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Fundamental Limits of Remote Estimation of
Autoregressive Markov Processes Under

Communication Constraints
Jhelum Chakravorty, Member, IEEE , and Aditya Mahajan, Senior Member, IEEE

Abstract—The fundamental limits of remote estimation
of autoregressive Markov processes under communication
constraints are presented. The remote estimation system
consists of a sensor and an estimator. The sensor observes
a discrete-time autoregressive Markov process driven by a
symmetric and unimodal innovations process. At each time,
the sensor either transmits the current state of the Markov
process or does not transmit at all. The estimator estimates
the Markov process based on the transmitted observations.
In such a system, there is a trade-off between commu-
nication cost and estimation accuracy. Two fundamental
limits of this trade-off are characterized for infinite hori-
zon discounted cost and average cost setups. First, when
each transmission is costly, we characterize the minimum
achievable cost of communication plus estimation error.
Second, when there is a constraint on the average number
of transmissions, we characterize the minimum achievable
estimation error. Transmission and estimation strategies
that achieve these fundamental limits are also identified.

Index Terms— Constrained Markov decision processes,
event-based communication, real-time communication, re-
mote estimation, renewal theory, threshold strategies.

I. INTRODUCTION

A. Motivation and Literature Overview

I
N many applications such as networked control systems,
sensor and surveillance networks, and transportation net-

works, etc., data must be transmitted sequentially from one
node to another under a strict delay deadline. In many of such
real-time communication systems, the transmitter is a battery
powered device that transmits over a wireless packet-switched
network; the cost of switching on the radio and transmitting
a packet is significantly more important than the size of the
data packet. Therefore, the transmitter does not transmit all the
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time; but when it does transmit, the transmitted packet is as
big as needed to communicate the current source realization. In
this paper, we characterize fundamental trade-offs between the
estimation error (or distortion) and the cost or average number
of transmissions in such systems.

In particular, we consider a sensor that observes a first-order
autoregressive Markov process. At each time instant, based
on the current state of the process and the history of its past
decisions, the sensor determines whether or not to transmit the
current state. If the sensor does not transmit, the receiver must
estimate the state using the previously transmitted values. A
per-step distortion function measures the estimation error. We
investigate two fundamental trade-offs in this setup: 1) when
there is a cost associated with each communication, what is the
minimum expected estimation error plus communication cost;
and 2) when there is a constraint on the average number of
transmissions, what is the minimum estimation error. For both
these cases, we characterize the transmission and estimation
strategies that achieve the optimal trade-off.

Two approaches have been used in the literature to investi-
gate real-time or zero-delay communication. The first approach
considers coding of individual sequences [1]–[4]; the second
approach considers coding of Markov sources [5]–[10]. The
model presented above fits with the latter approach. In par-
ticular, it may be viewed as real-time transmission, which is
noiseless but expensive. In most of the results in the literature,
the focus has been on identifying sufficient statistics (or infor-
mation states) at the transmitter and the receiver; for some of
the models, a dynamic programming decomposition has also
been derived. However, very little is known about the solution
of these dynamic programs.

The communication system described above is much simpler
than the general real-time communication setup due to the
following feature: whenever the transmitter transmits, it sends
the current state to the receiver. These transmitted events reset

the estimation error to zero. We exploit these special features
to identify an analytic solution to the dynamic program corre-
sponding to the above communication system.

A static (one shot) remote estimation problem was first
considered in [11] in the context of information gathering in
organizations. The problem of optimal off line choice of mea-
surement times was considered in [12], whereas the problem of
optimal online choice of measurement times was considered in
[13]. The closely related problem of event-based sampling (also
called Lebesgue sampling) was considered in [14]. In addition,
several variations of the remote estimation problem have been
considered in the literature. The most closely related models
are [15]–[20], which are summarized below. Other related work
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includes censoring sensors [21], [22] (where a sensor takes
a measurement and decides whether to transmit it or not; in
the context of sequential hypothesis testing), estimation with
measurement cost [23]–[25] (where the receiver decides when
the sensor should transmit), sensor sleep scheduling [26]–[29]
(where the sensor is allowed to sleep for a pre-specified amount
of time); and event-based communication [30]–[32] (where the
sensor transmits when a certain event takes place). We contrast
our model with [18]–[20] below.

In [15], optimal remote estimation of i.i.d. Gaussian
processes is investigated under a constraint on the total number
of transmissions. The optimal estimation strategy is derived
when the transmitter is restricted to be of threshold-type.

In [16], the optimal remote estimation of a continuous-time
autoregressive Markov process driven by Brownian motion is
considered under a constraint on the number of transmissions.
The optimal transmission strategy is derived under an assump-
tion on the structure of the optimal estimation strategy. It is
shown that the optimal transmission strategy is of a threshold-
type, where the thresholds are determined by solving a se-
quence of nested optimal stopping problems.

In [17], optimal remote estimation of Gauss-Markov
processes is investigated when there is a cost associated with
each transmission. The optimal transmission strategy is derived
when the estimation strategy is restricted to be Kalman-like.

In [18]–[20], optimal remote estimation of autoregressive
Markov processes is investigated when there is a cost associated
with each transmission. It is assumed that the autoregressive
process is driven by a symmetric and unimodal noise process
but no assumption is imposed on the structure of the transmitter
or the receiver. Using different solution approaches ([18], [19]
use majorization theory while [20] uses person-by-person op-
timality), it is shown that the optimal transmission strategy is
threshold-based and the optimal estimation strategy is Kalman-
like (the precise form of these strategies is stated in Theorem 8).
Thus, the optimal transmission and estimation strategies are
easy to implement.

An immediate question is how to identify the optimal trans-
mission and estimation strategies for a given communication
cost. It is shown in [18]–[20] that the optimal estimation strat-
egy does not depend on the communication cost while the
optimal transmission strategy can be computed by solving an
appropriate dynamic program. However, the dynamic programs
presented in [18]–[20] do not exploit the threshold structure of
the optimal strategy.

In this paper, we provide an alternative approach to iden-
tify the optimal transmission strategies. We consider infinite
horizon remote estimation problem and show that there is
no loss of optimality in restricting attention to transmission
strategies that use a time homogeneous threshold. To determine
the optimal threshold, we first provide computable expressions
for the performance of a generic threshold-based transmission
strategy and then use these expressions to identify the best
threshold-based strategy. Thus, we show that the structure of
optimal strategies derived in [18]–[20] is also useful to compute
the optimal strategy.

B. Contributions

We investigate remote estimation for two models of Markov
processes—discrete state autoregressive Markov processes

(Model A) and continuous state autoregressive Markov pro-
cesses (Model B); both driven by symmetric and unimodal
innovations process—under two infinite horizon setups: the dis-
counted setup with discount factor β ∈ (0, 1) and the long term
average setup, which we denote by β=1 for uniformity of nota-
tion. For both models, we consider two fundamental trade-offs.

1) Costly communication: When each transmission costs λ
units, what is the minimum achievable cost of communi-
cation plus estimation error, which we denote by C∗

β(λ).
2) Constrained communication: When the average number

of transmissions is constrained by α ∈ (0, 1), what is the
minimum achievable estimation error, which we denote
by D∗

β(α) and refer to as the distortion-transmission

trade-off.
We completely characterize both trade-offs. In particular,

• In Model A, C∗
β(λ) is continuous, increasing, piecewise-

linear, and concave in λ while D∗
β(α) is continuous, de-

creasing, piecewise-linear, and convex in α. We derive
explicit expressions (in terms of simple matrix products)
for the corner points of both these curves.

• In Model B, C∗
β(λ) is continuous, increasing, and concave

in λ while D∗
β(α) is continuous, decreasing, and convex in

α. We derive an algorithmic procedure to compute these
curves by using solutions of Fredholm integral equations
of the second kind. When the innovations process is
Gaussian, we characterize how these curves scale as a
function of the variance σ2.

We also explicitly identify transmission and estimation strate-
gies that achieve any point on these trade-off curves. For all
cases, we show that: 1) there is no loss of optimality in restrict-
ing attention to time-homogeneous strategies; 2) the optimal
estimation strategy is Kalman-like; 3) the optimal transmission
strategy is a randomized threshold-based strategy for Model A
and is a deterministic threshold-based strategy for Model B.

In addition,

• In Model A, the optimal threshold as a function of λ or α
can be computed using a look-up table.

• In Model B, the optimal threshold as function of λ or α
can be computed using the solutions of Fredholm integral
equations of the second kind.

C. Notation

We use the following notation. Z, Z≥0 and Z>0 denote the
set of integers, the set of nonnegative integers and the set of
strictly positive integers, respectively. Similarly, R, R≥0 and
R>0 denote the set of reals, the set of non-negative reals and
the set of strictly positive reals, respectively. Upper-case letters
(e.g., X , Y ) denote random variables; corresponding lowercase
letters (e.g., x, y) denote their realizations. X1:t is a short
hand notation for the vector (X1, . . . , Xt). Given a matrix A,
Aij denotes its (i, j)th element, Ai denotes its ith row, A⊺

denotes its transpose. We index the matrices by sets of the form
{−k, . . . , k}; so the indices take both positive and negative val-
ues. For k ∈ Z>0, Ik denotes the identity matrix of dimension
k × k, and 1k denotes k × 1 vector of ones.
P(·) denotes the probability of an event, E[·] denotes the

expectation of a random variable, and 1 denotes the indicator
function of a statement. We follow the convention of calling
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Fig. 1. Block diagram of a remote estimation system.

a sequence {ak}∞k=0 increasing when a1 ≤ a2 ≤ · · · . If all
the inequalities are strict, then we call the sequence strictly
increasing.

II. MODEL AND PROBLEM FORMULATION

A. Model

Consider the following two models of a discrete-time Markov
process {Xt}∞t=0 with the initial state X0 = 0 and for t ≥ 0

Xt+1 = aXt +Wt (1)

where {Wt}∞t=0 is an i.i.d. innovations process. We consider
two specific models:

• Model A: a,Xt,Wt ∈ Z and Wt is distributed according
to a unimodal and symmetric pmf (probability mass func-
tion) p, i.e., for all e ∈ Z≥0, pe = p−e and pe ≥ pe+1. To
avoid trivial cases, we assume p0 is strictly less than 1.

• Model B: a,Xt,Wt ∈ R and Wt is distributed according
to a unimodal, differentiable and symmetric pdf (probabil-
ity density function) φ, i.e., for all e ∈ R≥0, φ(e) = φ(−e)
and for any δ ∈ R>0, φ(e) ≥ φ(e + δ).

For uniformity of notation, define X to be equal to Z for
Model A and equal to R for Model B. X≥0 andX>0 are defined
similarly.

A sensor sequentially observes the process and at each time,
chooses whether or not to transmit the current state. This
decision is denoted by Ut ∈ {0, 1}, where Ut = 0 denotes no
transmission and U1 = 1 denotes transmission. The decision to
transmit is made using a transmission strategyf={ft}∞t=0, where

Ut = ft(X0:t, U0:t−1). (2)

We use the short-hand notation X0:t to denote the sequence
(X0, . . . , Xt). Similar interpretations hold for U0:t−1.

The transmitted symbol, which is denoted by Yt, is given by

Yt =

{

Xt, if Ut = 1

E, if Ut = 0

where Yt = E denotes no transmission.
The receiver sequentially observes {Yt}∞t=0 and generates

an estimate {X̂t}
∞
t=0, X̂ ∈ X, using an estimation strategy

g = {gt}∞t=0, i.e.,

X̂t = gt(Y0:t). (3)

The fidelity of the estimation is measured by a per-step dis-
tortion d(Xt − X̂t). A block diagram of the above system is
shown in Fig. 1.

For both models, we assume the following:

• d(0) = 0 and for e �= 0, d(e) > 0;
• d(·) is even, i.e., for all e, d(e) = d(−e);
• d(·) is increasing, i.e., for e1 > e2 > 0, d(e1) ≥ d(e2);
• For Model B, we assume that d(·) is differentiable.

We also characterize our results for the following special case
of Model B:

• Gauss-Markov model: the densityφ is zero-mean Gaussian
with variance σ2 and the distortion is quadratic, i.e.,

φ(e) =
1√
2πσ

exp
(

−e2/(2σ2)
)

and d(e) = e2.

B. Performance Measures

Given a transmission and estimation strategy (f, g) and a
discount factor β ∈ (0, 1], we define the expected distortion
and the expected number of transmissions as follows. For β ∈
(0, 1), the expected discounted distortion is given by

Dβ(f, g) := (1−β)E(f,g)

[ ∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0=0

]

(4)

and for β = 1, the expected long-term average distortion is
given by

D1(f, g) := lim sup
T→∞

1

T
E

(f,g)

[

T−1
∑

t=0

d(Xt−X̂t)
∣

∣

∣
X0=0

]

. (5)

Similarly, for β ∈ (0, 1), the expected discounted number of
transmissions is given by

Nβ(f, g) := (1 − β)E(f,g)

[ ∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

(6)

and for β = 1, the expected long-term average number of
transmissions is given by

N1(f, g) := lim sup
T→∞

1

T
E

(f,g)

[

T−1
∑

t=0

Ut

∣

∣

∣
X0 = 0

]

. (7)

Remark 1: We use a normalizing factor of (1 − β) to have
a unified scaling for both discounted and long-term average
setups. In particular, we will show that for any strategy (f, g)

C1(f, g;λ)=lim
β↑1

Cβ(f, g;λ), and D1(f, g)=lim
β↑1

Dβ(f, g).

Similar notation is used in [33].

C. Problem Formulations

We are interested in the following two optimization problems.
Problem 1 (Costly Communication): In the model of

Section II-A, given a discount factor β ∈ (0, 1] and a com-
munication cost λ ∈ R>0, find a transmission and estimation
strategy (f ∗, g∗) such that

C∗
β(λ) := Cβ(f

∗, g∗;λ) = inf
(f,g)

Cβ(f, g;λ) (8)

where

Cβ(f, g;λ) := Dβ(f, g) + λNβ(f, g)

is the total communication cost and the infimum in (8) is taken
over all history-dependent strategies.
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Problem 2 (Constrained Communication): In the model of
Section II-A, given a discount factor β ∈ (0, 1] and a constraint
α ∈ (0, 1), find a transmission and estimation strategy (f ∗, g∗)
such that

D∗
β(α) := Dβ(f

∗, g∗) = inf
(f,g):Nβ(f,g)≤α

Dβ(f, g) (9)

where the infimum is taken over all history-dependentstrategies.
Remark 2: It can be shown for |a| ≥ 1 that limα→0 D

∗
1(α) =

∞1 and limα→1 D
∗
β(α) = 0.

The function D∗
β(α), β ∈ (0, 1], represents the minimum

expected distortion that can be achieved when the expected
number of transmissions are less than or equal to α. It is
analogous to the distortion-rate function in Information Theory;
for that reason, we call it the distortion-transmission function.

III. THE MAIN RESULTS

A. Structure of Optimal Strategies

To completely characterize the functions C∗
β(λ) and D∗

β(α),
we first establish the structure of optimal transmitter and
receiver.

Theorem 1 (Structural Results): Consider Problem 1 for
β ∈ (0, 1]. Then, for both Models A and B, we have the
following.

1) Structure of optimal estimation strategy: The optimal
estimation strategy X̂0 = 0 and for t > 0 is as follows:

X̂t =

{

Yt, if Yt �= E

aX̂t−1, if Yt = E

or equivalently

X̂t =

{

Xt, if Ut = 1

aX̂t−1, if Ut �= 1.

We denote this strategy by g∗.
2) Structure of optimal transmission strategy: Define Et :=

Xt − aX̂t−1, which we call the error process. Then there
exists a time-invariant threshold k such that the transmis-
sion strategy

Ut = f (k)(Et) :=

{

1, if |Et| ≥ k

0, if |Et| < k
(10)

is optimal.
The proof of the theorem is given in Section V.
Similar structural results were established for the finite hori-

zon setup in [18]–[20], which we use to establish Theorem 1.
See Section V for details. The transmission strategy of the form
(10) are also called event-driven transmission or delta sampling.

Remark 3: Each transmission resets the state of the error
process to w ∈ X with probability pw in Model A and with
probability density φ(w) in Model B. In between the transmis-
sion, the error process evolves in a Markovian manner. Thus
{Et}∞t=0 is a regenerative process.

1For |a| ≥ 1, a symmetric Markov chain as given by (1) does not have a
stationary distribution. Therefore, in the limit of no transmission, the expected
long-term average distortion diverges to ∞.

B. Performance of Generic Threshold-Based Strategies

Let F denote the class of all time-homogeneous threshold-
based strategies of the form (10). For β ∈ (0, 1] and e ∈ X,
define the following for a system that starts in state e and
follows strategy f (k):

• L
(k)
β (e): the expected distortion until the first transmission;

• M
(k)
β (e): the expected time until the first transmission;

• D
(k)
β (e): the expected distortion;

• N
(k)
β (e): the expected number of transmissions;

• C
(k)
β (e;λ): the expected total cost, i.e.,

C
(k)
β (e;λ) = D

(k)
β (e) + λN

(k)
β (e), λ ≥ 0.

Note that D(k)
β (0) = Dβ(f

(k), g∗), N (k)
β (0) = Nβ(f

(k), g∗)

and C
(k)
β (0;λ) = Cβ(f

(k), g∗;λ).

Define S(k) as follows:

S(k) :=

{

{−(k − 1), . . . , k − 1} , for Model A

(−k, k), for Model B.

Under strategy f (k), the transmitter does not transmit if Et ∈
S(k). For that reason, we call S(k) the silent set. Define linear
operator B(k) as follows:

• Model A: For any v(k) :S(k)→R, define operator B(k) as
[

B(k)v
]

(e) :=
∑

n∈S(k)

pn−aev(n), ∀ e ∈ S(k).

• Model B: For any v(k) :S(k)→R, define operator B(k) as
[

B(k)v
]

(e) :=

∫

S(k)

φ(n− ae)v(n)dn, ∀ e ∈ S(k).

Recall from Remark 3 that the state Et evolves in a Markov-
ian manner until the first transmission. We may equivalently
consider the Markov process until it is absorbed in (−∞,−k] ∪
[k,∞). Thus, from balance equation for Markov processes, we
have for all e ∈ S(k)

L
(k)
β (e) = d(e) + β

[

B(k)L
(k)
β

]

(e) (11)

M
(k)
β (e) = 1 + β

[

B(k)M
(k)
β

]

(e). (12)

Lemma 1: For any β ∈ (0, 1], (11) and (12) have unique and

bounded solutions L(k)
β and M

(k)
β that are

a) strictly increasing in k,
b) continuous and differentiable in k for Model B,
c) limβ↑1 L

(k)
β (e) = L

(k)
1 (e), limβ↑1 M

(k)
β (e) = M

(k)
1 (e),

for all e.

It can be shown that the operator B(k) is a contraction. There-
fore, the existence and uniqueness of the solution follows
from Banach fixed point theorem. a) follows from sample path
arguments; b) follows from elementary algebra; and c) follows
from continuity in β. See the supplementary material for a
detailed proof.

Theorem 2 (Renewal Relationships): For any β ∈ (0, 1],
the performance of strategy f (k) in both Models A and B is
given as follows:

1) Dβ(f
(0), g∗)=0, Nβ(f

(0), g∗)=1, and Cβ(f
(0), g∗;λ)=λ.
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2) For k ∈ X>0

Dβ

(

f (k), g∗
)

=
L
(k)
β (0)

M
(k)
β (0)

Nβ

(

f (k), g∗
)

=
1

M
(k)
β (0)

− (1− β)

Cβ

(

f (k), g∗;λ
)

=
L
(k)
β (0) + λ

M
(k)
β (0)

− λ(1− β).

The proof of the Theorem is given in Section VI.
Remark 4: There is a −(1− β) term in the expression of

N
(k)
β (0) because for k > 0, U0 = 0. Had we defined U0 = 1,

then we would have obtained the usual renewal relationship of
N

(k)
β (0) = 1/M

(k)
β (0).

Thus, to compute Dβ(f
(k), g∗) and Nβ(f

(k), g∗), one needs

to compute only L
(k)
β (0) and M

(k)
β (0). Computation of the

latter expressions is given in the next section.
Proposition 1: For both Models A and B,

1) C
(k)
β (0;λ) is submodular in (k, λ), i.e., for l > k,

C
(l)
β (0;λ)− C

(k)
β (0;λ) is decreasing in λ.

2) Let k∗β(λ) = arg infk≥0 C
(k)
β (0;λ) be the optimal k for a

fixed λ. Then k∗β(λ) is increasing in λ.

The proof of the proposition is in Appendix A.

C. Computation of L
(k)
β and M

(k)
β

1) Model A: For Model A, the values of L(k)
β and M

(k)
β can

be computed by observing that the operatorB(k) is equivalent to
a matrix multiplication. In particular, define the matrix P (k) as

P
(k)
ij := pi−j , ∀ i, j ∈ S(k).

Then
[

B(k)v
]

(e)=
∑

n∈S(k)

pn−aev(n)=
∑

n∈S(k)

P (k)
n,aev(n)=[P (k)v]ae.

(13)

With a slight abuse of notation, we are using v both as a
function and a vector. Define the matrix Q

(k)
β and the vector

d(k) as follows:

Q
(k)
β :=

[

I2k−1−βP (k)
]−1

, d(k) :=[d(−k+1), . . . , d(k−1)]⊺.

Then, (11)–(13) imply the following.
Proposition 2: In Model A, for any β ∈ (0, 1]

L
(k)
β =

[

I2k−1 − βP (k)
]−1

d(k) (14)

M
(k)
β =

[

I2k−1 − βP (k)
]−1

12k−1. (15)

See Section III-F for an example of these calculations.
2) Model B: For Model B, for any β ∈ (0, 1], (11) and

(12) are Fredholm integral equations of second kind [34]. The
solution can be computed by identifying the inverse operator

Q(k)
β =

[

I − βB(k)
]−1

Fig. 2. In Model A, (a) the optimal costly communication cost C∗

β
(λ);

(b) the distortion-transmission function D∗

β
(α).

which is given by

[

Q(k)
β v

]

(e) =

k
∫

−k

R
(k)
β (e, w; a)v(w)dw (16)

where for any given a, R(k)
β (·, ·; a) is the resolvent of φ and can

be computed using the Liouville-Neumann series (see [34] for
details). Since φ is smooth, (11) and (12) can also be solved by
discretizing the integral equation using quadrature methods. A
MATLAB implementation of this approach is available in [35].

D. Main Results for Model A

1) Results for Costly Communication:

Theorem 3: For β ∈ (0, 1], let K denote {k ∈ Z≥0 :

D
(k+1)
β (0) > D

(k)
β (0)}. For kn ∈ K, define

λ
(kn)
β :=

D
(kn+1)
β (0)−D

(kn)
β (0)

N
(kn)
β (0)−N

(kn+1)
β (0)

. (17)

Then, we have the following.

1) For any kn ∈ K and any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ], the strat-

egy f (kn) is optimal for Problem 1 with communication
cost λ.

2) The optimal performance C∗
β(λ) is continuous, con-

cave, increasing and piecewise linear in λ. The cor-
ner points of C∗

β(λ) are given by {(λ(kn)
β , D

(kn)
β (0) +

λ
(kn)
β N

(kn)
β (0))}kn∈K [see Fig 2(a)].

The proof of the theorem is given in Section VII.
2) Results for Constrained Communication: To describe

the solution of Problem 2, we first define Bernoulli randomized
strategy and Bernoulli randomized simple strategy [36].

Definition 1: Suppose we are given two (non-randomized)
time-homogeneous strategies f1 and f2 and a randomiza-
tion parameter θ ∈ (0, 1). The Bernoulli randomized strategy
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(f1, f2, θ) is a strategy that randomizes between f1 and f2 at
each stage; choosing f1 with probability θ and f2 with proba-
bility (1 − θ). Such a strategy is called a Bernoulli randomized
simple strategy if f1 and f2 differ on exactly one state, i.e., there
exists a state e0 such that

f1(e) = f2(e), ∀ e �= e0.

Theorem 4: For any β ∈ (0, 1] and α ∈ (0, 1), define

k∗β(α) = sup
{

k ∈ Z≥0 : Nβ

(

f (k), g∗
)

≥ α
}

= sup

{

k ∈ Z≥0 : M
(k)
β ≤ 1

1 + α− β

}

(18)

θ∗β(α) =
α−Nβ

(

f (k∗

β(α)+1), g∗
)

Nβ

(

f(k
∗

β(α)), g∗
)

−Nβ

(

f(k
∗

β(α)+1), g∗
)

=
M

(k∗

β(α)+1)

β − 1
1+α−β

M
(k∗

β(α)+1)

β −M
(k∗

β(α))

β

. (19)

For ease of notation, we use k∗ = k∗β(α) and θ∗ = θ∗β(α).

Let f ∗ be the Bernoulli randomized simple strategy (f (k∗),
f (k∗+1), θ∗), i.e.,

f ∗(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if |e| < k∗

0, w.p. 1− θ∗, if |e| = k∗

1, w.p. θ∗, if |e| = k∗

1, if |e| > k∗.

(20)

Then

1) (f ∗, g∗) is optimal for the constrained Problem 2 with
constraint α.

2) Let α(k) = Nβ(f
(k), g∗). Then, for α ∈ (α(k+1), α(k)),

k∗ = k and θ∗ = (α− α(k+1))/(α(k) − α(k+1)), and the
distortion-transmission function is given by

D∗
β(α) = θ∗D(k)

β + (1 − θ∗)D(k+1)
β . (21)

Moreover, the distortion-transmission function is con-
tinuous, convex, decreasing and piecewise linear in
α. Thus, the corner points of D∗

β(α) are given by

{(N (k)
β (0), D

(k)
β (0))}∞k=1 [see Fig. 2(b)].

The proof of the theorem is given in Section VII.
Corollary 1: In Model A, for any β ∈ (0, 1],

Dβ

(

f (1), g∗
)

= 0, and Nβ

(

f (1), g∗
)

= β(1− p0) := αc.

E. Main Results for Model B

1) Results for Costly Communication: Let ∂kD
(k)
β ,

∂kN
(k)
β and ∂kC

(k)
β denote the derivative of D

(k)
β , N (k)

β and

C
(k)
β with respect to k (in Lemma 6 we show that D(k)

β , N (k)
β

and C
(k)
β are differentiable in k).

Theorem 5: For β ∈ (0, 1], we have the following.

1) If the pair (λ, k) satisfies the following:

λ = −
∂kD

(k)
β (0)

∂kN
(k)
β (0)

(22)

then, the strategy (f (k), g∗) is optimal for Problem 1 with
communication cost λ. Furthermore, for any k > 0, there
exists a λ ≥ 0 that satisfies (22).

2) The optimal performance C∗
β(λ) is continuous, concave

and increasing function of λ.

The proof of the theorem is given in Section VIII. Algorithm 1
shows how to compute C∗

β(λ).

2) Results for Constrained Communication:

Theorem 6: For any β ∈ (0, 1] and α ∈ (0, 1), let k∗β(α) ∈
R≥0 be such that

N
(k∗

β(α))
β (0) = α. (23)

Such a k∗β(α) always exists and we have the following:

1) The strategy (f (k∗

β(α)), g∗) is optimal for Problem 2 with
constraint α.

2) The distortion-transmission function D∗
β(α) is continu-

ous, convex and decreasing in α and is given by

D∗
β(α) = D

(k∗

β(α))
β (0). (24)

The proof of the theorem is given in Section VIII. Algorithm 2
shows how to compute D∗

β(α).

3) Special Case of Model B-Gauss-Markov Model: In
general, the optimal thresholds, and the functions C∗

β(λ) and
D∗

β(α) depend on the noise distribution φ(·). For the Gauss-
Markov model, the dependence on the variance σ2 of the noise
may be quantified exactly.

For ease of notation, we drop the dependence on β from the
notation, and instead, show the dependence on σ. Thus, C∗

σ(λ)
denotes the optimal value for the costly communication case
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Fig. 3. Gauss-Markov model (σ2 = 1 and a = 1): (a) optimal costly
communication cost C∗

1 (α); (b) distortion-transmission function D∗

1(α).

when the noise variance is σ2. Similar notation holds for other
terms.

Theorem 7: For the Gauss-Markov model for Problem 1,
k∗σ(λ)=k∗1(λ/a

2σ2) andC∗
σ(λ)=σ2C∗

1(λ/σ
2). For Problem 2,

k∗σ(α) = σk∗1(α) and D∗
σ(α) = σ2D∗

1(α).
The proof of the theorem is given in Section VIII.
An implication of the above theorem is that we only need

to numerically compute C∗
1(λ) and D∗

1(α), which are shown in
Fig. 3. The optimal total communication cost and the distortion-
transmission function for any other value σ2 can be obtained by
simply scaling C∗

1(λ) and D∗
1(α) respectively.

F. An Example for Model A: Symmetric Birth-Death
Markov Chain

An example of a Markov process and a distortion function
that satisfy Model A is the following:

Example 1: Consider a Markov chain of the form (1) where
the pmf of Wt is given by

pn =

⎧

⎪

⎨

⎪

⎩

p, if |n| = 1

1− 2p, if n = 0

0, otherwise

where p∈(0, 1/3). The distortion function is taken as d(e)= |e|.
This Markov process corresponds to a symmetric, birth-death

Markov chain defined over Z as shown in Fig. 4, with the
transition probability matrix is given by

Pij =

⎧

⎪

⎨

⎪

⎩

p, if |i− j| = 1

1− 2p, if i = j

0, otherwise.

Fig. 4. Birth–death Markov chain.

1) Performance of a Generic Threshold-Based Strategy:

Lemma 2:

1) For β ∈ (0, 1)

D
(k)
β (0) =

sinh(kmβ)− k sinh(mβ)

2 sinh2(kmβ/2) sinh(mβ)

N
(k)
β (0) =

2βp sinh2(mβ/2) cosh(kmβ)

sinh2(kmβ/2)
− (1− β).

2) For β = 1

D
(k)
1 =

k2 − 1

3k
; N

(k)
1 =

2p

k2

λ
(k)
1 =

k(k + 1)(k2 + k + 1)

6p(2k + 1)
.

The proof is given in Section IX.
2) Optimal Strategy for Costly Communication: Using the

above expressions for D(k)
β (0) and N

(k)
β (0), we can identify K

and for each kn ∈ K, compute λ
(kn)
β according to (17). These

values are tabulated in Table I for different values of β (all
for p = 0.3). Using Table I, we can compute the corner points
(λ

(kn)
β , D

(kn)
β (0) + λ

(kn)
β N

(kn)
β (0)) of C∗

β(λ). Joining these
points by straight lines gives C∗

β(λ), as shown in Fig. 5. The
optimal strategy for a given λ can be computed from Table I.

For example, for λ=20, β=0.9, we can find from Table I(a)
that λ ∈ (λ

(4)
β , λ

(5)
β ]. Hence, k∗β = 5 (i.e., the strategy f (5) is

optimal) and the optimal total communication cost is

C∗
0.9(20) = D

(5)
0.9(0) + 20N

(5)
0.9 (0)

= 1.1844 + 20× 0.0111 = 1.4064.

3) Optimal Strategy for Constrained Communication: Us-
ing the values in Table I, we can also compute the corner points
(N

(k)
β (0), D

(k)
β (0)) of D∗

β(α). Joining these points by straight
lines gives D∗

β(α) (see Fig. 6). The optimal strategy for a given
α can be computed from Table I. For example, at α = 0.1 and
β = 0.9, k∗β(α) is the largest value of k such that N (k)

β (0) ≥ α.
Thus, from Table I(a), we get that k∗ = 2. Then, by (23)

θ∗ =
α−N

(3)
β

N
(2)
β −N

(3)
β

= 0.6899.

Let f ∗ = (f (2), f (3), θ∗). Then the Bernoulli randomized sim-
ple strategy (f ∗, g∗) is optimal for Problem 2 for β ∈ (0, 1).
Furthermore, by (21), D∗

β(α) = 0.5543.

IV. SALIENT FEATURES AND DISCUSSION

A. Comparison With Periodic and Randomized
Strategies

In our model, we assume that the transmission decision
depends on the state of the Markov process. In some of the
remote estimation literature, it is assumed that the transmission
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TABLE I

VALUES OF D
(k)
β

, N
(k)
β

AND λ
(k)
β

FOR DIFFERENT VALUES OF k AND β FOR THE MARKOV CHAIN OF EXAMPLE 1 WITH p = 0.3.

NOTE THAT D
(0)
β

(0) = D
(1)
β

(0); THEREFORE K DEFINED IN THEOREM 3 EQUALS Z>0 . (a) FOR β = 0.9. (b) FOR β = 0.95. (c) β = 1

Fig. 5. Plot of C∗

β
(λ) vs λ for the Markov chain of Example 1 with p =

0.3.

schedule does not depend on the state of the Markov process.
Two such commonly used strategies are:

1) Periodic transmission strategy with period T

Ut = fp(t mod T )

where
∑T−1

t=0 fp(t) = 1/α.
2) Random transmission strategy

Ut =

{

1, w.p. α

0, w.p. 1− α.

Below, we compare the performance of the threshold-based
strategy with these two strategies for the for the long-term
average setup for Problem 2 for Model B with a = 1.

1) Performance of the Periodic Strategy: In general, the
performance of a periodic transmission strategy depends on the
choice of transmission function fp. For ease of calculation we
consider the values of (α, T ) for which fp is unique.

1) α = 1/T , T ∈ Z>0, i.e., the transmitter remains silent
for (T − 1) steps and then transmits once. The expected
distortion in this case is

Dper(α)=
1

T
E

[

T−1
∑

t=0

E2
t

]

(a)
=

1

T
E

[

T−1
∑

t=0

tσ2

]

=
1

T

(T−1)T

2
σ2=

σ2

2

(

1

α
−1

)

where (a) uses Et = W0 +W1 +W2 + · · ·+Wt−1.

2) α = (T − 1)/T , T ∈ Z>0, i.e., the transmitter remains
silent for 1 step and then transmits for (T − 1) steps. The
expected distortion in this case is

Dper(α) =
1

T
E
[

E2
1

]

=
σ2

T
= σ2(1− α).

2) Performance of Generic Stationary Transmission

Strategy: Next, we derive an expression of Dβ(f, g
∗) for

arbitrary stationary transmission strategy f (that does not use
the value of the state Et to determine when to transmit; so the
receiver is the same as in Theorem 1) for the long-term average
setup for Model B when a = 1.

Proposition 3: For β = 1 and a = 1 in Model B, let f be
an arbitrary stationary transmission strategy. Let τ denote the
stopping time of the first transmission under f . Then

D1(f, g
∗) =

σ2

2

[

E(τ2)

E(τ)
− 1

]

.

Proof: For any t<τ , Et=W 2
0 + · · ·+W 2

t−1. Therefore,
E[E2

t ]= tσ2 and define L̂(t)=
∑t−1

s=1 E[E
2
s ]=(1/2)t(t−1)σ2.

Now, L1(0)=E[L̂(τ)]=(σ2/2)[E(τ2)−E(τ)] and M1(0)=
E(τ). By using the same argument as in the proof of Theorem 2,
we get D1(f, g

∗)=L1(0)/M1(0), which implies the result. �

3) Performance of Randomized Transmission Strategy:

For the randomized strategy defined above, τ is a Geom1(α)
random variable. Therefore, E(τ2) = 2/α2 − 1/α and E(τ) =
1/α. Hence, following Proposition 3, we have

Drand(α) = σ2

[

1

α
− 1

]

.

Fig. 7 shows that threshold-based strategy performs consid-
erably well compared to the periodic transmission strategy and
the randomized transmission strategy.

B. Discussion on Deterministic Implementation

The optimal strategy shown in Theorem 4 chooses a random-
ized action in states {−k∗, k∗}. It is also possible to identify
deterministic (non-randomized) but time-varying strategies that
achieve the same performance. We describe two such strategies
for the long-term average setup.
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Fig. 6. Plots of D∗

β
(α) versus α for different β for the birth-death Markov chain of Example 1 with p = 0.3. (a) D∗

β
(α) versus α for β = 0.9.

(b) D∗

β
(α) versus α for β = 0.95. (c) D∗

β
(α) versus α for β = 1.0.

Fig. 7. Comparison of the performances of the threshold-based strategy
(denoted by Dopt) with periodic and randomized transmission strategies
(denoted by Dper and Drand, respectively) for a Gauss-Markov process
with a = 1 and σ2 = 1.

1) Steering Strategies: Let a0t (respectively, a1t ) denote
the number of times the action ut = 0 (respectively, the action
ut = 1) has been chosen in states {−k∗, k∗} in the past, i.e.

ait =

t−1
∑

s=0

1 {|Es| = k∗, us = i} , i ∈ {0, 1}.

Thus, the empirical frequency of choosing action ut = i, i ∈
{0, 1}, in states {−k∗, k∗} is ait/(a

0
t + a1t ). A steering strategy

compares these empirical frequencies with the desired random-
ization probabilities θ0 = 1− θ∗ and θ1 = θ∗ and chooses an
action that steers the empirical frequency closer to the desired
randomization probability. More formally, at states {−k∗, k∗},
the steering transmission strategy chooses the action

argmin
i

{

θi − ait + 1

a0t + a1t + 1

}

in states {−k∗, k∗} and chooses deterministic actions according
to f ∗ [given in (20)] in states except {−k∗, k∗}. Note that the
above strategy is deterministic (non-randomized) but depends
on the history of visits to states {−k∗, k∗}. Such strategies
were proposed in [37], where it was shown that the steering
strategy descibed above achieves the same performance as the
randomized strategy f ∗ and hence is optimal for Problem 2
for β = 1. Variations of such steering strategies have been
proposed in [38] and [39], where the adaptation was done by
comparing the sample path average cost with the expected value
(rather than by comparing empirical frequencies).

2) Time-Sharing Strategies: Define a cycle to be the pe-
riod of time between consecutive visits of process {Et}∞t=0

to state zero. A time-sharing strategy is defined by a series
{(am, bm)}∞m=0 and uses strategy f (k∗) for the first a0 cycles,
uses strategy f (k∗+1) for the next b0 cycles, and continues

to alternate between using strategy f (k∗) for am cycles and
strategy f (k∗+1) for bm cycles. In particular, if (am, bm) =
(a, b) for all m, then the time-sharing strategy is a periodic
strategy that uses f (k∗) a cycles and f (k∗+1) for b cycles.

The performance of such time-sharing strategies was evalu-
ated in [40], where it was shown that if the cycle-lengths of the
time-sharing strategy are chosen such that

lim
M→∞

∑M
m=0 am

∑M
m=0(am + bm)

=
θ∗N (k∗)

1

θ∗N (k∗)
1 + (1− θ∗)N (k∗+1)

1

=
θ∗N (k∗)

1

α

then the time-sharing strategy {(am, bm)}∞m=0 achieves the
same performance as the randomized strategy f ∗ and hence,
is optimal for Problem 2 for β = 1.

V. PROOF OF THE STRUCTURAL RESULT: THEOREM 1

A. Finite Horizon Setup

A finite horizon version of Problem 1 has been investigated
in [19] (for Model A) and in [18] and [20] (for Model B), where
the structure of the optimal transmission and estimation strategy
was established.

Theorem 8: [18]–[20] For both Models A and B, for a finite
horizon version of Problem 1, we have the following.

1) Structure of optimal estimation strategy: the estimation
strategy defined in Theorem 1 is optimal.

2) Structure of optimal transmission strategy: define Et as in
Theorem 1. Then there exist threholds {kt}Tt=1 such that
the transmission strategy

Ut := ft(Et) =

{

1, if |Et| ≥ kt

0, if |Et| < kt
(25)

is optimal.

The above structural results were obtained in [19, Th. 2
and 3] for Model A and in [18, Th. 1] and [20, Lemmas 1, 3,
and 4] of Model B.

Remark 5: The results in [19] were derived under the
assumption that {Wt} has finite support. These results can be
generalized for {Wt} having countable support using ideas
from [41]. For that reason, we state Theorem 8 without any
restriction on the support of {Wt}. See the supplementary
document for the generalization of [19, Th. 2 and 3] to {Wt}
with countable support.
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B. Infinite Horizon Setup

In a general real-time communication system, the optimal
estimation strategy depends on the choice of the transmis-
sion strategy and vice-versa. Theorem 8 shows that when the
noise process and the distortion function satisfy appropriate
symmetry assumptions, the optimal estimation strategy can
be specified in closed form. Consequently, we can fix the
estimation strategy to be of the above form and consider the op-
timization problem of identifying the best transmission strategy.
This optimization problem has a single decision maker—the
transmitter—and we use techniques from centralized stochastic
control to solve it. Since the optimal estimation strategy is time-
homogeneous, one expects the optimal transmission strategy
(i.e., the choice of the optimal thresholds {kt}∞t=0) to be time-
homogeneous as well. The technical difficulty in establishing
such a result is that the state space is not compact and the
distortion function may be unbounded.

To prove Theorem 1, we proceed as follows:

1) we show that the result of the theorem is true for β ∈
(0, 1) and the optimal strategy is given by an appropriate
dynamic program;

2) we show that for the discounted setup, the value function
of the dynamic program is even and increasing on X;

3) for β=1, we use the vanishing discount approach to show
that the optimal strategy for the long-term average cost
setup may be determined as a limit to the optimal strategy
for the discounted cost setup is the discount factor β ↑ 1.

1) The Discounted Setup:

Lemma 3: In Model A. an optimal transmission strategy
is given by the unique and bounded solution of the following
dynamic program: for all e ∈ Z

Vβ(e;λ) = min

[

(1 − β)λ+ β
∑

w∈Z
pwVβ(w;λ),

(1− β)d(e) + β
∑

w∈Z
pwVβ(ae+ w;λ)

]

. (26)

Proof: When d(·) is bounded, the per-step cost c(e, u) :=
(1 − β)[λu + d(e)(1− u)], u ∈ {0, 1}, for a given λ is
also bounded and hence according to [42, Prop. 4.7.1,
Th. 4.6.3], there exists a unique and bounded solution Vβ(e;λ)
of the dynamic program (26).

When d(·) is unbounded, then for any communication cost
λ, we first define e0 ∈ Z≥0 < ∞ as

e0 := min

{

e : d(e) ≥ λ

1− β

}

.

Now, for any state e, |e| > e0, the per-step cost (1− β)d(e)
of not transmitting is greater then the cost of transmitting at
each step in the future, which is given by (1 − β)

∑∞
t=0 β

tλ =
λ. Thus, the optimal action is to transmit, i.e., f ∗(e) = 1.
Hence, the dynamic program can be written as

Vβ(e;λ) =

{

min{V 0
β (e;λ), V

1
β (e;λ)}, |e| > e0

V 1(e;λ), |e| ≥ e0

where

V 0
β (e;λ) = (1− β)d(e) + β

∑

w∈Z
pwVβ(ae + w;λ)

V 1
β (e;λ) = (1− β)λ+ β

∑

w∈Z
pwVβ(w;λ).

Let E∗ := {e : |e| ≥ e0}. Then, for all e ∈ E∗, Vβ(e;λ)
is constant. Thus, (26) is equivalent to a finite-state Markov
decision process with state space {−e0 + 1, . . . , e0 − 1} ∪ e∗

(where e∗ is a generic state for all states in the set E∗).
Since the state space is now finite, the dynamic program (26)
has a unique and bounded time-homogeneous solution by the
argument given for bounded d(·). �

Lemma 4: In Model B, an optimal transmission strategy
is given by the unique and bounded solution of the following
dynamic program: for all e ∈ R

Vβ(e;λ) = min

⎡

⎣(1− β)λ + β

∫

R

φ(w)Vβ(w;λ)dw,

(1 − β)d(e) + β

∫

R

φ(w)Vβ(ae+ w;λ)dw

⎤

⎦ . (27)

Proof: When d(·) is bounded, the per-step cost c(e, u), as
defined for Model A, for a given λ is also bounded. Let K =
(1− β) supe∈R{d(e)}. Then, the strategy “always transmit”
satisfies [43, Assumption 4.2.2] with Vβ(e;λ) ≤ K/(1− β).
Also, λ, d(·) and φ(·) satisfy [43, Assumption 4.2.1]. Hence,
the above dynamic program has a unique and bounded solution
due to [43, Th. 4.2.3].

When d(·) is unbounded, define e0 and e∗ as in the proof
of Lemma 3. By an argument similar to that in the proof of
Lemma 3, we can restrict the state space of (27) to [−e0, e0] ∪
e∗. Hence, the state space is compact and on this state space d(·)
is bounded. Thus, the dynamic program (27) has a unique and
bounded solution by the argument given for bounded d(·). �

Proof of Theorem 1 for β ∈ (0, 1): The structure of the
optimal strategies follows from Theorem 8. The optimal thresh-
olds are time invariant because the corresponding dynamic
programs (26) and (27) have a unique fixed point. �

2) Properties of the Value Function:

Proposition 4: For any a∈X>0, consider the two
Markov processes {X(+)

t }∞t=0 and {X(−)
t }∞t=0 such that X(+)

0 =

X
(−)
0 =0 and

X
(+)
t+1 = aX

(+)
t +Wt and X

(−)
t+1 = −aX

(−)
t +Wt.

Let V
(+)
β and V

(−)
β be the value functions corresponding to

{X(+)
t }∞t=0 and {X(+)

t }∞t=0. Then

V
(+)
β (e) = V

(−)
β (e), ∀ e.

Therefore, if k is an optimal threshold for {X(+)
t }∞t=0 then k is

also optimal for {X(−)
t }∞t=0.

See Appendix B for the proof.
Remark 6: As a consequence of the above proposition, we

can restrict attention to a > 0 while proving the properties of
the value function Vβ(·).
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Proposition 5: For any λ > 0 and β ∈ (0, 1), the value func-
tions Vβ(·;λ) given by (26) and (27) are even and increasing
on X≥0.

See Appendix B for the proof.
3) The Long-Term Average Setup:

Proposition 6: For any λ ≥ 0, the value function Vβ(·;λ)
for Models A and B, as given by (26) and (27), respectively,
satisfy the following SEN conditions of [42], [43]:

S1) There exists a reference state e0 ∈ X and a nonnegative
scalar Mλ such that Vβ(e0, λ) < Mλ for all β ∈ (0, 1).

S2) Define hβ(e;λ)=(1−β)−1[Vβ(e;λ)−Vβ(e0;λ)]. There
exists a function Kλ :X → R such that hβ(e;λ)≤Kλ(e)
for all e ∈ X and β ∈ (0, 1).

S3) There exists a non-negative (finite) constant Lλ such that
−Lλ ≤ hβ(e;λ) for all e ∈ X and β ∈ (0, 1).

Therefore, if fβ denotes an optimal strategy for β ∈ (0, 1), and
f1 is any limit point of {fβ}, then f1 is optimal for β = 1.

Proof: Let V 0
β (e, λ) denote the value function of the

“always transmit” strategy. Since Vβ(e, λ) ≤ V 0
β (e, λ) and

V 0
β (e, λ) = λ, (S1) is satisfied with Mλ = λ.
We show (S2) for Model B, but a similar argument works for

Model A as well. Since not transmitting is optimal at state 0,
we have

Vβ(0, λ) = β

∞
∫

−∞

φ(w)Vβ(w, λ)dw.

Let V 1
β (e, λ) denote the value function of the strategy that

transmits at time 0 and follows the optimal strategy from then
on. Then

V 1
β (e, λ) = (1 − β)λ+ β

∞
∫

−∞

φ(w)Vβ(w, λ)dw

= (1 − β)λ+ βVβ(0, λ). (28)

Since Vβ(e, λ) ≤ V 1
β (e, λ) and Vβ(0, λ) ≥ 0, from (28) we get

that (1− β)−1[Vβ(e, λ)− Vβ(0, λ)] ≤ λ. Hence (S2) is satis-
fied with Kλ(e) = λ.

By Proposition 5, Vβ(e, λ) ≥ Vβ(0, λ), hence (S3) is satis-
fied with Lλ = 0. �

Proof of Theorem 1 for β = 1: Since the value func-
tion Vβ(·, λ) satisfies the SEN conditions for reference state
e0 = 0, the optimaity of the threshold strategy for long-term
average setup follows from [42, Th. 7.2.3] for Model A and
[43, Th. 5.4.3] for Model B, respectively. �

VI. PROOF OF THEOREM 2

A. Preliminary Results

Define operator B as follows:

• Model A: For any v : Z → R, define operator B as

[Bv](e) :=
∞
∑

w=−∞
pwv(ae+ w), ∀ e ∈ Z.

Or, equivalently

[Bv](e) :=
∞
∑

n=−∞
pn−aev(n), ∀ e ∈ Z.

• Model B: For any bounded v :R→R, define operator B as

[Bv](e) :=
∫

R

φ(w)v(ae + w)dw, ∀ e ∈ R.

Or, equivalently

[Bv](e) :=
∫

R

φ(n− ae)v(n)dn, ∀ e ∈ R.

As discussed in Remark 3, the error process {Et}∞t=0 is a

controlled Markov process. Therefore, the functions D(k)
β and

N
(k)
β may be thought as value functions when strategy f (k) is

used. Thus, they satisfy the following fixed point equations: for
β ∈ (0, 1)

D
(k)
β (e) =

⎧

⎨

⎩

β
[

BD(k)
β

]

(0), if |e| ≥ k

(1 − β)d(e) + β
[

BD(k)
β

]

(e), if |e| < k
(29)

N
(k)
β (e) =

⎧

⎨

⎩

(1 − β) + β
[

BN (k)
β

]

(0), if |e| ≥ k

β
[

BN (k)
β

]

(e), if |e| < k.
(30)

Lemma 5: For β ∈ (0, 1], (29) and (30) have unique and

bounded solutions D(k)
β (e) and N

(k)
β (e) that

1) are even and increasing (on X≥0) in e for all k,
2) satisfy the SEN conditions (see Proposition 6) and

therefore

D
(k)
1 (e) = lim

β↑1
D

(k)
β (e) and N

(k)
1 (e) = lim

β↑1
N

(k)
β (e).

3) D
(k)
β (e) is increasing in k for all e and N

(k)
β (e) is strictly

decreasing in k for all e.

The proofs of 1) and 2) follow from the arguments similar to
those of Section V and are therefore omitted. The proof of 3) is
given in the supplementary material.

B. Proof of Theorem 2

We prove the result for the discounted cost setup, β ∈ (0, 1).
The result extends to the long-term average cost setup, β = 1,
by using the vanishing discount approach similar to the argu-
ment given in Section V.

We first consider the case k = 0. In this case, the recursive
definition of D(k)

β and N
(k)
β , given by (29) and (30), simplify to

the following:

D
(0)
β (e) = β

[

BD(0)
β

]

(0)

N
(0)
β (e) = (1− β) + β

[

BN (0)
β

]

(0).

It can be easily verified that D(0)
β (e)=0 and N

(0)
β (e)=1,

e∈X, satisfy the above equations. Therefore, C
(0)
β (e;λ)=

Cβ(f
(0), g∗;λ)=λ. This proves the first part of the proposition.

For k > 0, let τ (k) denote the stopping time when the
Markov process in both Model A and B starting at state 0 at time
t = 0 leaves the set S(k). Note that τ (0) = 1 and τ (∞) = ∞.
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Fig. 8. Plot of k∗
β
(λ) for Model A.

Then

L
(k)
β (0)=E

⎡

⎣

τ (k)−1
∑

t=0

βtd(Et)
∣

∣E0 = 0

⎤

⎦ (31)

M
(k)
β (0)=E

⎡

⎣

τ (k)−1
∑

t=0

βt
∣

∣E0 = 0

⎤

⎦=
1− E

[

βτ (k) |E0 = 0
]

1− β

(32)

D
(k)
β (0)=E

⎡

⎣(1−β)

τ (k)−1
∑

t=0

βtd(Et)+ βτ (k)

D
(k)
β (0)

∣

∣

∣
E0 = 0

⎤

⎦

(33)

N
(k)
β (0)=E

[

βτ (k)
(

(1 − β) +N
(k)
β (0)

)∣

∣

∣
E0 = 0

]

. (34)

Substituting (31) and (32) in (33) we get

D
(k)
β (0) = (1− β)L

(k)
β (0) +

[

1− (1− β)M
(k)
β (0)

]

D
(k)
β (0).

Rearranging, we get that

D
(k)
β (0) =

L
(k)
β (0)

M
(k)
β (0)

.

Similarly, substituting (31) and (32) in (34) we get

N
(k)
β (0) =

[

1− (1− β)M
(k)
β (0)

] [

(1 − β) +N
(k)
β (0)

]

.

Rearranging, we get that

N
(k)
β (0) =

1

M
(k)
β (0)

− (1− β).

The expression for C(k)
β (0;λ) follows from the definition.

VII. PROOFS OF RESULTS FOR MODEL A

A. Proof of Theorem 3

By Proposition 1, k∗β(λ) = arg infk≥0 C
(k)
β (0;λ) is increas-

ing in λ. Let K denote the set of all possible values of
k∗β(λ). Since k is integer-valued, the plot of k∗β vs λ must
be a staircase function as shown in Fig. 8. In particular, there
exists an increasing sequence {λ(kn)

β }kn∈K such that for λ ∈
(λ

(kn−1)
β , λ

(kn)
β ], k∗β(λ) = kn. We will show that for any kn

C
(kn)
β

(

0;λ
(kn)
β

)

= C
(kn+1)
β

(

0;λ
(kn)
β

)

. (35)

Simplifying (35), we get that λ(kn)
β is given by (17).

Proof of (35): For any λ ∈ (λ
(kn−1)
β , λ

(kn)
β ],

C
(kn)
β (0;λ) ≤ C

(kn+1)
β (0;λ). In particular, for λ = λ

(kn)
β

C
(kn)
β

(

0;λ
(kn)
β

)

≤ C
(kn+1)
β

(

0;λ
(kn)
β

)

. (36)

Similarly, for any λ ∈ (λ
(kn)
β , λ

(kn+1)
β ], C

(kn+1)
β (0;λ) ≤

C
(kn)
β (0;λ). Since both terms are continuous in λ, taking limit

as λ ↓ λ
(kn)
β , we get

C
(kn+1)
β

(

0;λ
(kn)
β

)

≤ C
(kn)
β

(

0;λ
(kn)
β

)

. (37)

Equation (35) follows from combining (36) and (37).
1) Proof of Part 1): By definition of λ(kn)

β , the strategy

f (kn) is optimal for λ ∈ (λ
(kn−1)
β , λ

(kn)
β ].

2) Proof of Part 2): Recall C∗
β(λ) = infk≥0 C

(k)
β (0;λ).

By definition, for λ ≥ 0, C(k)
β (0;λ), is increasing and affine in

λ. Therefore, its pointwise minimum (over k) is increasing and
concave in λ.

As shown in part 1), forλ∈(λ
(kn)
β , λ

(kn+1)
β ], C∗

β(λ)=C
(kn+1)
β

(0;λ), which is linear (and continuous) in λ; hence, C∗
β(λ) is

piecewise linear. Finally, by (35), C(kn)
β (0;λ

(kn)
β )=C

(kn+1)
β (0;

λ
(kn)
β ). Therefore, at the corner points, lim

λ↑λ(kn+1)

β

C∗
β(λ) =

lim
λ↓λ(kn+1)

β

C∗
β(λ). Hence, C∗

β(λ) is continuous in λ.

B. Proof of Theorem 4

Note that by definition, θ∗ ∈ [0, 1] and

θ∗Nβ

(

f (k∗), g∗
)

+ (1 − θ∗)Nβ

(

f (k∗+1), g∗
)

= α. (38)

1) Proof of Part 1): The optimality of (f ∗, g∗) relies on
the following characterization of the optimal strategy stated in
[44, Prop. 1.2]. The characterization was stated for the long-
term average setup but a similar result can be shown for the
discounted case as well, for example, by using the approach of
[45]. Also, see [46, Th. 8.4.1] for a similar sufficient condition
for general constrained optimization problem.

A (possibly randomized) strategy (f ◦, g◦) is optimal for a
constrained optimization problem with β ∈ (0, 1] if the follow-
ing conditions hold:

C1) Nβ(f
◦, g◦) = α.

C2) There exists a λ◦ ≥ 0 such that (f ◦, g◦) is optimal for
Cβ(f, g;λ

◦).

We will show that the strategies (f ∗, g∗) satisfy C1) and C2)
with λ◦ = λ

(k∗)
β .

(f ∗, g∗) satisfy C1) due to (38). For λ = λ
(k∗)
β , both f (k∗)

and f (k∗+1) are optimal for Cβ(f, g;λ). Hence, any strategy
randomizing between them, in particular f ∗, is also optimal
for Cβ(f, g;λ). Hence (f ∗, g∗) satisfies C2). Therefore, by
[44, Prop. 1.2], (f ∗, g∗) is optimal for Problem 2.

2) Proof of Part 2): The expression of k∗ and θ∗ follow
directly from (18) and (19). The form of D∗

β(α) given in (21)
follows immediately from the fact that (f ∗, g∗) is a Bernoulli
randomized simple strategy.
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D∗
β(α) is the solution to a constrained optimization prob-

lem with the constraint set {(f, g) : Nβ(f, g) ≤ α}. There-
fore, it is decreasing and convex in the constraint α. The
optimality of (f ∗, g∗) implies (21). Piecewise linearity of
D∗

β(α) follows from (21). Finally, by definition of α(k)

and θ, lima↑α(k) D∗
β(α) = D

(k)
β (0) = lima↓α(k) D∗

β(α). Hence,
D∗

β(α) is continuous in α.

VIII. PROOFS OF RESULTS FOR MODEL B

Lemma 6: In Model B, for β ∈ (0, 1]

1) D
(k)
β and N

(k)
β are continuous in k;

2) N
(k)
β is strictly decreasing in k;

3) D
(k)
β , N (k)

β and C
(k)
β are differentiable in k

The proof follows from Lemma 1 and Theorem 2. �

A. Proof of Theorem 5

1) Proof of Part 1): The choice of λ implies that
∂kC

(k)
β (0;λ) = 0. Hence strategy (f (k), g∗) is optimal for the

given λ.
Note that, (22) can also be written as λ = ((M

(k)
β (0))2

∂kD
(k)
β (0))/∂kM

(k)
β (0). By Lemma 1, ∂kM

(k)
β (0) > 0 and by

Lemma 5, ∂kD
(k)
β (0) ≥ 0. Hence, for any k > 0, λ given by

(22) is positive. This completes the first part of the proof.
2) Proof of Part 2): The monotonicity and concavity of

C∗
β(λ) follows from the same argument as in Model A.

Note that k∗β(λ) = arg infk≥0 C
(k)
β (0;λ) can take a value

∞ (which corresponds to the strategy “never communicate”).
Thus, the domain of k is X≥0 ∪ {∞}, which is a compact set.
Now,C∗

β(λ) = mink∈[0,∞]C
(k)
β (0;λ), where C(k)

β (0;λ) is con-
tinuous in both λ and k. Since, C∗

β(λ) is pointwise minimum of
bounded continuous functions, where the minimization is over
a compact set, it is continuous.

B. Proof of Theorem 6

1) Proof of Part 1): Recall conditions C1) and C2), given
in Section VII-B, for a strategy to be optimal for a constrained
optimization problem. We will show that for a given α, there
exists a k∗β(α) ∈ R≥0 such that (f (k∗

β(α)), g∗) satisfy conditions
C1) and C2).

By Lemma 6, N (k)
β (0) is continuous and strictly decreas-

ing in k. It is easy to see that limk→0 N
(k)
β (0) = 1 and

limk→∞ N
(k)
β (0) = 0. Hence, for a given α ∈ (0, 1), there ex-

ists a k∗β(α) such that N
(k∗

β(α))

β (0) = Nβ(f
(k∗

β(α)), g∗) = α.

Thus, (f (k∗

β(α)), g∗) satisfies C1).
Now, for k∗β(α), we can find a λ satisfying (22) and hence

we have by Theorem 5 that strategy (f (k∗

β(α)), g∗) is optimal
for Cβ(f, g;λ), and therefore satisfies C2); and is consequently
optimal for Problem 2.

2) Proof of Part 2): By Lemma 6, Ñ(k) := N
(k)
β (0) is

strictly decreasing and continuous in k. Therefore, Ñ−1 exists
and is continuous. Now

D∗
β(α) = min

{k :k≤Ñ−1(α)}
D

(k)
β (0)

where, by Lemma 6, D
(k)
β (0) is continuous in k. Thus, by

Berge’s maximum theorem, D∗
β(α) is continuous in α.

C. Proof of Theorem 7

To prove the theorem, we first prove the following lemma.
Lemma 7: For Gauss-Markov model (a special case of

Model B), let L(k)
σ and M

(k)
σ be the solutions of (11) and (12),

respectively, when the variance of Wt is σ2. Then

L(k)
σ (e) = σ2L

( k
σ )

1

( e

σ

)

, M (k)
σ (e) = M

( k
σ )

1

( e

σ

)

(39)

D(k)
σ (e) = σ2D

( k
σ )

1

( e

σ

)

, N (k)
σ (e) = N

( k
σ )

1

( e

σ

)

. (40)

Proof: Define L̂
(k)
σ (e) := σ2L

(k/σ)
1 (e/σ). Now consider

[

B(k)
σ L̂(k)

σ

]

(e) =

k
∫

−k

φ(n − ae)L̂(k)
σ (n)dn, ∀ e ∈ R

(a)
= σ2

k/σ
∫

−k/σ

φ(z − ae/σ)L
( k

σ )
1 (z)dz

= σ2

[

B(
k
σ )

1 L
( k

σ )
1

]

( e

σ

)

where (a) uses a change of variables n = σz. Therefore
[

L̂(k)
σ − βB(k)

σ L̂(k)
σ

]

(e) = σ2

[

L
( k

σ )
1 − βB(

k
σ )

1 L
( k

σ )
1

]

( e

σ

)

= σ2 e
2

σ2
= e2.

But, by Lemma 1, the above equation has a unique solution
L
(k)
σ . Therefore L(k)

σ = L̂
(k)
σ .

A similar argument may be used to prove the scaling ofM (k)
σ .

The scaling of D(k)
σ and N

(k)
σ follow from Theorem 2. �

Proof of Theorem 7: The theorem follows from Lemma 7,
Theorem 2 and elementary algebra.

IX. PROOFS OF RESULTS FOR EXAMPLE 1

Lemma 8: Define for β ∈ (0, 1]

Kβ = −2− (1 − β)

βp
and mβ = cosh−1(−Kβ/2)

Then

[

Q
(k)
β

]

ij
=

1

βp

[

A
(k)
β

]

ij

b
(k)
β

, i, j ∈ S(k)

where, for β ∈ (0, 1)
[

A
(k)
β

]

ij
= cosh ((2k − |i− j|)mβ)− cosh ((i+ j)mβ)

b
(k)
β = sinh(mβ) sinh(2kmβ)

and for β = 1
[

A
(k)
1

]

ij
= (k −max{i, j}) (k +min{i, j})

b
(k)
1 = 2k.
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In particular, the elements [Q
(k)
β ]0j are given as follows. For

β ∈ (0, 1)

[

Q
(k)
β

]

0j
=

1

βp

cosh ((2k − |j|)mβ)− cosh(jmβ)

2 sinh(mβ) sinh(2kmβ)
(41)

and for β = 1

[

Q
(k)
1

]

0j
=

k − |j|
2p

. (42)

Proof: The matrix I2k−1 − βP (k) is a symmetric tridiag-
onal matrix given by

I2k−1−βP (k)=−βp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Kβ 1 0 · · · · · · 0
1 Kβ 1 0 · · · 0
0 1 Kβ 1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 Kβ 1
0 0 · · · 0 1 Kβ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Q
(k)
β is the inverse of the above matrix. The inverse of the tridi-

agonal matrix in the above form with Kβ ≤ −2 are computed
in closed form in [47]. The result of the lemma follows from
these results. �

A. Proof of Lemma 2

By substituting the expression for Q(k)
β from Lemma 8 in the

expressions for L(k)
β and M

(k)
β from Proposition 2, we get that

1) For β ∈ (0, 1)

L
(k)
β (0) =

sinh(kmβ)− k sinh(mβ)

4βp sinh2(mβ/2) sinh(mβ) cosh(kmβ)

M
(k)
β (0) =

sinh2(kmβ/2)

2βp sinh2(mβ/2) cosh(kmβ)
.

2) For β = 1

L
(k)
1 (0) = k(k2 − 1)/(6p), M

(k)
1 (0) = k2/(2p).

The results of the lemma follow using the above expressions
and Theorem 2. The expression for λ(k)

1 is obtained by plugging

the expressions of D(k+1)
1 , D(k)

1 , N (k+1)
1 , and N

(k)
1 in (17).

X. CONCLUSION

We characterize two fundamental limits of remote estimation
of autoregressive Markov processes under communication con-
straints. First, when each transmission is costly, we characterize
the minimum achievable cost of communication plus estimation
error. Second, when there is a constraint on the average num-
ber of transmissions, we characterize the minimum achievable
estimation error.

We also identify transmission and estimation strategies that
achieve these fundamental limits. The structure of these optimal
strategies had been previously identified by using dynamic
programming for decentralized stochastic control systems. In
particular, the optimal transmission strategy is to transmit when

the estimation error process exceeds a threshold and the optimal
estimation strategy is to select the transmitted state as the
estimate, whenever there is a transmission. We use ideas based
on renewal theory to identify the performance of a generic
strategy that has such a structure. For the case of costly com-
munication, we identify the cost of communication for which
a particular threshold-based strategy is optimal; for the case of
constrained communication, we identify (possibly randomized)
threshold-based strategies that achieve the communication
constraint.

These results are derived under idealized assumptions on the
communication channel: communication is noiseless and with-
out any constraint on the transmission rate or the transmission
bandwidth. Under these assumptions, the error process resets
after each transmission (see Remark 3). This reset property
is critical to derive the structure of optimal transmission and
estimation strategies (Theorems 1 and 8). In the absence of such
a structural result, the solution methodology developed in this
paper does not work and the optimal transmission and estima-
tion strategies have to be identified by numerically solving the
(decentralized) dynamic programs described in [6] and [8].

Having said that, the transmission and estimation strategies
described in Theorems 1 and 8 may be used as heuristic sub-
optimal strategies when the communication channel does not
satisfy the idealized assumptions described above. In that case,
it may be possible to use the solution methodology developed
in this paper to obtain performance bounds on such strategies.

A similar remark holds for multidimensional autoregressive
processes. It is reasonable to expect (although we are not
aware of a proof of this statement) that for multidimensional
autoregressive processes, the optimal estimation strategy will
be similar to that described in Theorems 1 and 8 while the
optimal transmission strategy will be to transmit when the error
process lies outside a (multidimensional) ellipsoid. The perfor-
mance of such strategies can be evaluated using the solution
methodology developed in this paper. The renewal relationships
derived in Theorem 2 also hold for multidimensional autore-
gressive processes. The only difference is that L

(k)
β (0) and

M
(k)
β (0) are computed by solving multidimensional Fredholm

integral equations of the second kind. The optimal transmission
strategies can then be computed by solving multidimensional
versions of (22) (for costly communication) and (23) (for con-
strained communication). However, it is not immediately clear
whether these equations will have a unique solution. Further
investigation is required to obtain algorithms that identify the
optimal transmission ellipsoid.

Finally, the solution methodology developed in this paper to
identify optimal thresholds is also of independent interest. In
various applications of Markov decision processes threshold-
based strategies are optimal. The approach developed in this
paper is directly applicable to such models.

APPENDIX A

PROOF OF PROPOSITION 1

1) C
(l)
β (0;λ)−C

(k)
β (0;λ)=(D

(l)
β (0)−D

(k)
β (0))−λ(N

(k)
β (0)−

N
(l)
β (0)). By Lemma 1 and Theorem 2, N

(k)
β (0)−

N
(l)
β (0) is positive, hence C

(l)
β (0;λ)− C

(k)
β (0;λ) is

decreasing in λ. Hence C(k)
β (0;λ) is submodular.
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2) Note that k∗β(λ) = arg infk≥0 C
(k)
β (0;λ) can take a value

∞ (which corresponds to the strategy “never communi-
cate”). Thus, the domain of k is X≥0 ∪ {∞}, which is
compact. Hence, by [48, Th. 2.8.2], k∗β is increasing in λ.

APPENDIX B
PROOFS OF PROPOSITIONS 4 AND 5

We prove the results for Model A when the horizon T is
finite. The results then follow by taking limits as T → ∞. The
proofs for Model B are almost identical.

The value function for the finite horizon setup for β ∈ (0, 1]is
given by Vβ,T+1 = 0 and for t = T, . . . , 1

Vβ,t(e;λ) = min

{

(1− β)λ + β

∞
∑

n=−∞
pnVβ,t+1(n;λ),

(1 − β)d(e) + β

∞
∑

n=−∞
pn−aeVβ,t+1(n;λ)

}

. (43)

The value functions V (+)
t and V

(−)
t are defined similarly.

For ease of notation, we drop β and λ in the rest of the
discussion in this Appendix.

Lemma 9: The value functions Vt(·), V (+)
t (·) and V

(−)
t (·)

are even.
Proof: For all a ∈ X, the per-step costs d(e) and λ

are even and the transition probabilities Pen(0) = pn−ae and
Pen(1) = pn satisfy Pen(u) = P(−e)(−n)(u) for u ∈ {0, 1}.
Therefore, Vt(e) is even [49, Th. 1]. A similar argument holds

for V (+)
t (e) and V

(−)
t (e). �

Lemma 10: For the finite horizon setup, V (+)
t (e) = V

(−)
t (e).

Proof: We prove the result by backward induction. The
result is trivially true for T + 1 as V

(+)
T+1(e) = V

(−)
T+1(e) = 0,

which forms the basis of the induction. Assume V
(+)
t+1 (e) =

V
(−)
t+1 (e) for all e ∈ X. Define

V̂
(+)
t (e)=

∞
∑

n=−∞
pn−aeV

(+)
t+1(n) V̂

(−)
t (e)=

∞
∑

n=−∞
pn+aeV

(−)
t+1(n).

Then

V̂
(+)
t (e)=

∞
∑

n=−∞
pn−aeV

(+)
t+1 (n)=

∞
∑

−n=−∞
p−n−aeV

(+)
t+1 (−n)

(a)
=

∞
∑

n=−∞
pn+aeV

(+)
t+1 (n)

(b)
=

∞
∑

n=−∞
pn+aeV

(−)
t+1 (n) = V̂

(−)
t (e)

where (a) uses p and V
(+)
t+1 are even and (b) uses the induction

hypothesis. Substituting this back in the definition of V (+)
t (e)

and V
(−)
t (e), we get that V (+)

t (e) = V
(−)
t (e). Therefore, the

result is true by induction. �

Lemma 11: For m, e ∈ X≥0, define

Q(m|e, 0) :=
∑

n:|n|≥m

pn−ae and Q(m|e, 1) :=
∑

n:|n|≥m

pn.

Then, for all e,m ∈ X≥0 and a > 0, Q(m|e, 0) and Q(m|e, 1)
are increasing in e.

We will prove this lemma later.
Definition 2: A function f : X → R is called even and

increasing on X≥0 if for all x ∈ X≥0, f(x) = f(−x) and
f(x) ≤ f(x+ 1).

Lemma 12: The value function Vt(e) is even and increasing
on X≥0.

Proof: We have already shown that Vt(e) is even. For a >
0, the properties described in the proof of Lemma 9 and the
statement Lemma 11 imply that Vt(e) is even and increasing
[49, Th. 1]. Now, Lemma 10 implies that Vt(e) is also even and
increasing for a < 0. �

Proofs of Propositions 4 and 5: The result follows from
Lemmas 10 and 12 by taking the limit T → ∞, since equality
is preserved under limits. �

Proof of Lemma 11: Q(m|e, 1) does not depend on e.
Define R(m|e) =

∑

n:|n|≤m pn−e. Then, Q(m|e, 0) = 1−
R(m|ae). To show Q(m|e, 0) is increasing in e, it suffices
to show that R(m|ae) ≥ R(m|ae+ 1) (which implies that
R(m|ae) ≥ R(m|ae+ a)).

Now consider

R(m|ae)−R(m|ae+ 1) = pm−ae − p−m−ae−1

= pm−ae − pm+ae+1.

If m ≥ ae, then 0 ≤ m− ae < m+ ae+ 1, hence, pm−ae ≥
pm+ae+1. If m < ae, then 0 < ae−m < m+ ae+ 1, hence
pm−ae = pae−m ≥ pm+ae+1. Thus, in both cases, R(m|ae) ≥
R(m|ae+ 1). �
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I. PROOF OF LEMMA 1
Let ‖ · ‖∞ denote the sup-norm, i.e. for any v : S(k) → R,

‖v‖∞ = sup
e∈S(k)

|v(e)|.

To prove the lemma, let us first prove the following:

Lemma I.1 For β ∈ (0, 1), for both Models A and B, the
operator βB(k) is a contraction, i.e., for any v : S(k) → R,

‖βB(k)v‖∞ ≤ β‖v‖∞.

Thus, for any bounded h : S(k) → R, the equation

v = h+ βB(k)v (A)

has a unique bounded solution v. In addition, if h is contin-
uous, then v is continuous.

Proof: We state the proof for Model B. The proof for
Model A is similar. By the definition of sup-norm, we have
that for any bounded v

‖βB(k)v‖∞ = β sup
e∈(−k,k)

∫ k

−k
φ(w − ae)v(w)dw

≤ β sup
e∈(−k,k)

‖v‖∞
∫ k

−k
φ(w − ae)dw

≤ β‖v‖∞, (since φ is a pdf).

Hence, βB(k) is a contraction.
Now, consider the operator B′ given as: B′v = h+βB(k)v.

Then we have,

‖B′(v1 − v2)‖∞ = β‖B(k)(v1 − v2)‖∞ ≤ β‖v1 − v2‖∞.

Since β ∈ (0, 1) and the space of bounded real-valued
functions is complete, by Banach fixed point theorem, B′ has
a unique fixed point.

If h is continuous, we can define B(k) and B′ as operators
on the space of continuous and bounded real-valued function
(which is complete). Hence, the continuity of the fixed point
follows also from Banach fixed point theorem.

Proof of Lemma 1
The solutions of equations (11) and (12) exist due to

Lemma I.1.
(a) Consider k, l ∈ X≥0 such that k < l. A sample

path starting from e ∈ S(k) must escape S(k) before
it escapes S(l). Thus L(l)

β (e) ≥ L(k)
β (e). In addition, the

above inequality is strict because Wt has a unimodal
distribution. Similar argument holds for M (k)

β .
(b) The continuity and differentiability can be proved from

elementary algebra. See Appendix A for details.
(c) The limit holds since L(k)

β (e) and M (k)
β (e) are continu-

ous functions of β.

II. PROOF OF THE STRUCTURAL RESULTS

The results of [1] relied on the notion of ASU (almost
symmetric and unimodal) distributions introduced in [2].

Definition II.1 (Almost symmetric and unimodal distribution)
A probability distribution µ on Z is almost symmetric and
unimodal (ASU) about a point a ∈ Z if for every n ∈ Z≥0,

µa+n ≥ µa−n ≥ µa+n+1.

A probability distribution that is ASU around 0 and even
(i.e., µn = µ−n) is called ASU and even. Note that the defi-
nition of ASU and even is equivalent to even and decreasing
on Z≥0.

Definition II.2 (ASU Rearrangement) The ASU rearrange-
ment of a probability distribution µ, denoted by µ+, is a
permutation of µ such that for every n ∈ Z≥0,

µ+
n ≥ µ+

−n ≥ µ+
n+1.

We now introduce the notion of majorization for distribu-
tions supported over Z, as defined in [3].

Definition II.3 (Majorization) Let µ and ν be two probabil-
ity distributions defined over Z. Then µ is said to majorize ν,
which is denoted by µ �m ν, if for all n ∈ Z≥0,

n∑
i=−n

µ+
i ≥

n∑
i=−n

ν+i ,

n+1∑
i=−n

µ+
i ≥

n+1∑
i=−n

ν+i .

The structure of optimal estimator in Theorem 8 were
proved in two steps in [1]. The first step relied on the following
two results.

Lemma II.1 Let µ and ν be probability distributions with
finite support defined over Z. If µ is ASU and even and ν is
ASU about a, then the convolution µ ∗ ν is ASU about a.

Lemma II.2 Let µ, ν, and ξ be probability distributions with
finite support defined over Z. If µ is ASU and even, ν is ASU,
and ξ is arbitrary, then ν �m ξ implies that µ ∗ ν �m µ ∗ ξ.

These results were originally proved in [2] and were stated as
Lemmas 5 and 6 in [1].

The second step (in the proof of structure of optimal
estimator in Theorem 8) in [1] relied on the following result.

Lemma II.3 Let µ be a probability distribution with finite
support defined over Z and f : Z→ R≥0. Then,

∞∑
n=−∞

f(n)µn ≤
∞∑

n=−∞
f+(n)µ+

n .

We generalize the results of Lemmas II.1, II.2, and II.3
to distributions over Z with possibly countable support. With
these generalizations, we can follow the same two-step ap-
proach of [1] to prove the structure of optimal estimator as
given in Theorem 8.

The structure of optimal transmitter in Theorem 8 in [1]
only relied on the structure of optimal estimator. The exact
same proof works in our model as well.
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A. Generalization of Lemma II.1 to distributions supported
over Z

The proof argument is similar to that presented in [2,
Lemma 6.2]. We first prove the results for a = 0. Assume
that ν is ASU and even. For any n ∈ Z≥0, let r(n) denote the
rectangular function from −n to n, i.e.,

r(n)(e) =

{
1, if |e| ≤ n,
0, otherwise.

Note that any ASU and even distribution µ may be written
as a sum of rectangular functions as follows:

µ =

∞∑
n=0

(µn − µn+1)r
(n).

It should be noted that µn−µn+1 ≥ 0 because µ is ASU and
even. ν may also be written in a similar form.

The convolution of any two rectangular functions r(n) and
r(m) is ASU and even. Therefore, by the distributive property
of convolution, the convolution of µ and ν is also ASU and
even.

The proof for the general a ∈ Z follows from the following
facts:

1) Shifting a distribution is equivalent to convolution with
a shifted delta function.

2) Convolution is commutative and associative.

B. Generalization of Lemma II.2 to distributions supported
over Z

We follow the proof idea of [3, Theorem II.1]. For any
probability distribution µ, we can find distinct indices ij , |j| ≤
n such that µ(ij), |j| ≤ n, are the 2n+1 largest values of µ.
Define

µn(ij) = µ(ij),

for |j| ≤ n and 0 otherwise. Clearly, µn ↑ µ and if µ is ASU
and even, so is µn.

Now consider the distributions µ, ν, and ξ from Lemma II.2
but without the restriction that they have finite support. For
every n ∈ Z≥0, define µn, νn, and ξn as above. Note that all
distributions have finite support and µn is ASU and even and
νn is ASU. Furthermore, since the definition of majorization
remain unaffected by truncation described above, νn �m ξn.
Therefore, by Lemma II.2,

µn ∗ νn �m µn ∗ ξn.

By taking limit over n and using the monotone convergence
theorem, we get

µ ∗ ν �m µ ∗ ξ.

C. Generalization of Lemma II.3 to distributions supported
over Z

This is an immediate consequence of [3, Theorem II.1].

III. PROOF OF PART 3) OF LEMMA 5

By Lemma 1, M (k)
β (e) is strictly increasing in k; therefore,

by Theorem 2, N (k)
β (e) is strictly decreasing in k.

We prove the monotonicity of D(k)
β in k for Model A for

β ∈ (0, 1). The result for β = 1 follows by taking limit β ↑ 1.
The result for Model B is similar. Based on Lemma 11, we
restrict attention to a > 0.

For any β ∈ (0, 1) and k ∈ Z≥0, define the operator T (k) :
(Z→ R)→ (Z→ R) as follows. For any D : Z→ R,

[T (k)D](e) =

{
β[BD](0), if |e| ≥ k
(1− β)d(e) + β[BD](e) if |e| < k.

(1)

This operator is the Bellman operator for evaluating strategy
f (k). Hence, it is a contraction and D(k) is the unique fixed
point of T (k).

Define D
(k,0)
β = D

(k)
β , and for m ∈ Z>0, D(k,m)

β =

T (k+1)D
(k,m−1)
β .

From Lemma 12 and [4, Lemma 2], we get that for any
e ∈ Z≥0,

∞∑
n=−∞

pn−aeD
(k)
β (n) ≥

∞∑
n=−∞

pnD
(k)
β (n),

or equivalently, [BD(k)
β ](e) ≥ [BD(k)

β ](0).

For |e| = k, D(k,1)
β (e) = (1 − β)d(e) + β[BD(k)

β ](e) and
D

(k)
β (e) = β[BD(k)

β ](0); hence, D(k,1)
β (e) > D

(k)
β (e). For

|e| 6= k, D(k,1)
β (e) = D

(k)
β (e) because both terms have the

same expression. Hence, for all e ∈ Z,

D
(k,1)
β (e) ≥ D(k)

β (e), or D
(k,1)
β ≥ D(k)

β .

If we apply the operator T (k+1) to both sides, the monotonicity
of T (k+1) implies that D(k,2)

β ≥ D
(k,1)
β ≥ D

(k)
β . Proceeding

this way, we get that for any m > 0,

D
(k+m)
β ≥ D(k)

β . (B)

Note that limm→∞D
(k+m)
β = D

(k+1)
β , because D(k+1)

β is the
unique fixed point of the operator T (k+1). Thus, taking limit
m→∞ in (B), we get that D(k+1)

β ≥ D(k)
β .

APPENDIX A
PROOF OF (B) OF LEMMA 1

Note that for any bounded v, ‖B(k)v‖∞ is bounded and
increasing in k. We show that L(k)

β (e) is continuous and
differentiable in k. Similar argument holds for M (k)

β (e).
We show the differentiability in k. Continuity follows from

the fact that differentiable functions are continuous. Note that
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L
(k)
β (e) and M

(k)
β (e) are even functions of e. Now, for any

ε > 0 we have

L
(k+ε)
β (e)− L(k)

β (e)

= β

∫ k

−k
φ(w − ae)[L(k+ε)

β (w)− L(k)
β (w)]dw

+ 2β

∫ k+ε

k

φ(w − ae)L(k+ε)
β (w)dw

= β

∫ k

−k
φ(w − ae)[L(k+ε)

β (w)− L(k)
β (w)]dw

+ 2βφ(k − ae)L(k+ε)
β (k + ε)ε+O(ε2)

Let R(k)
β (e, w; a) be the resolvent of φ, as given in (16).

Then,

L
(k+ε)
β (e)− L(k)

β (e) = 2β

∫ k

−k
R

(k)
β (e, w; a)φ(k − ae)L(k+ε)

β (w)εdw

+O(ε2)

This implies that

∣∣∣ L(k+ε)
β (e)− L(k)

β (e)

ε

∣∣∣
≤ 2‖φ‖∞‖L(k)

β ‖∞
∣∣∣ ∫ k

−k
βR

(k)
β (e, w; a)dw

∣∣∣
+O(ε).

Since βB(k) is a contraction, the value of the integral in
the first term on the right hand side of the above inequality
is less than 1 and the result follows from the definition of
differtiability.
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