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Abstract— In many emerging applications, multiple sensors
transmit their measurements to a remote estimator over a
shared medium. In such a system, the optimal sampling
rates at each sensor depend on the nature of the stochastic
process being observed as well as the available communication
capacity. Our main contribution is to show that the problem of
determining optimal sampling rates may be posed as a network
utility maximization problem and solved using appropriate
modifications of the standard dual decomposition algorithms for
network utility maximization. We present two such algorithms,
one synchronous and one asynchronous, and show that under
mild technical conditions, both algorithms converge to the
optimal rate allocation. We present a detailed simulation study
to illustrate that the asynchronous algorithm is able to adapt
the sampling rate to change in the number of sensors and the
available channel capacity and is robust to packet drops.

I. INTRODUCTION

Recent advances in wireless communication have enabled

the use of wireless sensor networks in various applications

such as environment monitoring, healthcare, home automation,

and so on. Sensors in a wireless sensor network have limited

power, computation, and communication capabilities and

operate over a time-varying network. In applications where

remote estimation is critical, each sensor periodically samples

its observation and transmits the sampled measurements to

a remote estimator over the network. When these sensors

communicate over a shared medium, the available capacity

becomes a limited resource that has to be allocated optimally

to prevent congestion and minimize estimation error at the

remote estimator.

Several variations of remote estimation and sensor schedul-

ing under communication constraints have been investigated

in the literature. A typical class of problems is to find

optimal offline sensor schedule in terms of the estimation error

covariance under various resource constraints [1]–[5]. Despite

the advantage of low computation capacity requirement and

simple implementation, offline methods work inefficiently.

Event-based schedules, where a sensor communicates with

the remote estimator only when a pre-defined event happens,

often has superior performance compared to using time-

based schedules [6], [7]. It has been shown that the optimal

transmission policy for a scalar linear stochastic process

either with limited transmission opportunities or with cost

transmission is of the event-trigger form [8]–[10]. Sensor

Sebin Mathew and Aditya Mahajan are with the Department
of Electrical and Computer Engineering, McGill University,
Montreal, QC, Canada (sebin.mathew@mail.mcgill.ca,
aditya.mahajan@mcgill.ca). Karl H. Johannson is with
ACCESS Linnaeus Centre, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm, Sweden
(kallej@kth.se).

scheduling policies to achieve trade-off between sensor-to-

estimator communication rate and the estimation quality for

event-based sampling was investigated in [7], [11]–[13]

The traditional approach to monitor the system state is

to sample and send the signals periodically. The problem

of finding optimal time-periodic sensor schedules for esti-

mating the state of discrete-time dynamical systems was

discussed in [14]. An event-triggered control strategy was

proposed in [15] by striking a balance with conventional

periodic sampled-data control, leading to so-called periodic

event-triggered control. Design trade-offs between estimation

performance, processing delay, and communication cost for

a sensor scheduling problem over a heterogeneous network

was discussed in [16].

Resource allocation is a fundamental problem in shared

communication networks. An efficient resource allocation

strategy ensures successful sharing of the communication

channel among sensors while maximizing system performance

as a whole. On the other hand, stability, fairness and

robustness of rate control algorithms is critical [17]. Resource

allocation problems are typically framed as optimization

problems where the objective is to maximize aggregate sensor

utility over their transmission rates. The authors of [18]

provide synchronous and asynchronous distributed algorithms

for such a network utility maximization problem and prove

their convergence in a static environment. Applying decom-

position techniques allows us to identify critical information

that needs to be communicated between nodes and across

layers, and suggests how network elements should react in

order to attain the global optimum. Decentralized techniques

for utility-maximizing protocols – primal, dual, and cross

decomposition was studied in [17]–[20].

The main contribution of this paper is the use of dual

decomposition algorithms for optimal sampling in a remote

estimation system. In Section II we discuss the system model

and formulate the objective in terms of network utility of the

remote estimation system. In Section III we describe the

synchronous and asynchronous dual decomposition algorithms

and prove their convergence. In Section IV we conduct a

detailed simulation study and demonstrate the robustness of

the asynchronous algorithm to changing network conditions

and packet drops.

II. MODEL AND PROBLEM FORMULATION

A. Model

Consider a remote estimation system in which n sensors are

connected to a remote estimator over a network. The sensors

are indexed by the set N := {1, . . . , n}. Sensor i, i ∈ N ,



observes a continuous-time stochastic process {Xi(t)}t≥0,

Xi(t) ∈ R, where Xi(0) ∼ N (0, θ) and for t ≥ 0

dXi(t) = aiXi(t)dt+ dWi(t)

where ai ∈ R is a known constant and {Wi(t)}t≥0, Wi(t) ∈
R, is a stationary stochastic process with finite variance

and satisfies a technical assumption (A1) that we state later.

We assume that the initial states {Xi(0)}, i ∈ N , and

the processes {Wi(t)}t≥0, i ∈ N , are independent. This

implies that the stochastic processes {Xi(t)}t≥0, i ∈ N , are

independent across sensors.

Sensor i, i ∈ N , samples its observation at a rate of

Ri = 1/Ti and sends the sampled measurements to the

remote estimator over the network. It is assumed that the

network is ideal and does not cause any delays or packet

drops.1 However, the network has a finite capacity C and the

rates R = (R1, . . . , Rn) must lie in the rate region

R =

{

(R1, . . . , Rn) ∈ R
n
≥0 :

n
∑

i=1

Ri = C

}

.

In between the sampling instances, the estimator generates

estimates {X̂i(t)}t≥0 to minimize the mean-squared error. In

particular, it can be shown that the optimal estimation strategy

is as follows: at the sampling time of sensor i, X̂i(t) = Xi(t);
at other times

dX̂i(t) = aiX̂i(t)dt.

Define the error process as Ei(t) = Xi(t)− X̂i(t). Then,

for all sampling times t = kTi, k ∈ Z≥0, Ei(t) = 0, and for

t ∈ (kTi, (k + 1)Ti), it follows the dynamics

dEi(t) = aiEi(t)dt+ dWi(t).

Since Ei(t) is a periodic process, the average mean-squared

error (MSE) Mi(Ti) for sensor i when the sampling period

is Ti is given by

Mi(Ti) =
1

Ti

E

[
∫ Ti

0

(Xi(t)− X̂i(t))
2dt

]

=
1

Ti

E

[
∫ Ti

0

(Ei(t))
2dt

]

=
1

Ti

∫ Ti

0

Var(Ei(t))dt. (1)

where E and Var denote mean and variance. The total mean-

square error across all sensors is given by

n
∑

i=1

Mi(Ti). (2)

Example 1 Suppose the noise process at sensor i, i ∈ N , is

a Wiener process with variance σ2
i . Then, the state process

is a stationary Gauss-Markov (or a Ornstein-Uhlenbeck)

process, which we denote by GaussMarkov(ai, σi). For any

t ∈ (0, Ti), we have that

E[Ei(t)] = 0, and Var(Ei(t)) =
σ2
i

2ai
(e2ait − 1).

1Delays and packet drops will increase the mean-squared error but not
change the nature of the problem in any fundamental way.

Substituting this in (1), we get that

Mi(Ti) =
σ2
i

2ai

[

e2aiTi − 1

2aiTi

− 1

]

.

B. Problem formulation

We are interested in the following optimization problem.

Problem 1 Find a rate vector (R1, . . . , Rn) in the rate

region R that minimizes the mean-squared error (2). Or

formally,

min
R∈Rn

≥0

n
∑

i=1

Mi

(

1

Ri

)

such that

n
∑

i=1

Ri ≤ C. (3)

The above problem is similar in spirit to the class of

resource allocation problems known as network utility maxi-

mization [17]–[20]. We can think of the channel capacity as

the resource and the total mean-squared error as the negative

of the network utility. In network utility maximization, the

constraint optimization problem (3) is viewed as a primal

problem. Instead of solving it directly, one considers its

Lagrangian dual:

D(λ) = min
R∈Rn

≥0

L(R, λ)

where

L(R, λ) =

n
∑

i=1

Mi

(

1

Ri

)

− λ

(

C −
n
∑

i=1

Ri

)

=
n
∑

i=1

(

Mi

(

1

Ri

)

+ λRi

)

− λC. (4)

The key to a distributed solution lies in decomposing the

dual objective (4) into two levels of optimization problems.

In the context of the above model, at the lower level, it is

assumed that the Lagrange multiplier λ is known and each

sensor i, i ∈ N , chooses a sampling rate as a solution to the

following optimization problem:

R∗
i (λ) = arg min

Ri∈R≥0

Mi

(

1

Ri

)

+ λRi. (5)

At the higher level, the network assumes that the sensors

use rates according to the solution of (5) and chooses the

Lagrange multiplier by solving the dual problem

min
λ∈R≥0

L(R∗(λ), λ), (6)

where R
∗(λ) = (R∗

1(λ), . . . , R
∗
n(λ)).

In the sequel, we consider two different algorithms for

simultaneously solving (5) and (6); we call these synchronous

and asynchronous algorithms. Both algorithms are iterative

algorithms where the remote estimator updates the value

of the Lagrange multiplier (or the shadow price) λ and

sensor i updates the value of the rate Ri. In both algorithms

it is assumed that the remote estimator can broadcast the

Lagrange multiplier λ to all sensors. The synchronous and

asynchronous algorithms differ in how the update of the rates

Ri is communicated back to the remote estimator.



The synchronous algorithm is performed as part of the

initial handshaking protocol during which the sensors can

directly communicate their updated rates to the remote

estimator. Thus, at each iteration, the remote estimator

synchronously updates the rates of all sensors. The algorithm

is described in detail in Section III-A.

The synchronous algorithm requires a control channel and

additional bandwidth for signalling overhead. On the other

hand, the asynchronous algorithm is an on line algorithm

where no additional bandwidth is required for signalling. The

sensors do not explicitly communicate the updated rates to

the remote estimator. Rather they simply transmit data at the

updated rates and the remote estimator infers the rate through

the inter-arrival time between successive transmissions. The

algorithm is described in detail in Section III-B.

For both algorithms, we assume that the model satisfies

the following assumptions:

(A1) For all sensors i, i ∈ N , and any sampling

period Ti ∈ R≥0, the mean-squared error in (1)

is strictly increasing and convex in Ti.

(A2) Mi(Ti) is twice differentiable and the curvature

M ′′
i (Ti) on R is uniformly bounded away from

zero, i.e., there exists a positive constant γ̄ such

that M ′′
i (Ti) ≥ γ̄ for all Ti ∈ R≥0 and i ∈ N .

Since Ri = 1/Ti, we can equivalently write (A1) and (A2)

as follows:

(A1’) For all sensors i, i ∈ N , and any sampling

rate Ri ∈ R≥0, the mean-squared error in (1) is

strictly decreasing and convex in Ri.

(A2’) Mi(1/Ri) is twice differentiable and the curvature

M ′′
i (1/Ri) on R is uniformly bounded away from

zero, i.e., there exists a positive constant γ̄ such that

M ′′
i (1/Ri) ≥ γ̄ for all Ri ∈ R≥0 and i ∈ N .

These assumptions are mild and will be satisfied in most

sensor networks. In particular, if Var(Ei(t)) > ctα where c
and α are positive constants, then Mi(Ti) is strictly increasing

in Ti; if Var(Ei(t)) is differentiable, then, Mi(Ti) is twice

differentiable.

The above assumptions are satisfied in Example 1 when

ai > 0. To see that note that,

M ′
i(Ti) =

σ2
i

4a2iT
2
i

[

e2aiTi(2aiTi − 1) + 1

]

and

M ′′
i (Ti) =

σ2
i e

2aiTi − 2M ′
i(Ti)

Ti

.

It can be shown that for all x ∈ R>0, ex(x− 1)+ 1 > 0 and
ex

2x − ex(x−1)+1
x3 > 1/6. Substituting x = 2aiTi with ai > 0,

we get that M ′
i(Ti) > 0 and M ′′

i (Ti) > 2aiσ
2
i /3, thus, (A1)

and (A2) are satisfied.

III. THE TWO DUAL-DECOMPOSITION ALGORITHMS

A. The synchronous dual decomposition algorithm

The synchronous dual decomposition algorithm may be

viewed as an iterative gradient descent algorithm used by the

remote estimator to solve (6). The remote estimator starts

Algorithm 1 Synchronous allocation of sampling rates

Input Set of sensors S, network capacity C, number of

iterations K, gradient descent step size α, initial Lagrange

multiplier λ0.

procedure SYNC(S , C, K, α, λ0)

for k = 0 upto K do

for each i in S do

solve Ri,k : M
′

i (1/Ri,k)−R2
i,kλk = 0

end for

λk+1 =
[

λk − α(C −
∑N

i=1 Ri,k)
]+

end for

return (R1,K , . . . , Rn,K)
end procedure

with an initial guess λ0 of the optimal Lagrange multiplier.

At each iteration k, the following steps are performed (See

Algorithm 1 for a formal description):

• Sensor i, i ∈ N , chooses a rate Ri,k = R∗
i,k(λk) by

solving the optimization problem (5), which is a convex

optimization problem. One possible solution is to identify

a rate Ri,k that satisfies

M ′
i(1/Ri,k)− λkR

2
i,k = 0 (7)

where M ′
i denotes the derivative of Mi. Sensor i then

communicates Ri,k to the remote estimator.

• Upon receiving the updated rate vectors

(R1,k, . . . , Rn,k), the remote estimator updates

the Lagrange multiplier in the direction of the gradient2

as follows:

λk+1 =

[

λk − αk

(

C −
∑

i∈N

R∗
i (λk)

)]+

, (8)

where αk > 0 is an appropriately chosen learning rate

and [x]+ = max{x, 0}.

Theorem 1 Under assumptions (A1’) and (A2’) there exists

a unique solution R
∗ = (R∗

1, . . . , R
∗
n) of Problem 1. Moreover,

for any initial guess λ0 > 0 and sufficiently small step size α,

the rates Rk = (R1,k, . . . , Rn,k) chosen in the synchronous

dual decomposition algorithm converge to the optimal rates

R
∗ as k → ∞.

Proof: Conditions (A1’) and (A2’) are equivalent to the

conditions (C1) and (C2) of Theorem 1 in [18]. The proof

follows from [18, Appendix I].

B. The asynchronous dual decomposition algorithm

In the asynchronous dual decomposition algorithm, each

sensor i, i ∈ N , keeps track of the time TS
i at which it

will take the next sample. The remote estimator keeps track

of the times TR
i,k when each sensor last transmitted and its

estimate of their transmission rates R̂i. The remote estimator

initializes TR
i,−1 = 0 and chooses an initial guess λ0 of

2Note that for a given choice of rates R, the derivative of L(R, λ) with
respect to λ is given by C −

∑
n

i=1
Ri.



Algorithm 2 Asynchronous allocation of sampling rates

Input Network capacity C, Gradient descent step size α,

initial Lagrange multiplier λ0.

do initialization

for each i in S do

solve Ri : M
′

i (1/Ri)−R2
iλ0 = 0

set TS
i = t+ 1

Ri
; TR

i,−1 = t, where t = current time.

end for

end

procedure ASYNC-SENSOR-i
upon event 〈Current time t = TS

i 〉 do

sample the state of the process and transmit

observe updated λ
solve Ri : M

′

i (1/Ri)−R2
iλ0 = 0

set TS
i = TS

i + (1/Ri)
end initialization

end procedure

procedure ASYNC-ESTIMATOR(C)

upon event 〈Packet received for sensor jk〉 do

update TR
i,k as given in (9)

update R̂i,k as given in (10)

λk+1 =
[

λk − α(C −
∑N

i=1 R̂i,k)
]+

k = k + 1
end initialization

end procedure

the Lagrange multiplier and broadcasts it to all sensors.

Each sensor i, i ∈ N , then computes Ri by solving (7)

and initializes TS
i = 1/Ri. Then the following steps are

performed at every iteration k (See Algorithm 2 for formal

description):

• Let jk denote the sensor with the lowest sampling time

TS
i . At time TS

jk
, sensor jk takes a sample and sends its

measurements to the remote estimator over the network.

• Upon receiving the message from sensor jk, the remote

estimator sets

TR
i,k =

{

TS
jk

if i = jk

TR
i,k−1 otherwise

(9)

and

R̂i,k =







1

TR
i,k − TR

i,k−1

if i = jk

R̂i,k−1 otherwise

(10)

• The remote estimator then chooses λk+1 by updating

the Lagrange multiplier by taking a step in the direction

of the gradient as follows:

λk+1 =

[

λk − αk

(

C −
∑

i∈N

R̂i,k(λk)

)]+

, (11)

where αk > 0 is an appropriately chosen learning rate

and [x]+ = max{x, 0}.
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Fig. 1: Plot of (a) Lagrange multiplier λ and (b) rates R1 and

R2 versus iteration for the illustrative example of Sec. III-C.

• The Lagrange multiplier λk+1 is broadcast and sensor

jk updates the sampling rate Rjk according to (5) or (7)

and sets TS
jk

= TS
jk

+ 1
Rjk

.

Let T R = {TR
jk,k

}k≥0 denote the set of time instances at

which the remote estimator updates the Lagrange multiplier

based on the current estimate of the sensor rates. Also, let

T S
i , i ∈ N , denote the set of time instances at which the

sensor i updates its rate based on the Lagrange multiplier

broadcast to it. It is assumed that the following is satisfied:

(A3) The time between consecutive updates in T R (i.e.,

at the remote estimator) and T S
i , i ∈ N , (i.e., at

every sensor) are bounded.

Note that (A3) is satisfied if for all λ ∈ R>0, the optimal

rate R∗
i (λ) obtained in (5) is bounded. This is the case in

Example 1 if ai > 0.

Theorem 2 Under assumptions (A1’), (A2’) and (A3), for

any initial guess λ0 > 0 and sufficiently small step

size αk, the rates Rk = (R1,k, . . . , Rn,k) chosen in the

asynchronous dual decomposition algorithm converges to

the unique solution R
∗ of Problem 1. Moreover, if the

synchronous and asynchronous algorithms use the same

learning rates {αk}k≥0, then the corresponding Lagrange

multipliers converge to the same value.

Proof: Assumption (A3) being equivalent to (C3) in

[18], the proof follows from [18, Theorem 2].

Remark 1 The dual decomposition algorithm does not en-

sure that the dual iterates are feasible (i.e., at the intermediate
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Fig. 2: Plot of Lagrange multiplier λ versus iteration for the

asynchronous algorithm under packet drop for the illustrative

example of Sec. III-C.

steps of the algorithm, it is not guaranteed that
∑

i∈N Ri,k ≤
C ). To keep the iterates feasible, one could start with a large

value of λ0, which will ensure that the sensors pick small

values of the initial rates {Ri}i∈N .

Remark 2 A feature of Algorithm 2 is that the clocks at

the sensors and the remote estimator do not need to be

synchronized.

C. An illustrative example

To illustrate how the algorithm works, consider

a system with two sensors, GaussMarkov(1, 1) and

GaussMarkov(1, 2), and a total capacity of C = 1. For

the synchronous algorithm, suppose the remote estimator

starts with an initial guess λ0 = 10 and both sensors use a

constant learning rate3 of αk = 10. Then, the rates converge

to (R1, R2) = (0.4355, 0.5645) and λ = 88.9136. After 200

iterations, the value of λ is 88.357, which is within 0.625%
of the optimal value.

For the asynchronous algorithm, we again assume that the

remote estimator starts with an initial guess λ0 = 10 and both

sensors use a constant learning rate of αk = 10. After 200

iterations, the value of λ is 88.399, which is within 0.579%
of the optimal value.

For comparison, we plot the value of the Lagrange

multiplier λ and rates R1 and R2 vs iteration for both the

synchronous and the asynchronous algorithms in Fig. 1. As

can been seen from the figure, at each iteration, the Lagrange

multiplier and the rates for both the synchronous and the

asynchronous algorithms are fairly close. The key difference

is that the synchronous algorithm is implemented as part of

the initial handshaking protocol (which requires an additional

signaling overhead) while the asynchronous algorithm is on

line where the sensors adapt their transmission rates while

transmitting data (so there is no signaling overhead). The 200

iterations of asynchronous algorithm takes about 194 sec.

D. Robustness of asynchronous algorithm to packet drops

For the asynchronous algorithm we assumed an ideal

communication channel. The algorithm is robust to packet

drops introduced by the channel as long as assumption (A3)

continues to hold. To illustrate this point, we reconsider the

example of Sec. III-C but assume that packets are dropped

with probability p. The plot of Lagrange multiplier versus

number of iterations for different values of packet drop

probability p is shown in Fig. 2. As can be seen from the

figure, there is very little impact of packet drops on the

convergence of the algorithm.

IV. NUMERICAL EXAMPLE

In the model described in Sec. II, the system is assumed

to be static. However, in many applications, the network

conditions change with time: new sensors may come onboard,

existing sensors may leave, or the channel capacity might

change. In general, the dual decomposition algorithm is

robust to slow changes in the network conditions, so we

expect the asynchronous algorithm to be able to adapt to

changing network conditions. In this section, we present a

detailed simulation study to illustrate the robustness of the

asynchronous algorithm to network changes.

We consider an experimental setup where the number of

sensors N(t) changes according to a stochastic process. We

assume that new sensors arive according to a Poisson process

with rate ρ and stays in the system for an exponentially

distributed amount of time with rate ρ, after which the sensor

leaves the system. Each new sensor is GaussMarkov(ai, σi)
where ai and σi are chosen randomly. We assume that

the remote estimator broadcasts the value of the Lagrange

multiplier λ at all times. When a new sensor arrives, its initial

sampling rate is determined based on the current value of

λ. The remote estimator continues to adapt λ according to

Algorithm 2, without being explicitly aware that a new sensor

has arrived. Similarly, the remote estimator is not explicitly

aware when a sensor leaves the system.

We consider a scenario of 450 seconds where we start with

N(0) = 25 sensors and sensors arrive and leave at a rate of

ρ = 2 per minute. Each new sensor is GaussMarkov(ai, σi),
where ai ∼ Unif[0.1, 2] and σi = 1. At T = 0, the system

capacity is 25; at T = 200, the capacity changes to C =
20; and at T = 400, it changes to C = 30. We run the

asynchronous algorithm with a constant learning rate of αk =
0.01 throughout. The plot of N(t) and λ versus time as well

as
∑

i∈N Ri versus time are shown in Fig. 4. These plots

illustrate the robustness of the asynchronous algorithm to

changing network conditions.

In Fig. 3(a), we zoom into Fig. 4(b) at T = 127 when the

system has 27 sensors, C = 25, and λ = 3.41. At this time,

one of the sensors leaves and the sum rate falls below the

network capacity. The remote estimator adjusts the Lagrange

multiplier λ according to (6). Since there is one less sensor

3In practice, convergence speeds up considerably if the learning rate
is adapted according the gradient (e.g., using ADAM or ADAGrad [21]).
However, in this example, we choose a constant learning rate to simplify
exposition.
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Fig. 3: Plot of sum rate
∑

i∈N Ri and λ versus time for the asynchronous algorithm, illustrating (a) sensor leaving, (b) sensor

coming aboard and (c) capacity change for the system described in Sec. IV.
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Fig. 4: Plot of (a) number of sensors N and λ, and (b) sum

rate
∑

i∈N Ri versus time for the asynchronous algorithm

for the system described in Sec. IV.

competing for the same resource, the Lagrange multiplier

decreases and converges to 2.88 at T = 135.

In Fig. 3(b), we zoom into Fig. 4(b) at T = 180 when

the system has 25 sensors, C = 25, and λ = 2.58. At this

time, a new sensor comes aboard, sees the current value of

λ and chooses a transmission rate using (5). When the new

sensor transmits, the sum rate exceeds the channel capacity4

The remote estimator adjusts Lagrange multiplier λ according

to (6). Since there is one more sensor competing for the same

4In practice, the sum rate exceeding the channel capacity will result in
delay or packet drops but such effects are not taken into account in our
model.

resource, the Lagrange multiplier increases and converges to

3.09 at T = 189.

In Fig. 3(c), we zoom into Fig. 4(b) at T = 200 when the

system has 26 sensors, C = 25, and λ = 3.09. At this time,

the system capacity reduces to C = 20. The remote estimator

adjusts the Lagrange multiplier using (6). Since there are

the same number of sensors competing for less resources,

the Lagrange multiplier increases and converges to 7.65 at

T = 227.

To observe how individual sensor rates vary with

changes in network conditions, we pick two sensors,

GaussMarkov(1.3, 1) and GaussMarkov(0.4, 1) that stay

active throughout the experiment. The rate allocation by the

asynchronous algorithm for these sensors is shown in Fig. 5(a)

and the empirical MSE is shown in Fig. 5(b).

We compare the optimal rate allocation described in the

asynchronous dual decomposition algorithm with two baseline

equal rate allocation schemes. In Scheme 1, we assume that

N(t) ≤ 30 and allocate a constant sampling rate Ri = C/30
to all active sensors i ∈ N ; in Scheme 2, we assume that

the remote estimator keeps track of N(t) and allocates a rate

of Ri = C/N(t) to all active sensors i ∈ N . We plot the

aggregate empirical MSE for the system in Fig. 6, which

shows that, as expected, the optimal scheme performance

better than the two baselines and the difference in performance

is significant when the channel capacity is low.

V. CONCLUSION

In this paper, we proposed a dual decomposition technique

to minimize mean-squared error in a remote estimation system

subject to capacity constraint, by posing the objective as a

variant of the network utility maximization problem. We

derived an asynchronous rate allocation algorithm where the

sensors and the remote estimator communicate and update

their controls asynchronously. The two dual decomposition

algorithms described in the paper provide a decentralized

approach to rate allocation for sensors communicating over

a shared medium. The algorithms are provably convergent to

the global optimum in a static network and robust to slowly

changing network conditions and packet drops. Using an
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Fig. 5: Plot of (a) sampling rate and (b) empirical MSE versus

time for GaussMarkov(1.3, 1) and GaussMarkov(0.4, 1) for

the system described in Sec. IV.

experimental setup, the performance and optimality of the

asynchronous algorithm is illustrated.
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