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On the Design of Globally Optimal Communication
Strategies for Real-Time Noisy Communication
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Abstract—A real-time communication system with noisy feed-
back is considered. The system consists of a Markov source,
forward and backward discrete memoryless channels, and a
receiver with limited memory. The receiver can send messages
to the encoder over the backward noisy channel. The encoding
at the encoder and the decoding, the feedback, and the memory

update at the receiver must be done in real-time. A distortion
metric that does not tolerate delays is given. The objective is to
design an optimal real-time communication strategy, i.e., design
optimal real-time encoding, decoding, feedback, and memory
update strategies to minimize a total expected distortion over
a finite horizon. This problem is formulated as a decentralized
stochastic optimization problem and a methodology for its
sequential decomposition is presented. This results in a set of
nested optimality equations that can be used to sequentially
determine optimal communication strategies. The methodology
exponentially simplifies the search for determining an optimal
real-time communication strategy.

Index Terms—Markov decision processes, real-time commu-
nication, noisy feedback, dynamic teams, information state,
common knowledge, common belief

I. INTRODUCTION

THE CLASSICAL Shannon’s formulation of a commu-

nication system [1] does not take communication delay

into account. For many applications such as sensor networks,

transportation networks, and networked controlled systems,

in which the communication system is a component of a

larger system, the delay incurred during the transmission

of information has to be bounded. This motivates the need

to study communication systems with a hard constraint on

communication delay. Such communication systems are called

real-time communication systems.

Real-time communication problems are drastically differ-

ent from classical information theoretic formulations. The

fundamental concepts of information theory such as source

entropy, rate distortion, and channel capacity are asymptotic

concepts and do not provide much insight for the real-time

communication problem. Due to the real-time constraint on

information transmission, the separation of source and channel

coding is no longer optimal. Therefore, in real-time commu-

nication systems, joint source-channel coding schemes must

be considered.
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Real-time communication problems can be viewed as multi-

agent sequential stochastic optimization problems with decen-

tralized information. The system has two agents (or decision

makers) — the encoder and the decoder. Due to noise in the

communication channel, one agent does not know the infor-

mation available at the other agent; so, the information in the

system is decentralized. Consequently, the resultant stochastic

optimization problem cannot be solved using Markov decision

theory [2] since Markov decision theory is only appropriate

for problems with centralized information.

Several variations of the real-time communication problem

have been considered in the literature. The research on real-

time communication can be broadly classified into three

categories: (i) performance bounds of finite-delay or real-time

communication systems; (ii) real-time encoding and decoding

of individual sequences; and (iii) real-time encoding and

decoding of Markov sources.

Performance bounds for real-time (zero-delay or finite-

delay) communication systems under various assumptions

were derived in [3]–[11]. The design of asymptotically op-

timal real-time encoding and decoding strategies for noiseless

channels was considered in [12]–[14], and for noisy channels

was considered in [15]. Structural properties of optimal real-

time encoders for transmitting Markov sources over noiseless

channel were derived in [16]–[18]. Structural properties of op-

timal real-time encoders and decoders for transmitting Markov

sources over noisy channels with noiseless feedback was

considered in [19]–[22]. Structural properties of optimal real-

time encoders and decoders for transmitting Markov sources

over noisy channels was considered in [23]; a methodology for

determining globally optimal encoding and decoding strate-

gies for communication systems with noisy channels and no

feedback was presented in [24], [25].

The work on real-time communication, summarized above,

either assumes a noiseless channel, or a noisy channel with

no feedback, or a noisy channel with noiseless feedback.

The design of optimal real-time communication strategies for

systems with noisy channels and noisy feedback has not been

considered so far. The problem of communicating over a

noisy channel with noisy feedback has been considered in the

information theoretic setting [26]–[29], but these results do not

assume a real-time constraint on information transmission.

The key contributions of this paper are: (i) the presentation

of a systematic methodology for the design of globally optimal

strategies for real-time communication systems with noisy

feedback; and (ii) an explaination of this solution methodol-
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ogy. We treat the design of an optimal communication strategy

as a decentralized multi-agent sequential optimization prob-

lem. We present a methodology that allows us to sequentially

determine an optimal communication strategy by proceeding

backward in time and solving a set of nested optimality

equations. This methodology drastically simplifies the search

for an optimal real-time communication strategy; in spite of

this simplification, numerically solving the resultant nested

optimality equations remains a formidable task.

The rest of this paper is organized as follows. In Section II

we formulate the problem and present its salient features. In

Section III we present the structural/qualitative properties of

optimal encoders and decoders. In Section IV we compare the

structural properties derived in this paper with the previously

known structural properties for real-time communication sys-

tems. In Section V we present the methodology for sequen-

tially determining globally optimal communication strategies.

In Section VI we discuss different approaches to decentralized

optimization problems, and explain why the proposed solution

methodology works. In Section VII we mention some possible

extensions and we conclude in Section VIII.

Notation: Throughout this paper we use the following

notion. Uppercase letters (X, Y, Z) represent random vari-

ables, lowercase letters (x, y, z) represent their realizations,
and calligraphic letters (X ,Y,Z) represent their alphabets.
Script letters (C , G , L ) represent family of functions and
Gothic letters (F, E, R) represent σ-algebras. For random
variables and functions, xt is a short hand for the sequence

x1, . . . , xt. E {·} denotes the expectation of a random variable,
Pr (·) denotes the probability of an event, I [·] denotes the
indicator function of a statement, and P {X} denotes the space
of all PMF (probability mass functions) on X . To denote that
the expectation of a random variable or the probability of an

event depends on a function ϕ, we use E {· |ϕ} and Pr (· |ϕ),
respectively. This slightly unusual notation is chosen since

we want to keep track of all functional dependencies and the

conventional notation of Eϕ{·} and Prϕ(·) is too cumbersome
to use. B (X ) denotes the Borel σ-field on X . If P is a

probability measure on a σ-field F, and G is a subfield of

F, then P
∣

∣

G
denotes the restriction on P onto G.

II. THE FINITE HORIZON PROBLEM

A. Problem Formulation

Consider a real-time communication system with noisy

feedback shown in Figure 1. This system consists of a source,

a real-time encoder, a noisy forward channel, a noisy backward

channel, and a real-time decoder with finite memory. The

communication system operates in discrete time for a time

horizon T .
At each stage t, the source produces an output Xt taking

values in a finite alphabet X . We assume that the output
sequence {Xt, t = 1, . . . , T} forms a first-order Markov

chain with initial distribution PX1
and matrix of transition

probabilities PXt+1|Xt
.

The communication system consists of two channels: the

forward channel and the backward channel. We assume that

both channels are independent DMC (discrete memoryless

channels). The forward channel is a |Z|-input |Y|-output DMC,

Source Encoder
Forward
Channel

Backward
Channel

Decoder
Xt Zt Yt X̂t

Z̃tỸt

Nt

Ñt

Fig. 1. A real-time communication system with noisy feedback

while the backward channel is a |Z̃|-input |Ỹ|-output DMC.
These channels can be described as

Yt = h(Zt, Nt), t = 1, . . . , T, (1a)

Ỹt−1 = h̃(Z̃t−1, Ñt−1), t = 2, . . . , T, (1b)

where h(·) and h̃(·) denote the forward and backward channels
at time t, respectively; Zt and Z̃t−1 are the inputs to the

forward and the backward channels at time t, respectively;
Yt and Ỹt−1 are the outputs of the forward and the backward

channels at time t, respectively; and Nt and Ñt−1 are the

channel noise in the forward and the backward channels at

time t, respectively. The variables Zt, Z̃t, Yt, Ỹt, Nt, and

Ñt take values in finite alphabets Z , Z̃ , Y , Ỹ , N , and Ñ ,
respectively. We assume that {Nt, t = 1, . . . , T} and {Ñt,

t = 1, . . . , T} are sequences of i.i.d. random variables with

PMF (probability mass function) PN and PÑ , respectively.

These sequences are independent of each other and are also

independent of the source output {Xt, t = 1, . . . , T}.
At each stage t, the encoder observes the output Xt of

the source and the output Ỹt−1 of the backward channel. It

generates an encoded symbol Zt using all its past observations,

i.e., for t = 1,

Z1 = c1(X1), (2a)

and for t = 2, . . . , T ,

Zt = ct(X
t, Zt−1, Ỹ t−1), (2b)

This encoded symbol is transmitted over the forward chan-

nel (1a) producing a channel output Yt.

The receiver consists of a decoder and a memory. The

content of the memory is denoted by Mt and takes values

in a finite alphabetM. At each stage t, the receiver generates
an estimate X̂t of the source taking values in X̂ as follows:

X̂1 = g1(Y1), (3a)

and for t = 2, . . . , T ,

X̂t = gt(Yt, Mt−1); (3b)

it also generates a feedback symbol Z̃t as follows:

Z̃1 = c̃1(Y1), (4a)

and for t = 2, . . . , T ,

Z̃t = c̃t(Yt, Mt−1); (4b)
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furthermore, it updates the content of its memory as follows:

M1 = l1(Y1), (5a)

and for t = 2, . . . , T ,

Mt = lt(Yt, Mt−1). (5b)

The performance of the system is quantified by a uniformly

bounded distortion function ρ : X × X̂ → [0, ρmax], where
ρmax < ∞. The distortion at time t is given by ρ(Xt, X̂t).
The collection C := (c1, . . . , cT ) of encoding rules for the

entire horizon is called an encoding strategy. Similarly, the

collection G := (g1, . . . , gT ) of decoding rules is called a
decoding strategy, the collection C̃ :=(c̃1, . . . , c̃T ) of feedback
rules is called a feedback strategy, and the collection L :=
(l1, . . . , lT ) of memory update rules is called a memory update
strategy. Further, the choice (C, G, C̃, L) of communication
rules for the entire horizon is called a communication strategy.

The performance of a communication strategy is quantified by

the expected total distortion under that strategy and is given

by

JT (C, G, C̃, L) := E

{

T
∑

t=1

ρ(Xt, X̂t)

∣

∣

∣

∣

∣

C, G, C̃, L

}

. (6)

We are interested in the following optimization problem:

Problem 1: Assume that the encoder and the receiver know

the source statistics PX1
and PXt+1|Xt

, t = 1, . . . , T , the

forward and backward channel functions h, h̃, the forward
and the backward channel noise statistics PN and PÑ , the

distortion functions ρ and the time horizon T . Choose a
communication strategy (C∗, G∗, C̃∗, L∗) that is optimal with
respect to performance criterion of (6), i.e.,

JT (C∗, G∗, C̃∗, L∗) = J ∗
T := min

C∈C
T

G∈G
T

C̃∈C̃
T

L∈L
T

JT (C, G, C̃, L), (7)

where C T :=C1×· · ·×CT , Ct is the family of functions from

X t × Ỹt−1 ×Zt−1 to Z , G T := G × · · · × G (T -times), G is

the family of functions from Y×M to X̂ , C̃ T := C̃ ×· · ·× C̃

(T -times), C̃ is the family of functions from Y × M to Z̃ ,
L T :=L×· · ·×L (T -times), andL is the family of functions

from Y ×M to M.

In Problem 1, we want to identify the optimal communica-

tion strategy for encoding the outputs of a first-order Markov

source over a forward DMC, when the receiver can transmit

back feedback messages to the encoder over a backward

DMC. The receiver must decode in real-time (i.e., with zero-

delay). Due to this real-time constraint on communication,

asymptotic results from information theory, like source en-

tropy, channel capacity, and rate, that are fundamental in

asymptotic communication theory are not appropriate for

real-time communication. As a continuation of our previ-

ous work [23]–[25], [30], [31], in this paper we present

a framework different from Shannon’s information theoretic

setup to study real-time communication. We consider the real-

time communication problem as an optimization problem.

A globally optimal communication strategy always exists

because there are finitely many communication strategies and

we can always choose the one with the best performance. The

number of possible time varying communication strategies are

exponential in the size of the time horizon and the cardinality

of the alphabets which makes a brute force search for an

optimal strategy computationally intractable. So, a systematic

approach to search for an optimal communication strategy

is required. In this paper, we present one such systematic

approach, called sequential decomposition, that can be used

to sequentially determine optimal communication strategy

by proceeding backwards in time. The resultant “simplified”

optimization problem has linear complexity in the size of the

time horizon but exponential complexity in the cardinality of

the alphabets.

We proceed with the analysis of Problem 1 as follows. We

first present the salient features of the problem and develop

the concepts and notation needed for the rest of the paper. We

then identify the qualitative/structural properties of optimal

encoders and optimal decoders that hold for any choice of

other components of the communication strategy. Next we use

these qualitative properties to develop a methodology for sys-

tematically searching for optimal communication strategies.

B. Primitive Random Variables

In the rest of this paper we will be working with conditional

probabilities, probability measures of probability measures,

and σ-fields. To be precise in our analysis we need to define
the probability space clearly. For that matter, we first define

the primitive random variables of the system.

Let χt a |X |-dimensional random vector defined as follows:
for x ∈ X ,

χt(x) := I [Xt = x] and χt := [χt(1), . . . , χt(|X |)] (8)

There is a one-to-one relation between Xt and χt and we

can use χt to have a martingale representation (stochastic

difference equation) for the Markov chain {Xt, t = 1, . . . , T}
(see [32]) given by

χt+1 = PT
Xt+1|Xt

χt + θt, (9)

where {θt, t = 1, . . . , T} is a sequence of indepen-

dent zero-mean random vectors. Since we have assumed

that the noise in the forward and the backward chan-

nels is independent of the source output, the random vari-

ables (χ1, θ1, . . . , θT , N1, . . . , NT , Ñ1, . . . , ÑT ) are indepen-
dent. These random variables are called the primitive random

variables. We assume that all primitive random variables are

defined on a common probability space (Ω, F, P ). If the
communication strategy is fixed, all system variables can be

defined in terms of the primitive random variables, and are

(Ω, F, P ) measurable. In the sequel, all (random) variables
are assumed to be defined on (Ω, F, P ).

C. Problem Classification

Problem 1 is a sequential stochastic optimization problem

as defined in [33]. To understand the sequential nature of the

problem, we need to refine the notion of time. We call each

step of the system a stage. For each stage, we consider four
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Stage t

t+t+ (t+ 1/2)−(t+ 1/2)− (t+ 1/2)+(t+ 1/2)+ (t+ 1)−(t+ 1)−

Actual Time

1t1t 2t2t 3t3t 4t4t

Time Notation

XtXt ZtZt NtNt YtYt X̂tX̂t Z̃tZ̃t ÑtÑt Ỹt̃Yt MtMt

System
Variables

ctct gtgt c̃t̃ct ltlt

Decision Rules

1ϕt1ϕt 2ϕt2ϕt 3ϕt3ϕt 4ϕt4ϕt

Decision Rules
(Symbolic)

1Bt1Bt 2Bt2Bt 3Bt3Bt 4Bt4Bt

Belief of
the encoder

1At1At 2At2At 3At3At 4At4At

Belief of
the decoder

1πt1πt 2πt2πt 3πt3πt 4πt4πt

Information
State

Fig. 2. Sequential ordering of different variables in the system

time instances:1 t+, (t + 1/2)−, (t + 1/2)+ and (t + 1)−.
For the ease of notation, we will denote these time instances

by 1t, 2t, 3t, and 4t, respectively. Assume that the system has

four “agents”, the encoder (agent 1), the decoder (agent 2), the

feedback encoder (agent 3), and the memory update (agent 4),

which act sequentially at 1t, 2t, 3t, and 4t, respectively.
The order in which the random variables are generated in

the system is illustrated in Figure II-B. Since the ordering

of the decision makers can be done independently of the

realization of the system variables, Property C of [34] is

trivially satisfied and hence Problem 1 is a causal sequential

stochastic optimization problem as defined in [33].

Problem 1 is a multi-agent problem where all agents have

the same objective given by (7). Such problems are called

team problems [35], and are further classified as static teams

or dynamic teams on the basis of their information structure. In

static teams, an agent’s information is a function of primitive

random variables only, while in dynamic teams, in general,

an agent’s information depends on the functional form of the

decision rules of other agents. In Problem 1 the receiver’s

information depends on the functional form of the encoding

rule. Thus Problem 1 is a dynamic team. Dynamic teams are,

in general, functional optimization problems having a complex

interdependence among the decision rules [36]. This interde-

pendence leads to non-convex (in policy space) optimization

problems that are hard to solve.

For the ease of notation, at time instances 1t, 2t, 3t, and 4t,
we will denote the current decision rule by 1ϕt,

2ϕt,
3ϕt, and

4ϕt and the past decision rules by
1ϕt−1, 2ϕt−1, 3ϕt−1, and

1The actual values of these time instances is not important; we just need
four values in increasing order.

4ϕt−1, i.e.,

1ϕt−1 := (ct−1, gt−1, c̃t−1, lt−1), 1ϕt := ct, (10a)
2ϕt−1 := (ct, gt−1, c̃t−1, lt−1), 2ϕt := gt, (10b)
3ϕt−1 := (ct, gt, c̃t−1, lt−1), 3ϕt := c̃t, (10c)
4ϕt−1 := (ct, gt, c̃t, lt−1), 4ϕt := lt. (10d)

D. The Notion of Information

The traditional information theoretic notions entropy and

mutual information are asymptotic concepts which are not

directly applicable to real-time communication problems. So,

we first describe a decision theoretic notion of information.

Recall that (Ω, F, P ) is the probability space with respect to
which all primitive random variables are defined. Suppose iOt

is the observation of agent i, at time it, and iϕt−1 is the past

decision rules of all agents. Since the problem is sequential,

for any choice of iϕt−1, iOt is measurable with respect to

F. Furthermore, for any choice of iϕt−1, let σ(iOt;
iϕt−1)

denote the smallest subfield of F with respect to which iOt is

measurable. Then, the information field of agent i at time it
is σ(iO; iϕt−1). Using this notion of information, we define
variables that represent the information field at the encoder’s

and receiver’s sites just before each agent acts on the system.

Definition 1: Let 1Et,
2Et,

3Et, and
4Et denote the obser-

vation and 1
Et,

2
Et,

3
Et, and

4
Et denote the information field

at the encoder’s site at time 1t, 2t, 3t, and 4t, respectively, i.e.,

1Et := (Xt, Zt−1, Ỹ t−1), 1
Et := σ(1Et;

1ϕt−1), (11a)
2Et := (Xt, Zt, Ỹ t−1), 2

Et := σ(2Et;
2ϕt−1), (11b)

3Et := (Xt, Zt, Ỹ t−1), 3
Et := σ(3Et;

3ϕt−1), (11c)
4Et := (Xt, Zt, Ỹ t), 4

Et := σ(4Et;
4ϕt−1). (11d)
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Further, let 1Rt,
2Rt,

3Rt, and
4Rt denote the observation

and 1
Rt,

2
Rt,

3
Rt, and

4
Rt denote the information field at

the receiver’s site at time 1t, 2t, 3t, and 4t, respectively, i.e.,

1Rt := (Mt−1),
1
Rt := σ(1Rt;

1ϕt−1), (12a)
2Rt := (Yt, Mt−1),

2
Rt := σ(2Rt;

2ϕt−1), (12b)
3Rt := (Yt, Mt−1),

3
Rt := σ(3Rt;

3ϕt−1), (12c)
4Rt := (Yt, Mt−1),

4
Rt := σ(4Rt;

4ϕt−1). (12d)

Let iEt and
iR, i = 1, . . . , 4, denote the space of realizations

of iEt and
iR, respectively.

Problem 1 is a decentralized problem because, at any time

t, the information fields at the encoder’s site and the receiver’s
site are non-comparable, that is, 1

Et �⊆ 1
Rt and

1
Et �⊇ 1

Rt;

and similar relations hold between 2
Et and

2
Rt, between

3
Et

and 3
Rt, and between

4
Et and

4
Rt. Thus, at no time during

the evolution of the system does the encoder “know” exactly

what is “known” to the receiver and vice-versa. Hence the

information in the system is decentralized. Notice that the

information fields at the encoder and the receiver are coupled

through decision rules. 1
E1 and

1
R1 are known before the

system starts operating. The choice of 1ϕ1 determines
2
E1 and

2
R1, the choice of

2ϕ1 determines
3
E1 and

3
R1, and so on.

Thus, 1
Et and

1
Rt are determined completely by

1
E1,

1ϕt−1

and 1
R1,

1ϕt−1, respectively. Thus, the information 1
Et and

1
Rt is coupled through the past decision rules

1ϕt−1. Hence,

Problem 1 has a non-classical information structure (see [37],

[38]).

Note that the information at the encoder is nested while the

information at the receiver is not. Formally, at the encoder

we have 1
Et ⊆ 2

Et ⊆ 3
Et ⊆ 4

Et ⊆ 1
Et+1 · · · and so

on. So at any time the encoder remembers everything that it

knew in the past. On the other hand, at the receiver we have
1
Rt ⊆ 2

Rt ⊆ 3
Rt ⊆ 4

Rt, but
3
Rt �⊆ 1

Rt+1. Thus, while

updating its memory at 3t, the receiver forgets (or sheds) some
information that it knew earlier. This shedding of information

has an interesting consequence when we consider the evolution

of receiver’s beliefs in the next subsection.

A Technical Remark: There is a subtle difference be-

tween our definition and Witsenhausen’s [34] definition of

information field. In [34], information fields are defined on

the product space (
∏

α Uα,
∏

α Fα), where α ranges over the

set of all agents and (Uα, Fα) is the decision space of agent
α (see [34] for details). In this paper, information field is

defined on (Ω, F), the probability space of all randomness
in the system. Our definition allows us to define conditional

expectations and conditional probabilities with respect to this

information field (cf. [34, pp. 152]). What we call information

field is the same as the induced field I γ
α in [34]. Unfortunately

this field I γ
α was not given any name in [34]. We hope that

with this clarification, our slight deviation in terminology from

the literature will not cause any confusion.

E. Agent’s Beliefs and their Evolution

Due to decentralization of information, it is important to

characterize what one agent thinks about the other agent’s

observation, i.e., what the encoder “thinks” that the receiver

“sees” and what the receiver “thinks” that the encoder “sees”.

This is captured by the encoder’s belief about the observations

of the receiver, and the receiver’s belief about the observations

of the encoder at time instances 1t, 2t, 3t, and 4t. These beliefs
are given below.
Definition 2: Let 1Bt,

2Bt,
3Bt, and

4Bt denote the en-

coder’s belief about the receiver’s observation at 1t, 2t, 3t,
and 4t, respectively, i.e.,

1Bt(
1r) := Pr

(

1Rt = 1r
∣

∣

1
Et

)

, (13a)
2Bt(

2r) := Pr
(

2Rt = 2r
∣

∣

2
Et

)

, (13b)
3Bt(

3r) := Pr
(

3Rt = 3r
∣

∣

3
Et

)

, (13c)
4Bt(

4r) := Pr
(

4Rt = 4r
∣

∣

4
Et

)

. (13d)

Let iB:=P
{

iR
}

, i = 1, . . . , 4, denote the space of realizations
of iB.
Definition 3: Let 1At,

2At,
3At, and

4At denote the re-

ceiver’s belief about the encoder’s observation at 1t, 2t, 3t,
and 4t, respectively, i.e.,

1At(
1e) := Pr

(

1Et = 1e
∣

∣

1
Rt

)

, (14a)
2At(

2e) := Pr
(

2Et = 2e
∣

∣

2
Rt

)

, (14b)
3At(

3e) := Pr
(

3Et = 3e
∣

∣

3
Rt

)

, (14c)
4At(

4e) := Pr
(

4Et = 4e
∣

∣

4
Rt

)

. (14d)

Further, let Ât denote the receiver’s belief about the source

output at time instance 2t, i.e.,

Ât(xt) := Pr
(

Xt = xt

∣

∣

2
Rt

)

. (14e)

Let iAt := P
{

iEt

}

, i = 1, . . . , 4, denote the space of realiza-

tions of iAt.
The sequential ordering of these beliefs is shown in Fig-

ure II-B. For any particular realization 1et of
1Et, and any

arbitrary (but fixed) choice of 1ϕt−1, the realization 1bt of
1Bt is a PMF on M. If Et is a random vector, then 1Bt is

a random vector belonging to P {M}, the space of PMFs on
M. Similar interpretations hold for 2Bt,

3Bt,
4Bt,

1At,
2At,

3At, and
4At.

The time evolution of these beliefs of the encoder and the

receiver are coupled through their decision rules. Specifically,
Lemma 1: For each stage t, there exist deterministic func-

tions 1F , 2F , and 4F such that

1Bt = 1F (4Bt−1, lt−1), (15a)
2Bt = 2F (1Bt, Zt), (15b)
3Bt = 2Bt, (15c)
4Bt = 4F (3Bt, Ỹt, c̃t). (15d)

Lemma 2: For each stage t, there exists a deterministic
function 1Kt such that

1At = 1Kt(
1A1, Mt−1, c

t−1, c̃t−1, lt−1). (16a)

Further, there exist functions, 2K , K̂, and 4K such that for

each t,

2At = 2K(1At, Yt, ct), (16b)

Ât = K̂(2At), (16c)
3At = 2At, (16d)
4At = 4K(3At, Z̃t). (16e)

These lemmas are proved in Appendix A.
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F. A Remark about Functional Dependencies

The belief evolution presented above has some interesting

features which are a result of the functional coupling between

the information fields of the encoder and the receiver. This

can be illustrated by carefully analyzing the above belief

evolutions. Consider the system at time 1t and assume that the
encoder and the receiver know the past decision rules 1ϕt−1.

Using the results of Lemmas 1 and 2 the encoder can calculate
1Bt and the decoder can calculate

1At. Now, at time
1t, the

encoder generates the encoded symbol Zt and the receiver

receives the channel output Yt. The encoder can update its

belief using the encoded symbol (the decision) Zt (see (15b)).

The receiver, however, needs to know the encoding rule (the

decision rule) ct in order to update its belief (see (16b)). At

time 2t, the receiver generates its estimate X̂t. Since decoding

is an open loop problem, it does not influence the belief

of either the encoder or the receiver (see (15c) and (16d)).

Next at 3t, the receiver generates a feedback symbol Z̃t and

the encoder receives Ỹt. The receiver can update its belief

using the feedback symbol (the decision) Z̃t (see (16d)).

The encoder, however, needs to know the encoding rule (the

decision rule) c̃t in order to update its belief (see (15c)). At
4t, the situation is a bit different at the receiver. The receiver
needs to shed information while updating its memory, so
3
Rt �⊆

1
Rt+1 and the receiver can not use just

3At and Mt to

generate 1At+1. The receiver needs to calculate
1At+1 from

scratch using all past decision rules (see (16a)). The encoder

still needs to know the memory update rule (the decision rule)

lt to update its belief.
Thus for decentralized problems with non-classical informa-

tion structure, if at any time instant an agent, say i, makes the
current decision and does not shed information it can update

its belief using only the current decision; if the agent makes the

current decision and sheds information, it needs to recalculate

its belief from scratch using all the past decision rules. If agent

i does not make the current decision, it needs to know the

decision rule of the agent acting currently acting on the system

in order to update its belief. Thus agents need to know the

decision rules of other agents in order to update their beliefs.

This gives rise to a functional coupling between the agents’

beliefs. Contrast this from systems with classical information

structure (centralized optimization problems) where the belief

evolutions depends only on the current observation and/or

current decision, and not on the current decision rule. It is

this functional coupling among decision rules in decentralized

problems with non-classical information structures that make

the global optimization problem conceptually more difficult

than the optimization problem in systems with classical infor-

mation structure.

For the problem under consideration, before looking at the

global optimization problem, we identify qualitative properties

of optimal encoders and decoders.

III. STRUCTURAL PROPERTIES

In this section, we provide qualitative properties of optimal

encoders (respectively, decoders) that are true for every arbi-

trary but fixed decoding, feedback, and memory update strate-

gies (respectively, encoding, feedback, and memory update

strategies). These properties are subsequently used to develop

a methodology for the determination of globally optimal

communication strategies. They are also used to explain our

methodology.

A. Structure of Optimal Real-Time Encoders

Theorem 1 (Structure of Optimal Encoders): Consider

Problem 1 for any arbitrary (but fixed) decoding, feedback,

and memory update strategies, G = (g1, . . . , gT ),
C̃ = (c̃1, . . . , c̃T ), and L = (l1, . . . , lT ), respectively.
Then there is no loss in optimality in restricting attention to

encoding rules of the form

Zt = ct(Xt,
1Bt), t = 2, . . . , T. (17)

Proof: We look at the problem from the encoder’s point

of view. Note that {Xt, t = 1, . . . , T} is a Markov process
independent of the noise in the forward and the backward

channels. This fact together with results of Lemma 2 implies

that for any xt+1 ∈ X , 1bt+1 ∈ 1B, any realization (xt, 1bt, zt)
of (Xt, 1Bt, Zt), and any choice of 1ϕt, we have

Pr
(

Xt+1 = xt+1,
1Bt+1 = 1bt+1

∣

∣ xt, 1bt, zt, 1ϕt
)

=
∑

yt∈Y
mt−1∈M

z̃t∈Z̃
ỹt∈Ỹ

Pr
(

xt+1,
1bt+1, ỹt, z̃t, yt, mt−1

∣

∣ xt, 1bt, zt, 1ϕt
)

=
∑

yt∈Y
mt−1∈M

z̃t∈Z̃
ỹt∈Ỹ

Pr
(

1bt+1

∣

∣ xt+1, 1bt, zt, ỹt, z̃t, yt, mt−1;
1ϕt

)

× Pr
(

xt+1

∣

∣ xt, 1bt, zt, ỹt, z̃t, yt, mt−1;
1ϕt

)

× Pr
(

ỹt

∣

∣xt, 1bt, zt, z̃t, yt, mt−1;
1ϕt

)

× Pr
(

z̃t

∣

∣xt, 1bt, zt, yt, mt−1;
1ϕt

)

× Pr
(

yt

∣

∣xt, 1bt, zt, mt−1;
1ϕt

)

× Pr
(

mt−1

∣

∣xt, 1bt, zt; 1ϕt
)

(a)
=

∑

yt∈Y
mt−1∈M

z̃t∈Z̃
ỹt∈Ỹ

I

[

1bt+1 = 1F

(

4F
(

2F (1bt, zt), ỹt, c̃t

)

, lt

)]

× PXt+1|Xt
(xt+1 | xt)

× PÑ

(

Ñt ∈ Ñ : ỹt = h̃(z̃t, Ñt)
)

× I [z̃t = c̃t(yt, mt−1)]

× PN

(

N ∈ N : yt = h(zt, Nt)
)

× 1bt(mt−1)

=: Pr
(

Xt+1 = xt+1,
1Bt+1 = 1bt+1

∣

∣xt,
1bt, zt, c̃t, lt

)

,
(18)

where (a) follows from Lemma 1 and the sequential order

in which the random variables are generated. Thus for fixed

feedback and memory update strategies, {(Xt,
1Bt), t =

1, . . . , T} is a controlled Markov process with control action
Zt. Further, the expected conditional instantaneous distortion

can be written as

E

{

ρ(Xt, X̂t)
∣

∣

∣

3
Et

}

=
∑

yt∈Y
mt−1∈M

ρ
(

Xt, gt(yt, mt−1)
)

Pr
(

yt, mt−1

∣

∣

3
Et

)

=
∑

yt∈Y
mt−1∈M

ρ
(

Xt, gt(yt, mt−1)
)

3Bt(yt, mt−1)
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(b)
=

∑

yt∈Y
mt−1∈M

ρ
(

Xt, gt(yt, mt−1)
)

2F (1Bt, Zt)(yt, mt−1)

=: ρ̃(Xt,
1Bt, Zt, gt) (19)

where (b) follows from Lemma 1. Thus, the total expected

distortion can be written as

E

{

T
∑

t=1

ρ(Xt, X̂t)

∣

∣

∣

∣

∣

C, G, C̃, L

}

= E

{

T
∑

t=1

E

{

ρ(Xt, X̂t)
∣

∣

∣

3
Et

}

∣

∣

∣

∣

∣

C, G, C̃, L

}

= E

{

T
∑

t=1

ρ̃(Xt,
1Bt, Zt, gt)

∣

∣

∣

∣

∣

C, G, C̃, L

}

. (20)

Hence from the encoder’s point of view, we have a per-

fectly observed controlled Markov process {(Xt,
1Bt), t =

1, . . . , T} with control action Zt and an instantaneous distor-

tion ρ̃(Xt,
1Bt, Zt, gt) (recall that G is fixed). From Markov

decision theory [2, Chapter 6] we know that there is no loss

of optimality in restricting attention to encoding rules of the

form (17).

B. Structure of Optimal Real-Time Decoders

Theorem 2 (Structure of Optimal Decoders): Consider

Problem 1 for any arbitrary (but fixed) encoding, feedback,

and memory update strategies, C = (c1, . . . , cT ),
C̃ = (c̃1, . . . , c̃T ), and L = (l1, . . . , lT ), respectively.
Then there is no loss in optimality in restricting attention to

decoding rules of the form

X̂t = ĝ(Ât) := arg min
x̂∈X̂

∑

x∈X

ρ(x, x̂)Ât(x). (21)

Proof: We look at the problem from the decoder’s

point of view. Since decoding is a filtering problem, min-

imizing the total distortion JT (C, G, C̃, L) is equivalent to
minimizing the conditional expected instantaneous distortion

E

{

ρ(Xt, X̂t)
∣

∣

∣

2
Rt

}

for each time t. This conditional ex-

pected instantaneous distortion can be written as

E

{

ρ(Xt, X̂t)
∣

∣

∣

2
Rt

}

=
∑

xt∈X

ρ(xt, X̂t) Pr
(

xt

∣

∣

2
Rt

)

=
∑

xt∈X

ρ(xt, X̂t)Ât(xt) (22)

and is minimized by the decoding rule given in (21).

C. Remarks on the Assumption of Finite Memory at the

Receiver

In the model of this paper we have assumed that the receiver

has finite memory. Due to this assumption, the space 1R
of realizations of 1Rt does not depend on t. Consequently,
the space 1B of realization of 1Bt does not depend on t.
Thus, qualitative properties of the form (17) for the encoding

rule imply that at each time we can search for optimal

encoding rules belonging to a space that does not depend on t.
Furthermore, for systems with large horizon T , encoding rules

of the form (17) can be easier to implement than encoding

rules of the form (2).

Even if the receiver had no restriction on the size of its

memory, the result of Theorem 1 will be true. However, the

space 1Bt of the realization of
1Bt will increase in size with

t. So encoding rules of the form (17) would not be easier to

implement than those of the form (2).

In Section V we present a methodology for the sequen-

tial decomposition of the global optimization problem. The

information states (sufficient statistics) for this sequential

decomposition have a nice compact representation because

encoding rules of the form (17) belong to a space that does not

increase with time. If the decoder had no memory restriction,

these information states would belong to spaces that increase

with time.

Thus, the assumption of finite memory at the receiver is

not necessary to derive the structural properties and sequential

decomposition for the finite horizon problem considered in this

paper; this assumption makes the structural results useful for

implementing the encoding rules; it also makes it easier to

present the sequential decomposition. However, if we want to

extend the sequential decomposition presented in this paper

to infinite horizon problems, the assumption of finite memory

at the receiver becomes necessary. Even though we do not

treat the infinite horizon problem in this paper, for the ease of

presentation we have assumed finite memory at the receiver.

IV. COMPARISON WITH PREVIOUS RESULTS IN

REAL-TIME COMMUNICATION

As mentioned in the Introduction there are three different

conceptual approaches to real-time (zero-delay) communica-

tion problems, namely (i) performance bounds of finite-delay

or real-time communication systems; (ii) real-time encoding

and decoding of individual sequences; and (iii) real-time

encoding and decoding of Markov sources. The approach

taken in this paper falls under the last category. For real-

time encoding and decoding of Markov sources, three different

channel models have been considered: noiseless channels

in [16]; noisy DMC with noiseless feedback in [19] and noisy

AWGN (additive white Gaussian noise) channels with noiseless

feedback [20]–[22]; and noisy DMC with no feedback [23],

[24]. These problems/models are special cases of Problem 1

for appropriate choices of feedback strategies, and forward

and backward channels. In this section, we rederive structural

results for these communication systems using the structural

results of Section III. This shows that the results this paper

subsume all existing structural results for real-time encoding-

decoding of Markov sources and thus presents a unified

framework to study these problems.

A. Real-Time Noiseless Communication

Consider the real-time source coding problem investigated

in [16], which is shown in Figure 3. This problem can be con-

sidered as a special case of Problem 1 by making the following

simplifications in the model considered in Section II-A.

Assume that the forward channel is noiseless, i.e.,

Yt := ht(Zt, Nt) = Zt, and Y = Z. (23)
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Source Encoder Decoder
Xt Zt = Yt X̂t

Fig. 3. A real-time source coding problem

Since the encoder knows output of the channel, the choice of

feedback strategy C̃ and backward channel h̃ in the model of
Section II-A does not matter. For completeness, assume that

the backward channel is noiseless and the feedback strategy

is to send back the output of the forward channel, i.e.,

Z̃t := c̃t(Yt, Mt−1) = Yt, and Z̃ = Y, (24)

and

Ỹt := h̃t(Z̃t, Ñt) = Zt, and Ỹ = Z̃. (25)

Since the forward channel is noiseless, i.e. Yt = Zt, we can

denote the encoded symbol by Yt. Thus, using (23), (24) and

(25) we can be write (2) as

Y1 = c1(X1), (26a)

and for t = 2, . . . , T ,

Yt = ct(X
t, Y t−1). (26b)

The receiver operates according to (3) and (5) and the per-

formance of a design is given by (6). The system model

given by (26), (3), (5) and (6) is identical to the real-time

source coding problem considered in [16]. For this model,
1
Rt ⊆

1
Et,

3
Et ⊆

3
Rt,

2
Rt ⊆

2
Et, and

4
Rt ⊆

4
Et. Thus, the

model has a nested information structure. For fixed decoding

and memory update strategies, the information structure at the

encoder is a classical one, and the beliefs of the encoder (given

by Definition 2) simplify as follows:

1Bt(mt−1) = I
[

mt−1 = 1lt−1(Y
t−1, lt−1)

]

, (27a)
2Bt(yt, mt−1) = 3Bt(yt, mt−1) = 4Bt(yt, mt−1)

= I [yt = Yt] I
[

mt−1 = 1lt−1(Y
t−1, lt−1)

]

,
(27b)

where

1lt−1(Y
t−1, lt−1) = lt−1

(

Yt−1, lt−2(Yt−2, . . . , l1(Y1) . . . )
)

.
(28)

Thus, belief 1Bt is a random variable belonging to P {M}
with unit mass on Mt−1. This means that the encoder knows

the realization of Mt−1 and implies that there is a one-to-

one correspondence between 1Bt and Mt−1. By a similar

argument, there is a one-to-one correspondence between 2Bt

and (Yt, Mt−1), between
3Bt and (Yt, Mt−1), and between

4Bt and (Yt, Mt−1). Due to these one-to-one correspondences
the result of Theorem 1 can be simplified as follows:

Corollary 1: Consider Problem 1 for noiseless forward and

backward channels, feedback strategy given by (24), and

arbitrary (but fixed) decoding and memory update strategies,

G = (g1, . . . , gT ) and L = (l1, . . . , lT ), respectively. Then
there is no loss in optimality in restricting attention to encod-

ing rules of the form

Zt = ct(Xt, Mt−1), t = 2, . . . , T. (29)

This result is identical to [16, Lemma 4, pp. 1446] which

is the main result of [16] for first order Markov sources.

Source Encoder
Forward
Channel

Decoder
Xt Zt Yt X̂t

Yt

Nt

Fig. 4. A real-time communication system with noiseless feedback

B. Real-Time Noisy Communication with Noiseless Feedback

Consider the real-time communication problem with noise-

less feedback investigated in [19], which is shown in Figure 4.

This problem can be considered as a special case of Problem 1

by making the following simplifications in the model consid-

ered in Section II-A.

Assume that the backward channel is noiseless and that the

feedback strategy is to send back the output of the forward,

i.e.,

Z̃t := c̃t(Yt, Mt−1) = Yt, and Z̃ = Y, (30)

and

Ỹt := h̃(Z̃t, Ñt) = Z̃t, and Ỹ = Z̃. (31)

Relations (30) and (31) imply that Ỹt−1 = Yt−1. Thus, the

encoder can be written as

Z1 = c1(X1), (32a)

and for t = 2, . . . , T

Zt = ct(X
t, Zt−1, Y t−1). (32b)

The receiver operates according to (3) and (5) and the perfor-

mance of a design is given by (6). The system model given

by (32), (3), (5) and (6) is identical to the real-time coding

problem with noiseless feedback considered in [19]. For this

model, 1
Rt ⊆ 1

Et,
2
Rt ⊆ 2

Et,
3
Rt ⊆ 3

Et, and
4
Rt ⊆ 4

Et.

Thus, the model has a nested information structure. For

fixed decoding and memory update strategies, the information

structure at the encoder is a classical one, and the beliefs

of the encoder (given by Definition 2) simplify according

to (27). Further, by the same argument as in Section IV-A,

there is a one-to-one correspondence between 1Bt and Mt−1,

between 2Bt and (Yt, Mt−1), between
3Bt and (Yt, Mt−1),

and between 4Bt and (Yt, Mt−1). Due to these one-to-one
correspondences the result of Theorem 1 can be simplified as

follows:

Corollary 2: Consider Problem 1 for noiseless backward

channel, feedback strategy given by (30), and arbitrary

(but fixed) decoding and memory update strategies, G =
(g1, . . . , gT ) and L = (l1, . . . , lT ), respectively. Then there
is no loss in optimality in restricting attention to encoding

rules of the form

Zt = ct(Xt, Mt−1), t = 2, . . . , T. (33)

The receiver model considered in [19] is more general than

the model we consider in this paper; in [19], the receiver can

either have a finite memory or no there is no restriction on the

size of the memory. Corollary 2 is identical to [19, Theorem 1]

and the structure of optimal decoder (Theorem 2) is similar
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Source Encoder
Forward
Channel

Decoder
Xt Zt Yt X̂t

Nt

Fig. 5. A real-time communication system with no feedback

to [19, Lemma 1] when the model of [19] is restricted to have

a finite memory.

Another variation of this problem that has been investigated

in the literature is when the source output is scalar Gauss

Markov process, the channel noise is AWGN (additive white

Gaussian noise), the distortion measure is quadratic, and

the decoder has no memory limitation. This problem was

considered for discrete time in [21] and for continuous time

in [20], [22] and it was shown that linear encoding and

decoding strategies are optimal. These results rely on the

special properties of LQG (linear quadratic Gaussian) systems

can be thought of as further refinement of the structural

property given by Corollary 2.

C. Real-Time Noisy Communication with no Feedback

Consider the real-time communication problem with no

feedback investigated in [23], which is shown in Figure 4. This

problem can be considered as a special case of Problem 1 by

making the following simplifications in the model considered

in Section II-A.

Assume the backward channel does not provide any valu-

able information to the encoder, that is

Ỹt := h̃t(Z̃t, Ñt) = Ñt, and Ỹ = Ñ . (34)

Since, the output of the backward channel is independent of

all random variables in the system, it can be ignored. Thus,

the encoder is of the form:

Z1 = c1(X1), (35a)

and for t = 2, . . . , T

Zt = ct(X
t, Zt−1). (35b)

Thus, the information available at the encoder (given by

Definition 1) changes to:

1Et := (Xt, Zt−1), (36a)
2Et := (Xt, Zt), (36b)
3Et := (Xt, Zt), (36c)
4Et := (Xt, Zt). (36d)

Since the feedback symbol Z̃t is ignored, the choice of feed-

back strategy is immaterial. The receiver operates according

to (3) and (5) and the performance of a design is given by (6).

The system model given by (35), (3), (5) and (6) is identical

to the real-time coding problem with no feedback considered

in [23], [24], [39]. For this model, 1
Rt �⊆ 1

Et,
1
Et �⊆ 1

Rt,

and similar relations hold between 2
Rt and

2
Et, between

3
Rt

and 3
Et, and between

4
Rt and

4
Et. Thus, the model has a

non-classical information structure. The belief of the encoder

(given by Definition 2) are now defined by conditioning

on the information at the encoder given by (36). With this

modification, the belief 1Bt is identical to PWt−1
defined

in [23, Eq. (13)], the structure of optimal encoder (Theorem 1)

is identical to [23, Theorem 1] and the structure of optimal

decoder (Theorem 2) is identical to [23, Theorem 2].

D. Comparison of Different Structural Results

We have shown that structural results of Section III subsume

all previously known structural results for real-time encoding-

decoding of Markov sources. There are two categories of

communication systems: (i) Systems with nested informa-

tion structures (models of Sections IV-A and IV-B), and

(ii) systems with non-nested information structures (models of

Sections IV-C and II-A). The qualitative properties of optimal

encoders within each category are similar.

Two proof methodologies have been employed in the liter-

ature to derive qualitative properties of optimal encoders: an

interchange argument used in [16] and [23] and; controlled

Markov process argument used in [19] and the alternative

proof in [23]. In this paper we have used controlled Markov

process argument to derive qualitative properties of optimal

encoders (Theorem 1). An interchange argument, along the

lines of one presented in [23], can also be used to prove

Theorem 1, but we do not present it here.

V. DETERMINING GLOBALLY OPTIMAL COMMUNICATION

STRATEGIES

A. Information States

The key step in obtaining a sequential decomposition is to

identify an information state sufficient for performance evalu-

ation (also called a sufficient statistic for control). See [24] for

a discussion on the properties of such information states. In

order to identify appropriate information states for Problem 1,

we first use results of Theorem 1 to reformulate Problem 1 in

a slightly different manner.

Let Ĉ denote the space of functions from X × P {M} to
Z . The result of Theorem 1 states that instead of choosing an
encoding rule from the space Ct at time t, we can choose an
encoding rule from the space Ĉ . Therefore, we have

Corollary 3: The optimal performance J ∗
T given by (7) can

be determined by

J ∗
T := min

C∈Ĉ
T

G∈G
T

C̃∈C̃
T

L∈L
T

JT (C, G, C̃, L), (37)

where Ĉ T := Ĉ × · · · × Ĉ (T -times), and G T and L T are

defined as before.

Hence, in Problem 1 rather than choosing a communication

strategy (C∗, G∗, C̃∗, L∗) belonging to (C T×G T×C̃ T×L T )
to minimize (7) we can choose a communication strategy

(C∗, G∗, C̃∗, L∗) belonging to (Ĉ T × G T × C̃ T × L T ) to
minimize (37). Notice that the domain of an encoding rule

belonging to Ct increases with t, while the domain of an
encoding rule belonging to Ĉ does not depend on t. Hence,
using the structural results of Theorem 1 we can reformulate

Problem 1 such that the encoding rules at each time have to

be chosen from a time-invariant space. For this reformulation,
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an information state sufficient for performance evaluation is

given below.

Definition 4: Define 1πt,
2πt,

3πt, and
4πt as follows:

1πt := Pr
(

Xt,
1Rt,

1Bt

∣

∣

1φt−1
)

, (38a)
2πt := Pr

(

Xt,
2Rt,

2Bt

∣

∣

2φt−1
)

, (38b)
3πt := Pr

(

Xt,
3Rt,

3Bt

∣

∣

3φt−1
)

, (38c)
4πt := Pr

(

Xt,
4Rt,

4Bt

∣

∣

4φt−1
)

. (38d)

Let iΠ, i = 1, . . . , 4, denote the space of probability measures
on (X × iR× iB). Then iπt takes values in

iΠ.
The above definitions are to be interpreted as follows. Let

(Ω, F, P ) denote the probability space with respect to which
all primitive random variables are defined. For any agent i,
i = 1, . . . , 4, and any choice iφt−1 of past decision rules,

the variables iEt and
iRt, and the beliefs

iBt and
iAt are

F-measurable. Thus, for any choice of iφt−1, (Xt,
iRt,

iBt)
is F-measurable. iπt is the corresponding induced measure on

(X × iR× iB).
The above-defined iπt, i = 1, . . . , 4 are related as follows:
Lemma 3: For encoding rules of the form (17), 1πt,

2πt,
3πt, and

4πt are information states for the encoder, decoder,

feedback encoder, and memory update, respectively, i.e.,

1) there exist transformations 1Q, 3Q, and 4Q such that

2πt = 1Q(ct)
1πt, (39a)

3πt = 2πt, (39b)
4πt = 3Q(c̃t)

3πt, (39c)
1πt+1 = 4Q(lt)

4πt. (39d)

These transformation are linear in the corresponding iπ,
i = 1, 3, 4.

2) the expected instantaneous cost can be expressed as

E

{

ρ(Xt, X̂t)
∣

∣

∣

2φt−1, gt

}

= ρ̂(2πt, gt) (40)

where ρ̂(·) is a deterministic function concave in 2π.

This is proved in Appendix B.

Using this result, the performance criterion of (6) can be

rewritten as

JT (C, G, C̃, L) = E

{

T
∑

t=1

ρ(Xt, X̂t)

∣

∣

∣

∣

∣

C, G, C̃, L

}

(a)
=

T
∑

t=1

E

{

ρ(Xt, X̂t)
∣

∣

∣

2φt−1, gt

}

(b)
=

T
∑

t=1

ρ̂(2πt, gt) (41)

where (a) follows from the sequential ordering of system

variables and (b) follows from Lemma 3.

B. An Equivalent Optimization Problem

Consider a centralized deterministic optimization problem

with state space alternating between 1Π, 2Π, 3Π, and 4Π and

action space alternating between Ĉ , G , C̃ and L . The system

dynamics are given by (39) and at each stage t the decision
rules ct, gt, c̃t, and lt are determined according to meta-rules

1∆t,
2∆t,

3∆t, and
4∆t, where

1∆t is a function from
1Π to

Ĉ , 2∆t is a function from
2Π to G , 3∆t is a function from

3Π
to C̃ , and 4∆t is a function from

4Π to L . Thus the system

equations (39) can be written as

ct = 1∆t(
1πt),

2πt = 1Q(ct)
1πt, (42a)

gt = 2∆t(
2πt),

3πt = 2πt, (42b)

c̃t = 3∆t(
3πt),

4πt = 3Q(c̃t)
3πt, (42c)

lt = 4∆t(
4πt),

1πt+1 = 4Q(lt)
4πt. (42d)

The initial state 1π1 = PX1
is given. At each stage

an instantaneous cost ρ̂(2πt, gt) is incurred. The choice

(1∆1,
2∆1,

3∆1,
4∆1, . . . ,

1∆T , 2∆T , 3∆T , 4∆T ) is called a

meta-design and denoted by ∆T . The performance of a meta-

design is given by the total cost incurred by that meta-design,

i.e.,

JT (∆T | 1π1) =

T
∑

t=1

ρ̂(2πt, gt). (43)

Now consider the following optimization problem:

Problem 2: Consider the dynamic system (42) with known

transformations 1Q, 3Q, and 4Q. The initial state 1π1 is given.

Determine a meta-design ∆T to minimize the total cost given

by (43).

C. The Global Optimization Algorithm

Observe that for any initial state 1π1, a choice of meta-

design ∆T determines a design (C, G, C̃, L) through (42).
Relation (41) implies that the expected distortion under design

(C, G, C̃, L), given by (6), is equal to the cost under meta-
design ∆T given by (43). Thus, if the transformation 1Q, 3Q,
and 4Q in Problem 2 are the same as those in Lemma 3,

an optimal meta-design for Problem 2 determines an optimal

design for Problem 1. Problem 2 is a classical centralized

deterministic control problem and optimal meta-designs can

be determined as follows:

Theorem 3 (Global Optimization Algorithm): An optimal

meta-design∆∗,T for Problem 2, and consequently an optimal

design (C∗, G∗, C̃∗, L∗) for Problem 1 can be determined as

follows. For any 1π ∈ 1Π, 2π ∈ 2Π, 3π ∈ 3Π, and 4π ∈ 4Π,
define the following functions:

1VT+1(
1π) = 0, (44a)

and for t = 1, . . . , T

1Vt(
1π) = inf

c∈Ĉ

2Vt

(

1Q(c) 1π
)

, (44b)

2Vt(
2π) = min

g∈G

[

ρ̂(2π, g) + 3Vt(
2π)

]

, (44c)

3Vt(
3π) = min

c̃∈C̃

4Vt

(

3Q(c̃) 3π
)

, (44d)

4Vt(
4π) = min

l∈L

1Vt+1

(

4Q(l) 4π
)

. (44e)

The arg min (or arg inf) at each step determines the optimal

meta-design ∆∗,T . After an optimal meta-design has been

determined, an optimal design (C∗, G∗, C̃∗, L∗) can be de-
termined through (42). Furthermore, the optimal performance

is given by

J ∗
T = 1V1(

1π1). (45)
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Proof: This is a standard result, see [2, Chapter 2].

The functions iVt, i = 1, . . . , 4, are called value functions.
They represent the minimum expected future distortion that

the system in state iπ will incur from time it onwards. We
have the following result.

Theorem 4 (Concavity of Value Functions): The value

functions iVt, i = 1, . . . , 4, t = 1, . . . , T , given by (44) are
concave in the corresponding iπ.

Proof: Recall that 1Q, 3Q, and 4Q are linear in iπ and

ρ̂(·) is concave in 2π. The result of the theorem follows from

the fact that concavity is maintained under composition of

a concave function with a linear transformation, summation

of concave functions, and point-wise minimum/infimum of a

concave function. A detailed proof is presented in Appendix C.

Observe that the four step T -stage sequential decomposition
of (44) can be combined into a one-step T -stage sequential
decomposition

1Vt(
1π) = inf

c∈Ĉ
g∈G

c̃∈C̃
l∈L

[

ρ̂(1Q(c) 1π, g)

+ 1Vt+1

(

(4Q(l) ◦ 3Q(c̃) ◦ 1Q(c)) 1π
)

]

.

(46)

which is a deterministic dynamic program in function space.

We present the finer decomposition in Theorem 3, since the

finer decomposition given by (44) has a smaller search space

than the more compact decomposition given by (46).

D. Computational Issues

The nested optimality equations of (44) are computationally

difficult to solve for two reasons. The first reason is that the

information states iπ, i = 1, . . . , 4, belong to an uncountable
space iΠ. Hence, to solve (44) we need to discretize iΠ. Most
discretization techniques result in an exponential growth of the

number of points as we approximate the value function more

closely, leading to the so called “curse of dimensionality”.

However, there are randomized techniques for discretization

that avoid such an exponential growth (see [40], [41]). The

bigger obstacle in efficiently solving (44) is that each step

of (44) involves solving a non-convex functional optimization

problem. For example, consider the optimization problem at
4t. The function 1Vt+1

(

4Q(l) 4π
)

is concave in 4π, but it is
neither concave nor convex in l, and we need to minimize
1Vt+1

(

4Q(l) 4π
)

over all choices of l. So, the only way to
do this is to evaluate 1Vt+1

(

4Q(l) 4π
)

over all choices of

l. There are |M||Y||M| different values for l. So the search
for optimal l at time 4t is exponential in |Y||M|. Similar
complexity results hold for 3t and 2t while at 1t, c can take
uncountably many values. These features makes it challenging

to obtain a numerical solution of (44).

The computational difficulty lies in the off-line solution

of (44). Once these nested optimality equations have been

solved, the on-line implementation of the solution is straight-

forward.

VI. DISCUSSION

We believe there are two conceptual approaches to solve

decentralized multi-agent optimization problems. The first

approach is as follows. Arbitrarily fix the decision strategies

of all agents. Now pick one agent, say i, and determine its
optimal strategy assuming that the strategy of all other agents

is fixed. Agent i will use this “optimal” strategy in the future.
Now pick another agent, say j, j �= i, and determine its
optimal strategy assuming that the strategy of all other agents

is fixed. Agent j will use this “optimal” strategy in the future.
Continue in this manner by cyclically changing the strategies

of all agents one-by-one; if the process converges then uni-

lateral deviation by any agent does not improve the system

performance. This algorithm is called orthogonal search2 [43]

and if it converges it can only guarantee P.B.P.O. (person by

person optimal) solutions [36]. However, for team problems

P.B.P.O. solutions are not always satisfactory. We want to

determine globally optimal strategies, so we do not follow

the above described approach to design decision strategies for

all agents.

The second approach to solve decentralized multi-agent

problems is by considering the problem from the designer’s

viewpoint. The designer knows the system model and the

statistics of the primitive random variables but does not know

the observations of any agent. The designer is concerned

with determining optimal decision rules for all agents. The

state of the system is appropriately defined so that it is

sufficient to keep track of the input-output mappings of all

agents. The decisions or control actions of the designer are

the decision rules iϕt of the original problem. The designer

does not take any observations, but remembers all the past

decisions. So at time it, he knows the system model, the

statistics of the primitive random variables, and his past control

actions iϕt−1. The optimization problem at the designer is

conceptually equivalent to a POMDP (partially observable

Markov decision problem). For POMDP the information state

is given by the conditional probability density of the state

of the system, conditioned on all the past observations and

control actions of the controller (see [2, Chapter 6]). For

Problem 1 at time it, the random vector (Xt,
iRt,

iBt) can be
considered as the system state for the above described alternate

formulation. This is because (Xt,
iBt) is a state for input-

output mapping3 at the encoder (this follows from the results

of Lemma 1 and Theorem 1) and iRt is a state for input-

output mapping at the receiver. Thus (Xt,
iRt,

iBt) is a state
for input-output mapping of the system. However, it is not a

state for optimization because the designer does not observe

this state. As mentioned above, the optimization problem at

the designer is conceptually equivalent to a POMDP. So, a

notion that is equivalent to conditional probability conditioned

on the controller’s observations and control action should

be an information state for optimization for the problem at

the designer. For this reason in Definition 4, we define the

information state at time it as

iπt = Pr
(

Xt,
iRt,

iBt

∣

∣

iϕt−1
)

(47)

which is the “conditional probability density” of the “state”

conditioned on the all the past observations and “control

2Fictitious play [42], which is used in game theory to find Nash equilibrium,
is a variation of orthogonal search.
3See [45] for different notions of state.
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actions” of the designer. Technically iπt is not a conditional

probability measure, rather it is a unconditional probability

measure. But this fact is immaterial for the methodology to

solve the problem. The result of Lemma 3 shows that iπt is

indeed an information state for optimization which leads to

the sequential decomposition given by Theorem 3.

VII. SOME POSSIBLE EXTENSIONS

We have presented the real-time communication problem

for the case of zero-delay, first-order Markov source, memo-

ryless forward and backward channels, and finite time horizon.

None of these assumptions are crucial; they were made for the

ease of exposition. We will briefly describe how to proceed

when these assumptions are relaxed. Due to lack of space, we

do not present the details of how to proceed in the general

case. The details are very similar to the extensions presented

in [24] for the case of real-time communication problem with

no feedback.

Suppose the distortion measure is not zero-delay but toler-

ates a fixed-finite delay d. So, for the first d time steps the
receiver does not generate the variables X̂1, . . . X̂d. From d+1
onwards, at time t the receiver generates an estimate X̂t of the

source output Xt−d at time t−d, and incurs an instantaneous
cost of ρ(Xt−d, X̂t). This problem can be converted into a

problem equivalent to Problem 1 by using the sliding window

repackaging of the source, similar to what is done in [16],

[23], [24]. A similar approach can be used when the source is

kth order Markov. A sliding window repackaging converts the
source to a first-order Markov source and the results of this

paper can be used.

If the forward and the backward channels have memory, the

encoder and the decoder need to keep track of the state of the

channels. Suppose iSt and
i
S̃t denote the state of the forward

and the backward channel, respectively, at time it. Modify the
definitions of beliefs as

iBt = Pr
(

iRt,
iSt,

i
S̃t

∣

∣

∣

i
Et

)

,

iAt = Pr
(

iEt,
iSt,

i
S̃t

∣

∣

∣

i
Rt

)

,

for i = 1, . . . , 4, t = 1, . . . , T . Then the results of Section III
and V can be proved using these modified beliefs. The proof

follows along the lines of [24, Section 6].

The formulation of Problem 1 can be extended to infinite

horizon, both for the total expected discounted distortion

criterion and the average distortion per unit time criterion.

Such an extension will result in a corresponding extensions of

Problem 2 to infinite horizon, which are standard centralized

infinite horizon problems and can be solved by usual fixed

point techniques. If the system is “well behaved”, the meta-

design will be stationary. But the control actions of the

deterministic optimization problem, which correspond to the

decision rules of Problem 1, will vary with time. So, optimal

infinite horizon strategies will be time varying [30], [31].

VIII. CONCLUSION

We have presented a systematic methodology for designing

an optimal communication strategy for real-time communi-

cation systems with noisy feedback. Optimal communication

strategies can be determined by solving the nested optimality

equations of Theorem 3. Note that these are not typical

dynamic programming equations as each step is a functional

optimization problem. Hence, although the systematic method-

ology presented here exponentially simplifies the complexity

of finding an optimal design as compared to a brute force

approach, solving the resultant nested optimality equations is

a formidable computational task. We hope that this problem

will motivate researchers to investigate computational methods

for decentralized optimization problems similar to Problem 1.
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APPENDIX A

RELATION BETWEEN THE BELIEFS

Proof of Lemma 1: We prove the four results separately.

1) Recall that 1et := (4et−1, xt),
1rt :=mt−1, and

1φt−1 :=
(4φt−2, lt−1). Consider any

1et and
1rt, then

1bt(
1rt) := Pr

(

1rt

∣

∣

1et;
1φt−1

)

= Pr
(

mt−1

∣

∣

4et−1, xt;
4φt−2, lt−1

)

=
∑

yt−1∈Y
mt−2∈M

Pr
(

yt−1, mt−1, mt−2

∣

∣

4et−1, xt;
4φt−2, lt−1

)

=
∑

yt−1∈Y
mt−2∈M

Pr
(

mt−1

∣

∣ yt−1, mt−2,
4et−1, xt;

4φt−2, lt−1

)

× Pr
(

yt−1, mt−2

∣

∣

4et−1, xt;
4φt−2, lt−1

)

(a)
=

∑

yt−1∈Y
mt−2∈M

I [mt−1 = lt−1(yt−1, mt−2)]

× Pr
(

yt−1, mt−2

∣

∣

4et;
4φt−2

)

=
∑

yt−1∈Y
mt−2∈M

I [mt−1 = lt−1(yt−1, mt−2)]

× 4bt−1(yt−1, mt−2)

=: 1F (4bt−1, lt−1)(mt−1) = 1F (4bt−1, lt−1)(
1rt),
(48)

where (a) follows from the sequential order in which

the system variables are generated.

2) Recall that 2et:=(1et, zt),
2rt:=(yt, mt−1), and

2φt−1 :=
(1φt−1, ct). Consider any

2et and
2rt, then

2bt(
2rt) := Pr

(

2rt

∣

∣

2et;
2φt−1

)

= Pr
(

yt, mt−1

∣

∣

1et, zt;
1φt−1, ct

)

= Pr
(

yt

∣

∣

1et, zt, mt−1;
1φt−1, ct

)

× Pr
(

mt−1

∣

∣

1et, zt;
1φt−1, ct

)

(b)
= PN

(

nt ∈ N : yt = h(zt, nt)
)

× Pr
(

mt−1

∣

∣

1et;
1φt−1

)

= PN

(

nt ∈ N : yt = h(zt, nt)
)

1bt(mt−1)

=: 2F (1bt, zt)(yt, mt−1) = 2F (1bt, zt)(
2rt),
(49)



592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 4, MAY 2008

where (b) follows from the sequential order in which

the system variables are generated.

3) Recall that 3et := 2et,
3rt := (yt, mt−1), and

3φt−1 :=
(2φt−1, gt). Consider any

3et and
3rt, then

3bt(
3rt) := Pr

(

3rt

∣

∣

3et;
3φt−1

)

= Pr
(

yt, mt−1

∣

∣

2et;
2φt−1, gt

)

(c)
= Pr

(

yt, mt−1

∣

∣

2et;
2φt−1

)

=: 2bt(yt, mt−1) = 2bt(
3rt), (50)

where (c) follows from the sequential order in which

the system variables are generated.

4) Recall that 4et:=(3et, ỹt),
4rt:=(yt, mt−1), and

4φt−1 :=
(3φt−1, c̃t). Consider any

4et and
4rt, then

4bt(
4rt) := Pr

(

4rt

∣

∣

4et;
4φt−1

)

= Pr
(

yt, mt−1

∣

∣

3et, ỹt;
3φt−1, c̃t

)

=
Pr

(

yt, mt−1, ỹt

∣

∣

3et;
3φt−1, c̃t

)

Pr
(

ỹt

∣

∣ 3et;
3φt−1, c̃t

) . (51)

Now consider

Pr
(

ỹt, yt, mt−1

∣

∣

3et;
3φt−1, c̃t

)

=
∑

z̃∈Z̃

Pr
(

ỹt, zt, yt, mt−1

∣

∣

3et;
3φt−1, c̃t

)

=
∑

z̃∈Z̃

Pr
(

ỹt

∣

∣ z̃t, yt, mt−1,
3et;

3φt−1, c̃t

)

× Pr
(

z̃t

∣

∣ yt, mt−1,
3et;

3φt−1, c̃t

)

× Pr
(

yt, mt−1

∣

∣

3et;
3φt−1, c̃t

)

(d)
=

∑

z̃∈Z̃

PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

× I [z̃t = c̃t(yt, mt−1)]

× Pr
(

yt, mt−1

∣

∣

3et;
3φt−1

)

,

=
∑

z̃∈Z̃

PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

× I [z̃t = c̃t(yt, mt−1)]

× 3bt(yt, mt−1), (52)

where (d) follows from the sequential order in which the
system variables are generated. Observe that Pr(ỹt | 3et;
3φt−1, c̃t) is the marginal of the LHS of (52). Com-

bine (51) and (52) to obtain

4bt(
4rt) =: 4F (3bt, ỹt, c̃t)(yt, mt−1)

= 4F (3bt, ỹt, c̃t)(
4rt), (53)

where 4F is defined by (51) and (52).

Proof of Lemma 2: We prove the five results separately.

1) Recall that 1et := (xt, zt−1, ỹt−1), 1Rt := mt−1, and
1φt−1 := (ct−1, gt−1, c̃t−1, lt−1). Consider any 1et and

1rt, then

1at(
1et) := Pr

(

1et

∣

∣

1Rt;
1φt−1

)

= Pr
(

xt, zt−1, ỹt−1
∣

∣mt−1;
1φt−1

)

=
1

Pr
(

mt−1

∣

∣

1φt−1
)

×
∑

yt−1∈Yt−1

mt−2∈Mt−2

Pr
(

xt, zt−1, yt−1, ỹt−1, mt−1
∣

∣

1φt−1
)

.

(54)

Now consider

Pr
(

xt, zt−1, yt−1, ỹt−1, mt−1
∣

∣

1φt−1
)

= Px1
(x1) I [z1 = c1(x1)]

× PN

(

n1 ∈ N : y1 = h(z1, n1)
)

I [z̃1 = c̃(y1)]

× PÑ

(

ñ1 ∈ Ñ : ỹ1 = h̃(z̃1, ñ1)
)

I [m1 = l1(y1)]

×
t−1
∏

i=2

{

PXi|Xi−1
(xi | xi−1)

× I
[

zi = ci(x
i, zi−1, ỹi−1)

]

× PN

(

ni ∈ N : yi = h(zi, ni)
)

× I [z̃i = c̃(yi, mi−1)]

× PÑ

(

ñi ∈ Ñ : ỹi = h̃(z̃i, ñi)
)

× I [mi = li(yi, mi−1)]

}

× PXt|Xt−1
(xt | xt−1). (55)

Observe that Pr(mt−1 | 1φt−1) is the marginal of the
LHS of (55). Combine (54) and (55) to obtain

1at(
1et)

=: 1Kt(
1a1, mt−1, c

t−1, c̃t−1, lt−1)(xt, zt−1, ỹt−1)

= 1Kt(
1a1, mt−1, c

t−1, c̃t−1, lt−1)(1et), (56)

where 1Kt(·) is given by (54) and (55).
2) Recall that 2et := (1et, zt),

2Rt := (yt, mt−1), and
2φt−1 := (1φt−1, ct). Consider any

2et and
2rt, then

2at(
2et) := Pr

(

2et

∣

∣

2Rt;
2φt−1

)

= Pr
(

1et, zt

∣

∣ yt, mt−1;
1φt−1, ct

)

=
Pr

(

1et, zt, yt

∣

∣ mt−1;
1φt−1, ct

)

Pr
(

yt

∣

∣mt−1;
1φt−1, ct

) . (57)

Now consider

Pr
(

1et, zt, yt

∣

∣ mt−1;
1φt−1, ct

)

= Pr
(

yt

∣

∣ zt,
1et, mt−1;

1φt−1, ct

)

× Pr
(

zt

∣

∣

1et, mt−1;
1φt−1, ct

)

× Pr
(

1et

∣

∣ mt−1;
1φt−1, ct

)

(a)
= PN

(

nt ∈ N : yt = h(zt, nt)
)

× I
[

zt = ct(
1et)

]

× Pr
(

1et

∣

∣ mt−1;
1φt−1

)

= PN

(

nt ∈ N : yt = h(zt, nt)
)

× I
[

zt = ct(
1et)

]

× 1at(
1et), (58)
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where (a) follows from the sequential order in which the
system variables are generated. Observe that Pr(mt−1 |
1φt−1, ct) is the marginal of the LHS of (58). Com-

bine (57) and (58) to obtain

2at(
2et) =: 2K(1at, yt, ct)(

1et, zt)

= 2K(1at, yt, ct)(
2et), (59)

where 2K(·) is given by (57) and (58).
3) Recall that 2et := (4et−1, xt, zt). Consider any xt and

2rt, then

ât(xt) := Pr
(

xt

∣

∣

2Rt;
2φt−1

)

=
∑

zt∈Z
4et−1∈

4Et−1

Pr
(

xt, zt,
4et−1

∣

∣

2Rt;
2φt−1

)

=
∑

zt∈Z
4et−1∈

4⌉t−1

2at(xt, zt,
4et−1) =: K̂(2at)(xt).

4) Recall that 3et := 2et,
3Rt := (yt, mt−1), and

3φt−1 :=
(2φt−1, gt). Consider any

3et and
3rt, then

3at(
3et) := Pr

(

3et

∣

∣

3Rt;
3φt−1

)

= Pr
(

2et

∣

∣ yt, mt−1;
2φt−1, gt

)

(b)
= Pr

(

2et

∣

∣ yt, mt−1;
2φt−1

)

=: 2at(
2et) = 2at(

3et). (60)

where (b) follows from the sequential order in which

the system variables are generated.

5) Recall that 4et := (3et, ỹt),
4Rt := (yt, mt−1), and

4φt−1 := (3φt−1, c̃t). Consider any
4et and

4rt, then

4at(
4et) := Pr

(

4et

∣

∣

4Rt;
4φt−1

)

= Pr
(

3et, ỹt

∣

∣ yt, mt−1;
3φt−1, c̃t

)

(c)
= Pr

(

3et, ỹt

∣

∣ yt, mt−1, z̃t;
3φt−1, c̃t

)

= Pr
(

ỹt

∣

∣

3et, yt, mt−1, z̃t;
3φt−1, c̃t

)

× Pr
(

3et

∣

∣ yt, mt−1, z̃t;
3φt−1, c̃t

)

(d)
= PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

× Pr
(

3et

∣

∣ yt, mt−1;
3φt−1

)

= PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

3at(
3et)

=: 4K(3at, z̃t)(
3et, ỹt) = 4K(3at, z̃t)(

4et),
(61)

where (c) follows from (4) and (d) follows from the

sequential order in which the system variables are gen-

erated.

APPENDIX B

RELATION BETWEEN INFORMATION STATES

Proof of Lemma 3: We prove the four results separately.

1) Recall that 2rt := (yt,
1rt),

2φt−1 := (1φt−1, ct), zt =
ct(xt,

1rt), and
2bt = 2F (1bt, zt). Consider a component

of 2πt,

2πt := Pr
(

xt,
2rt,

2bt

∣

∣

2φt−1
)

= Pr
(

xt, yt,
1rt,

2bt

∣

∣

2φt−1
)

=

∫

1bt∈1B

∑

zt∈Z

Pr
(

xt, yt, zt,
1rt,

1bt,
2bt

∣

∣

2φt−1
)

d 1bt

=

∫

1bt∈1B

∑

zt∈Z

Pr
(

2bt

∣

∣ xt, yt, zt,
1rt,

1bt;
1φt−1, ct

)

× Pr
(

yt

∣

∣ xt, zt,
1rt,

1bt;
1φt−1, ct

)

× Pr
(

zt

∣

∣ xt,
1rt,

1bt;
1φt−1, ct

)

× Pr
(

xt,
1rt,

1bt

∣

∣

1φt−1, ct

)

d 1bt

=

∫

1bt∈1B

∑

zt∈Z

I
[

2bt = 2F (1bt, zt)
]

× PN

(

nt ∈ N : yt = h(zt, nt)
)

× I
[

zt = ct(xt,
1bt)

]

× Pr
(

xt,
1rt,

1bt

∣

∣

1φt−1
)

d 1bt

=

∫

1bt∈1B

∑

zt∈Z

I
[

2bt = 2F (1bt, zt)
]

× PN

(

nt ∈ N : yt = h(zt, nt)
)

× I
[

zt = ct(xt,
1bt)

]

× 1πt(xt,
1rt,

1bt)d
1bt

=: 1Q(ct)
1πt (62)

2) Recall that 3rt :=
2rt,

3bt :=
2bt, and

3φt−1 :=(2φt−1, gt).
Consider a component of 3πt,

3πt(xt,
3rt,

3bt) := Pr
(

xt,
3rt,

3bt

∣

∣

3φt−1
)

= Pr
(

xt,
2rt,

2bt

∣

∣

2φt−1, gt

)

(a)
= Pr

(

xt,
2rt,

2bt

∣

∣

2φt−1
)

=: 2πt(xt,
2rt,

2bt), (63)

where (a) follows from the sequential order in which

the system variables are generated.

3) Recall that 4rt := 3rt,
4φt−1 := (3φt−1, c̃t), z̃t = c̃t(

3rt),
and 4bt = 4F (3bt, ỹt, c̃t). Consider a component of

4πt,

4πt(xt,
4rt,

4bt) := Pr
(

xt,
4rt,

4bt

∣

∣

4φt−1
)

= Pr
(

xt,
3rt,

4bt

∣

∣

3φt−1, c̃t

)

=

∫

3bt∈3B

∑

z̃t∈Z̃
ỹt∈Ỹ

Pr
(

xt, z̃t, ỹt,
3rt,

3bt,
4bt

∣

∣

3φt−1, c̃t

)

d 3bt

=

∫

3bt∈3B

∑

z̃t∈Z̃
ỹt∈Ỹ

Pr
(

4bt

∣

∣xt, z̃t, ỹt,
3rt,

3bt;
3φt−1, c̃t

)

× Pr
(

ỹt

∣

∣ xt, z̃t,
3rt,

3bt;
3φt−1, c̃t

)

× Pr
(

z̃t

∣

∣ xt,
3rt,

3bt;
3φt−1, c̃t

)

× Pr
(

xt,
3rt,

3bt

∣

∣

3φt−1, c̃t

)

d 3bt

(b)
=

∫

3bt∈3B

∑

z̃t∈Z̃
ỹt∈Ỹ

I
[

4bt = 4F (3bt, ỹt, c̃t)
]

× PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

× I
[

z̃t = c̃t(
3rt)

]

× Pr
(

xt,
3rt,

3bt

∣

∣

3φt−1
)

d 3bt

=

∫

3bt∈3B

∑

z̃t∈Z̃
ỹt∈Ỹ

I
[

4bt = 4F (3bt, ỹt, c̃t)
]

× PÑ

(

ñt ∈ Ñ : ỹt = h̃(z̃t, ñt)
)

× I
[

z̃t = c̃t(
3rt)

]

× 3πt(xt,
3rt,

3bt)d
3bt

=: 3Q(c̃t)
3πt, (64)

where (b) follows from the sequential order in which

the system variables are generated.
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4) Recall that 1φt := (4φt−1, lt),
1rt+1 = lt(

4rt), and
1bt+1 = 1F (4bt, lt). Consider a component of

1πt+1,

1πt+1(xt+1,
1rt+1,

1bt+1)

:= Pr
(

xt+1,
1rt+1,

1bt+1

∣

∣

1φt
)

=

∫

4bt∈4B

∑

xt∈X
4rt∈

4Rt

Pr
(

xt+1, xt,
4rt,

1rt+1,
4bt,

1bt+1

∣

∣

1φt
)

d 4bt

=

∫

4bt∈4B

∑

xt∈X
4rt∈

4Rt

Pr
(

xt,
4rt,

4bt

∣

∣

4φt−1, lt
)

× Pr
(

1rt+1

∣

∣ xt,
4rt,

4bt;
4φt−1, lt

)

× Pr
(

xt+1

∣

∣ xt,
4rt,

1rt+1,
4bt;

4φt−1, lt
)

× Pr
(

1bt+1

∣

∣ xt+1, xt,
4rt,

1rt+1,
4bt;

4φt−1, lt
)

d 4bt

(c)
=

∫

4bt∈4B

∑

xt∈X
4rt∈

4Rt

I
[

1bt+1 = 1F (4bt, lt)
]

× Pxt+1|xt
(xt+1 | xt)

× I
[

1rt+1 = lt(
4rt)

]

× Pr
(

xt,
4rt,

4bt

∣

∣

4φt−1
)

d 4bt

=

∫

4bt∈4B

∑

xt∈X
4rt∈

4Rt

I
[

1bt+1 = 1F (4bt, lt)
]

× Pxt+1|xt
(xt+1 | xt)

× I
[

1rt+1 = lt(
4rt)

]

× 4πt(xt,
4rt,

4bt)d
4bt

=: 4Q(lt)
4πt, (65)

where (c) follows from the sequential order in which

the system variables are generated.

5) Recall that 2rt := (yt, mt−1) and x̂t = gt(
2rt). Consider

E
{

ρ(xt, x̂t)
∣

∣

2φt−1, gt

}

=
∑

xt∈X
2rt∈

2Rt

Pr
(

xt,
2rt

∣

∣

2φt−1, gt

)

ρ
(

xt, gt(
2rt)

)

=
∑

xt∈X
2rt∈

2Rt

Pr
(

xt,
2rt

∣

∣

2φt−1
)

ρ
(

xt, gt(
2rt)

)

=
∑

xt∈X
2rt∈

2Rt

2πt(xt,
2rt)ρ

(

xt, gt(
2rt)

)

=: ρ̂(2πt, gt),

(66)

where 2πt(xt,
2rt) is the marginal of

2πt(xt,
2rt,

2bt).

The linearity of 1Q(·), 3Q(·), and 4Q(·) in the corresponding
iπt, and the concavity of ρ̂ in 2π follow immediately from

their definition.

APPENDIX C

CONCAVITY OF VALUE FUNCTIONS

Proof of Theorem 4: Recall that iQ(·), i = 1, 3, 4, is
a linear transformations of the corresponding iπ and ρ̂ is

a concave function in 2π. We will prove concavity of the
value function by backward induction. Observe that 1VT+1

is a concave function of 1π. Now assume that 1Vt+1 is a

concave function of 1π. We will show that iVt, i = 1, . . . , T
are concave functions of iπ. Define

4Wt(
4π, l) := 1Vt+1(

4Q(l) 4π). (67)

As a function of 4π, 4W is a composition of a concave function

with a linear transformation. Hence 4W is concave in 4π. Now,

4Vt(
4π) = min

l∈L

4W (4π, l). (68)

Since 4Wt is concave in 4π, and 4Vt is the point-wise

minimum of 4Wt,
4Vt is concave in

4π. Similar argument
extends to the other three cases. Hence iVt is concave in
iπ, i = 1, . . . , 4. Thus, by induction iVt, i = 1, . . . , 4,
t = 1, . . . , T is concave in iπ.
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