the smallest value of the access fee for

which the sensor is indifferent between transmitting and not

transmitting when the state is ∣𝑒∣, i.e.,

VOI𝑖(𝑒) = inf{𝜆𝑖 ∈ R≥0 : 𝑘𝑖(𝜆𝑖) = ∣𝑒∣}

As per the economic interpretation stated earlier, VOI𝑖(𝑒) is

the amount of money that receiver is willing to pay to get the

measurement 𝑒.
Let 𝑓 𝑖𝑘 denote a threshold strategy of the form (11) for

sensor 𝑖 with threshold 𝑘. Define 𝐷𝑖
𝑘 and 𝑁 𝑖

𝑘 to be the average

expected distortion and average number of transmissions under

strategy 𝑓 𝑖𝑘, i.e.,

𝐷𝑖
𝑘 = lim

𝑇→∞

1

𝑇
E

𝑓𝑖

𝑘

[ 𝑇−1
∑

𝑡=0

𝑑𝑖(𝐸𝑖
𝑡)(1− 𝑈 𝑖

𝑡 )

]

,

𝑁 𝑖
𝑘 = lim

𝑇→∞

1

𝑇
E

𝑓𝑖

𝑘

[ 𝑇−1
∑

𝑡=0

𝑈 𝑖
𝑡

]

.

Then, the performance of strategy 𝑓 𝑖𝑘 can be written as

𝐽 𝑖(𝑓 𝑖𝑘) = 𝐷𝑖
𝑘 + 𝜆𝑖𝑁 𝑖

𝑘.

Now, a necessary condition for the threshold based strategy

𝑓 𝑖𝑘 to be optimal when the access fee is 𝜆𝑖 is that

∂𝑘𝐷
𝑖
𝑘 + 𝜆𝑖∂𝑘𝑁

𝑖
𝑘 = 0,

where ∂𝑘 denotes the partial derivative with respect to 𝑘.

Therefore, the value of information at state 𝑘 ∈ R≥0 is

given by

VOI𝑖(𝑘) = −
∂𝑘𝐷

𝑖
𝑘

∂𝑘𝑁 𝑖
𝑘

. (12)

C. Computing the value of information

In order to compute the value of information (12), we first

derive computable expressions for 𝐷𝑖
𝑘 and 𝑁 𝑖

𝑘 and then derive

computable expressions for their derivatives.

Consider the error process at sensor 𝑖 that starts in state 𝑥
and follows threshold strategy 𝑓 𝑖𝑘. Let 𝐿𝑖

𝑘(𝑥) and 𝑀 𝑖
𝑘(𝑥)



denote the expected estimation error and the expected time

until the first transmission, i.e.,

𝐿𝑖
𝑘(𝑥) = E

[ 𝜏−1
∑

𝑡=0

𝑑(𝐸𝑖
𝑘)

∣

∣

∣

∣

𝐸𝑖
0 = 𝑥

]

𝑀 𝑖
𝑘(𝑥) = E

[

𝜏
∣

∣ 𝐸𝑖
0 = 𝑥

]

where 𝜏 denote the stopping time until the first transmission.

Note that at each transmission, the error process resets to a

random variable with distribution 𝜑𝑖. Thus, the error process is

a regenerative process [13]. and satisfies renewal relationships.

In particular,

𝐷𝑖
𝑘 =

𝐿𝑖
𝑘(0)

𝑀 𝑖
𝑘(0)

and 𝑁 𝑖
𝑘 =

1

𝑀 𝑖
𝑘(0)

. (13)

Taking the derivative of Eq. (13) and substituting back

in (12), we get

VOI𝑖(𝑘) =𝑀 𝑖
𝑘(0)

∂𝑘𝐿
𝑖
𝑘(0)

∂𝑘𝑀 𝑖
𝑘(0)

− 𝐿𝑖
𝑘(0). (14)

Below we explain how to compute 𝐿𝑖
𝑘(0), 𝑀

𝑖
𝑘(0) and their

derivatives.
1) Computing 𝐿𝑖

𝑘(0) and 𝑀 𝑖
𝑘(0): From balance equation

for absorbing Markov chains, we have that for all 𝑥 ∈ [−𝑘, 𝑘]

𝐿𝑖
𝑘(𝑥) = 𝑑𝑖(𝑥) +

∫ 𝑘

−𝑘

𝜑𝑖(𝑦 − 𝑎𝑥)𝐿𝑖
𝑘(𝑦)𝑑𝑦, (15)

𝑀 𝑖
𝑘(𝑥) = 1 +

∫ 𝑘

−𝑘

𝜑𝑖(𝑦 − 𝑎𝑥)𝑀 𝑖
𝑘(𝑦)𝑑𝑦. (16)

Eqs. (15) and (16) are Fredholm integral equations of the

second kind [14]. These can be solved efficiently by discretiz-

ing the integral equation using quadrature methods [15], [16].

In particular, consider a quadrature rule (e.g., Simpson’s rule

or a Gauss quadrature rule such as Gauss-Legendre, Gauss-

Chebyshev, or Gauss-Kronrod; see [16]) over the interval

[−𝑘, 𝑘] with 2𝑚+1 points. Let (𝑤−𝑚, 𝑤−𝑚+1, . . . , 𝑤𝑚) and

(𝑥−𝑚, 𝑥−𝑚+1, . . . , 𝑥𝑚) be the weights and abscissas of the

quadrature rule.3 Then, for any 𝑝 ∈ {−𝑚,−𝑚+ 1, . . . ,𝑚},

Eq. (15) can be approximated as

𝐿𝑖
𝑘(𝑥𝑝) ≈ 𝑑𝑖(𝑥𝑝) +

𝑚
∑

𝑞=−𝑚

𝑤𝑞𝜑
𝑖(𝑥𝑝 − 𝑎𝑥𝑞)𝐿

𝑖
𝑘(𝑥𝑞),

and a similar approximation holds for (16). Let L𝑖, M𝑖, and d
𝑖

denote (2𝑚+ 1)-dimensional vectors given by L
𝑖
𝑝 = 𝐿𝑖

𝑘(𝑥𝑝),
M

𝑖
𝑝 = 𝑀 𝑖

𝑘(𝑥𝑝), d
𝑖
𝑝 = 𝑑𝑖(𝑥𝑝) and Φ

𝑖 denote a (2𝑚 + 1) ×
(2𝑚 + 1) matrix given by Φ

𝑖
𝑝𝑞 = 𝑤𝑞𝜑

𝑖(𝑥𝑝 − 𝑎𝑥𝑞). Then

the above equation can be written as L
𝑖 = d

𝑖 + Φ
𝑖
L
𝑖, or

equivalently

L
𝑖 = (I−Φ

𝑖)−1
d
𝑖,

where I denotes the (2𝑚+1)-dimensional identity matrix. By

a similar argument, we can write

M
𝑖 = (I−Φ

𝑖)−1
1,

where 1 is a (2𝑚+ 1)-dimensional vector of ones.

3Since we are considering a quadrature rule with 2𝑚 + 1 points over the
interval [−𝑘, 𝑘], the middle abscissas 𝑥0 is equal to 0.

2) Computing ∂𝑘𝐿
𝑖
𝑘(0) and ∂𝑘𝑀

𝑖
𝑘(0): Differentiate both

sides of (15) and (16) with respect to 𝑘 and use Leibniz rule

to get

∂𝑘𝐿
𝑖
𝑘(𝑥) = 𝜑𝑖(𝑥− 𝑎𝑘)𝐿𝑖

𝑘(𝑘) + 𝜑𝑖(𝑥+ 𝑎𝑘)𝐿𝑖
𝑘(−𝑘)

+

∫ 𝑘

−𝑘

𝜑𝑖(𝑥− 𝑎𝑦)∂𝑘𝐿
𝑖
𝑘(𝑦)𝑑𝑦, (17)

∂𝑘𝑀
𝑖
𝑘(𝑥) = 𝜑𝑖(𝑥− 𝑎𝑘)𝑀 𝑖

𝑘(𝑘) + 𝜑𝑖(𝑥+ 𝑎𝑘)𝑀 𝑖
𝑘(−𝑘)

+

∫ 𝑘

−𝑘

𝜑𝑖(𝑥− 𝑎𝑦)∂𝑘𝑀
𝑖
𝑘(𝑦)𝑑𝑦. (18)

Eqs. (17) and (18) are also Fredholm integral equations of

the second kind. Since 𝑑𝑖 and 𝜑𝑖 are even, we can use (15)

and (16) to show that 𝐿𝑖
𝑘 and 𝑀 𝑖

𝑘 are also even. In particular,

𝐿𝑖
𝑘(𝑘) = 𝐿𝑖

𝑘(−𝑘) and 𝑀 𝑖
𝑘(𝑘) = 𝑀 𝑖

𝑘(−𝑘). Now notice

that (18) is simply a scaled version of (17). Thus, we have

that
∂𝑘𝐿

𝑖
𝑘(0)

∂𝑘𝑀 𝑖
𝑘(0)

=
𝐿𝑖
𝑘(𝑘)

𝑀 𝑖
𝑘(𝑘)

=
L
𝑖
𝑚

M𝑖
𝑚

.

Substituting this back in (14), we get that the value of

information can be computed as

VOI𝑖(𝑘) = M
𝑖
0

L
𝑖
𝑚

M𝑖
𝑚

− L
𝑖
0. (19)

D. An example: Gauss-Markov process

Suppose {𝑊𝑡}𝑡≥0 is an i.i.d. Gaussian process with mean

zero and variance 𝜎2. Therefore, the process {𝑋𝑡}𝑡≥0 is a

Gauss-Markov process. Fig. 2 shows the values of information

for various choices of parameters (𝑎, 𝜎).

For Gauss-Markov processes, we only need to compute the

value of information for 𝜎 = 1 for the following reason.

First, for ease of notation, we use 𝐿𝑖
𝑘,𝜎 and 𝑀 𝑖

𝑘,𝜎 to show

the dependence on 𝜎. Then, by a change of variables, we can

show that

𝐿𝑖
𝑘,𝜎(𝑥) = 𝜎2𝐿𝑖

𝑘/𝜎,1(𝑥/𝜎) and 𝑀 𝑖
𝑘,𝜎(𝑥) = 𝐿𝑖

𝑘/𝜎,1(𝑥/𝜎).

Substituting this in (19), we get that

VOI𝑖𝜎(𝑘) = 𝜎2VOI𝑖1(𝑘/𝜎).
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Fig. 2: The value of information for a Gauss-Markov process

for different values of the parameters (𝑎, 𝜎).



E. The priority assignment scheme

In this section, we summarize the priority assignment

scheme. We assume that the parameters (𝑎𝑖, 𝜑𝑖) for the

observation processes of the 𝑛 sensors are given. Before the

system starts running, each sensor computes the value of

information function VOI𝑖(⋅) using (19). Either the discretized

approximation or a polynomial approximation of this function

is stored at each sensor. When the system is running, at each

time 𝑡, sensor 𝑖 observes the state 𝑋𝑖
𝑡 , computes 𝐸𝑖

𝑡 using (8),

and sets the priority to be VOI𝑖(𝐸𝑖
𝑡). The sensor with the

highest priority, which is picked using a CAN-like contention

resolution scheme, transmits its packet.

Note that although we started with the assumption that all

sensors at time 𝑡 know 𝑆1:𝑡−1, this information is not needed

to implement the proposed priority assignment scheme. To

compute the value of information, sensor 𝑖, 𝑖 ∈ 𝑁 , only needs

to know the value of 𝐸𝑖
𝑡 which evolves according to (8) (or

equivalently, (6)). Thus, sensor 𝑖 only needs to know the events

{𝑆𝑡′ = 𝑖}𝑡′<𝑡, i.e., the time instances when it transmitted in

the past. No information about other sensors is needed.

IV. NUMERICAL EXAMPLE

We consider a system with 𝑛 sensors, each observing

a Gauss-Markov process. We compare the performance of

three schemes: a static TDMA (time division multiple access)

priority scheme that alternates between all sensors one-by-

one; a dynamic priority allocation scheme that sets the pri-

ority equal to 𝑒2 (this corresponds to the scheme proposed

in [2]); and a dynamic priority allocation scheme that sets

the priority according to the value of information. We refer

to these schemes as TDMA, ERR, and VOI, respectively. For

VOI, we approximate the integration using a Gauss-Legendre

quadrature of order 𝑚 = 256 (i.e., with 2𝑚 + 1 = 513
points). We compare these schemes by running Monte Carlo

simulations for 𝑇 = 100 000 time steps.

We use the following three scenarios to compare these

schemes. Each scenario consists of 50 sensors, but they vary

in the heterogeneity of sensors.

∙ Scenario A consists of 50 homogeneous sensors, each

with parameters (𝑎𝑖, 𝜎𝑖) = (1, 1).
∙ Scenario B consists of 25 sensors with parameters

(𝑎𝑖, 𝜎𝑖) = (1, 1) and 25 sensors with parameters

(𝑎𝑖, 𝜎𝑖) = (1, 5).
∙ Scenario C consists of 20 sensors with parameters

(𝑎𝑖, 𝜎𝑖) = (1, 1), 15 sensors with parameters (𝑎𝑖, 𝜎𝑖) =
(1, 5), and 15 sensors with parameters (𝑎𝑖, 𝜎𝑖) = (1, 10).

The average expected distortion of the three schemes for the

three scenarios are shown in Table I. Note that in Scenario A,

ERR and VOI have identical performance. This is because the

priority assignment of ERR and VOI are even and quasi-convex

functions. Since all sensors are identical, the sensor with the

maximum priority is equal to the sensor with the highest abso-

lute value. Therefore, ERR and VOI make identical scheduling

decisions and, therefore, have identical performance.

These results show that both dynamic priority allocation

schemes outperform a time division multiplexing scheme.

TABLE I: Performance of TDMA, ERR, and VOI on three

different scenarios.

Scenarios TDMA ERR VOI

Scenario A 24.35 8.47 8.47

Scenario B 315.79 92.47 76.45

Scenario C 921.14 255.35 207.45

When the sensors are heterogeneous, then the proposed

scheme of assigning priorities based on value of information

outperforms the baseline scheme of assigning priorities based

on instantaneous estimation error.

V. CONCLUSION

We consider the problem of assigning priorities for schedul-

ing multiple sensor measurements over CAN-like networks.

We propose a dynamic priority allocation scheme, where the

priority is assigned according the value of information. We

show that the value of information can be computed by solving

two Fredholm integral equations. Numerical examples suggest

that the proposed priority assignment scheme outperforms the

existing schemes in the literature.
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