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Remote Estimation Over a Packet-Drop
Channel With Markovian State
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Abstract—We investigate a remote estimation problem in
which a transmitter observes a Markov source and chooses
the power level to transmit it over a time-varying packet-
drop channel. The channel is modeled as a channel with
Markovian state where the packet drop probability depends
on the channel state and the transmit power. A receiver
observes the channel output and the channel state and es-
timates the source realization. The receiver also feeds back
the channel state and an acknowledgment for successful re-
ception to the transmitter. We consider two models for the
source—finite state Markov chains and first-order autore-
gressive processes. For the first model, using ideas from
team theory, we establish the structure of optimal trans-
mission and estimation strategies and identify a dynamic
program to determine optimal strategies with that struc-
ture. For the second model, we assume that the noise pro-
cess has unimodal and symmetric distribution. Using ideas
from majorization theory, we show that the optimal trans-
mission strategy is symmetric and monotonic and the opti-
mal estimation strategy is like Kalman filter. Consequently,
when there are a finite number of power levels, the opti-
mal transmission strategy may be described using thresh-
olds that depend on the channel state. Finally, we propose a
simulation-based approach (renewal Monte Carlo) to com-
pute the optimal thresholds and optimal performance and
elucidate the algorithm with an example.

Index Terms—Real-time communication, remote estima-
tion, renewal theory, stochastic approximation, symmetric
and quasi-convex value and optimal strategies.

I. INTRODUCTION

A. Motivation and Literature Overview

N ETWORK control systems are distributed systems where
plants, sensors, controllers, and actuators are intercon-

nected via a communication network. Such systems arise in a
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Fig. 1. Remote estimation over channel with state.

variety of applications such as Internet of Things, smart grids,
vehicular networks, robotics, etc. One of the fundamental
problem in network control system is remote estimation—how
should a sensor (which observes a stochastic process) transmit
its observations to a receiver (which estimates the state of the
stochastic process) when there is a constraint on communication,
either in terms of communication cost or communication rate.

In this paper, we consider a remote estimation system as
shown in Fig. 1. The system consists of a sensor and an esti-
mator connected over a time-varying wireless fading channel.
The sensor observes a Markov process and chooses the power
level to transmit its observation to the remote estimator. Com-
munication is noisy and the transmitted packet may get dropped
according to a probability that depends on the channel state
and the power level. When the packet is dropped the receiver
generates an estimate of the state of the source according to
previously received packets. The objective is to choose power
control and estimation strategies to minimize a weighted sum
of transmission power and estimation error.

Several variations of the abovementioned model have been
considered in the literature. Models with noiseless communica-
tion channels have been considered in [1]–[6]. Since the channel
is noiseless, these papers assume that there are only two power
levels: power level 0, which corresponds to not transmitting;
and power level 1, which corresponds to transmitting. Under
slightly different modeling assumptions, these papers identify
the structure of optimal transmission and estimation strategies
for first-order autoregressive sources with unimodal noise and
for higher order autoregressive sources with orthogonal dynam-
ics and isotropic Gaussian noise. It is shown that the optimal
transmission strategy is threshold based, i.e., the sensor trans-
mits whenever the current error is greater than a threshold. It is
also shown that the optimal estimation strategy is like Kalman
filter: when the receiver receives a packet, the estimate is the
received symbol; when it does not receive the packet, then the es-
timate is the one-step prediction based on the previous symbol.
Quite surprisingly, these results show that there is no advan-
tage in trying to extract information about the source realization
from the choice of the power levels. The transmission strategy
at the sensor is also called event-triggered communication be-
cause the sensor transmits when the event “error is greater than
a threshold” is triggered. Models with independent and identi-
cally distributed packet-drop channels are considered in [7]–[9],
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where it is assumed that the transmitter has two power levels:
ON or OFF. Remote estimation over additive noise channel is
considered in [10].

In this paper, we consider a remote estimation problem over
packet-drop channel with Markovian state. We assume that the
receiver observes the channel state and feeds it back to the trans-
mitter with one step delay. Preliminary results for this model are
presented in [11], where attention was restricted to a binary state
channel with two input power values (ON or OFF). In this pa-
per, we consider arbitrary number of channel states and power
levels. A related paper is [12], in which a remote estimation
over packet-drop channels with Markovian state is considered.
It is assumed that the sensor and the receiver know the chan-
nel state. It is shown that optimal estimation strategies are like
Kalman filter. A detailed comparison with [12] is presented in
Section VI-A.

Several approaches for computing the optimal transmission
strategies have been proposed in the literature. For noise-
less channels, these include dynamic programming based
approaches [4]–[6], approximate dynamic programming based
approaches [13], and renewal theory based approaches [14]. It is
shown in [15] that for event-triggered scheduling, the posterior
density follows a generalized closed skew normal distribution.
For Markovian channels (when the state is not observed), a
change of measure technique to evaluate the performance of
an event-triggered scheme is presented in [16]. In this paper,
we present a renewal theory based Monte Carlo approach for
computing the optimal thresholds. A preliminary version of the
results was presented in [9] for a channel with independent and
identically distributed packet drops.

If the transmitter always transmits at a constant power level,
the remote estimation model reduces to that of Kalman filtering
with intermittent observations. For channels with independent
and identically distributed packet drops, necessary and sufficient
conditions for mean-square stability are presented in [17]–[19].
For channels with Markov packet drops, sufficient conditions
for peak-covariance stability and mean-square stability are pre-
sented in [20]–[23].

B. Contributions

In this paper, we investigate team optimal transmission and
estimation strategies for remote estimation over time varying
packet-drop channels. We consider two models for the source:
finite state Markov source and first order autoregressive source
(over either integers or reals). Our main contributions are as
follows.

1) For finite sources, we identify sufficient statistics for both
the transmitter and the receiver and obtain a dynamic pro-
gramming decomposition to compute optimal transmis-
sion and estimation strategies.

2) For autoregressive sources, we identify qualitative prop-
erties of optimal transmission and estimation strategies.
In particular, we show that the optimal estimation strategy
is like Kalman filter and the optimal transmission strat-
egy only depends on the current source realization and
the previous channel state (and does not depend on the
receiver’s belief of the source). Furthermore, when the
channel state is stochastically monotone (see Assump-
tion 1 for definition), then for any value of the chan-
nel state, the optimal transmission strategy is symmetric
and quasi-convex in the source realization. Consequently,

when the power levels are finite, the optimal transmission
strategy is threshold based, where the thresholds only de-
pend on the previous channel state.

3) We show that the abovementioned qualitative properties
extend naturally to infinite horizon models.

4) For infinite horizon models, we present a renewal theory
based Monte Carlo algorithm to evaluate the performance
of any threshold-based strategy. We then combine it with
a simultaneous perturbation based stochastic approxima-
tion algorithm to compute the optimal thresholds. We il-
lustrate our results with a numerical example of a remote
estimation problem with a transmitter with two power
levels and a Gilbert–Elliott erasure channel.

5) We show that the problem of transmitting over one of m
available independent and identically distributed packet-
drop channels (at a constant power level) can be consid-
ered as special case of our model. We show that there
exist thresholds {k(i)

t }m
i=1 , such that it is optimal to trans-

mit over channel i if the error state Et ∈ [k(i)
t , k

(i+1)
t ).

See Section VI-C for details.

C. Notation

We use uppercase letters to denote random variables (e.g.,
X , Y , etc), lowercase letters to denote their realizations (e.g.,
x, y, etc.). Z, Z≥0 , and Z>0 denote, respectively, the sets of
integers, of nonnegative integers, and of positive integers. Simi-
larly, R, R≥0 , and R>0 denote, respectively, the sets of reals, of
nonnegative reals, and of positive reals. For any set A, 1{x∈A}
denotes the indicator function of event x ∈ A, i.e., 1{x∈A} is
1 if x ∈ A, else 0. |A| denotes the cardinality of set A. P and
E denote the probability and expectation of a random variable.
Δ(X) denotes the space of probability distributions of X. For
any vector v ∈ Rn , vi ∈ R denotes the ith component of v. For
any vector v and an interval A = [a, b] of R, w = [v]A means
that wi equals a if vi ≤ a; equals vi if vi ∈ (a, b); and equals b
if vi ≥ b. Given a Borel subset A ⊆ R and a density π, we use
the notation π(A) :=

∫
A π(e)de. For any vector v, ∇v denotes

the derivative with respect to v.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Communication System

We consider a remote estimation system shown in Fig. 1.
The different components of the system are explained as
follows.

1) Source Model: The source is a first-order time-
homogeneous Markov chain {Xt}t≥0 , Xt ∈ X. We consider
two models for the source.

1) Finite state Markov source: In this model, we assume that
X is a finite set and denote the state transition matrix by
P , i.e., for any x, y ∈ X, Pxy = P(Xt+1 = y |Xt = x).

2) First-order autoregressive source: In this model, we as-
sume that X is either Z or R. The initial state X0 = 0
and for t ≥ 0, the source evolves as

Xt+1 = aXt + Wt (1)
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where a,Wt ∈ X and {Wt}t≥0 is an independent and
identically distributed sequence where Wt is distributed
according to a symmetric and unimodal distribution1 μ.

2) Channel Model: The channel is a packet-drop channel
with state. The state process {St}t≥0 , St ∈ S, is a first-order
time-homogeneous Markov chain with transition probability
matrix Q. We assume that S is finite. This is a standard model
for time-varying wireless channels [24], [25].

The input alphabet of the channel is X and the output alphabet
is Y := X ∪ {E} where the symbols E denotes that no packet
was received. At time t, the channel output is denoted by Yt .

The packet drop probability depends on the input power
Ut ∈ U , where U is the set of allowed power levels. We as-
sume that U is a subset of R≥0 and U is either a finite set of the
form {0, u(1) , . . . , umax} or an interval of the form [0, umax],
i.e., U is uncountable. When Ut = 0, it means that the trans-
mitter does not send a packet. In particular, for any realization
(x0:T , s0:T , u0:T , y0:T ) of (X0:T , S0:T , U0:T , Y0:T ), we have

P(St = st | X0:t = x0:t , S0:t−1 = s0:t−1 , U0:t = u0:t)

= P(St = st | St−1 = st−1) = Qst−1 st
(2)

and

P(Yt = yt | X0:t = x0:t , S0:t = s0:t , U0:t = u0:t)

=

⎧
⎪⎨

⎪⎩

1 − p(st , ut), if yt = xt

p(st , ut), if yt = E

0, otherwise

(3)

where p(st , ut) is the probability that a packet transmitted with
power level ut when the channel is in state st is dropped. We
assume that the set S of the channel states is an ordered set
where a larger state means a better channel quality. Then, for
all s ∈ S, p(s, u) is (weakly) decreasing in u with p(s, 0) = 1
and p(s, umax) ≥ 0. Furthermore, we assume that for all u ∈ U ,
p(s, u) is decreasing in s.

B. Decision Makers and the Information Structure

There are two decision makers in the system—the transmitter
and the receiver. At time t, the transmitter chooses the transmit
power Ut while the receiver chooses an estimate X̂t ∈ X. Let
I1
t and I2

t denote the information sets at the transmitter and the
receiver, respectively.

The transmitter observes the source realization Xt . In addi-
tion, there is one-step delayed feedback from the receiver to the
transmitter.2 Thus, the information available at the transmitter is

I1
t = {X0:t , U0:t−1 , S0:t−1 , Y0:t−1}.

The transmitter chooses the transmit power Ut according to

Ut = ft(I1
t ) = ft(X0:t , U0:t−1 , S0:t−1 , Y0:t−1) (4)

where ft is called the transmission rule at time t. The collection
f := (f0 , f1 , . . . ) for all time is called the transmission strategy.

The receiver observes Yt and, in addition, observes the chan-
nel state St . Thus, the information available at the receiver is

I2
t = {S0:t , Y0:t}.

1With a slight abuse of notation, when X = R, we consider μ to the prob-
ability density function and when X = Z, we consider μ to be the probability
mass function.

2Note that feedback of Yt requires 1 bit to indicate whether the packet was
received or not and feedback of St requires

⌈
log2 |S|

⌉
bits.

The receiver chooses the estimate X̂t as follows:

X̂t = gt(I2
t ) = gt(S0:t , Y0:t) (5)

where gt is called the estimation rule at time t. The collection
g := (g0 , g1 , . . . ) for all time is called the estimation strategy.

The collection (f , g) is called a communication strategy.

C. Performance Measures and Problem Formulation

At each time t, the system incurs two costs: a transmission
cost λ(Ut) and a distortion or estimation error d(Xt, X̂t). Thus,
the per-step cost is

c(Xt, Ut, X̂t) = λ(Ut) + d(Xt, X̂t).

We assume that λ(u) is (weakly) increasing in u with λ(0) = 0
and λ(umax) < ∞. For the autoregressive source model, we
assume that the distortion is given by d(Xt − X̂t), where d(·)
is even and quasi-convex with d(0) = 0.

We are interested in the following optimization problems.
Problem 1 (Finite horizon): In the model described above,

identify a communication strategy (f ∗, g∗) that minimizes the
total cost given by

JT (f , g) := E

[
T −1∑

t=0

c(Xt, Ut, X̂t)

]

. (6)

Problem 2 (Infinite horizon): In the model described above,
given a discount factor β ∈ (0, 1], identify a communication
strategy (f ∗, g∗) that minimizes the total cost given as follows.

1) For β ∈ (0, 1),

Jβ (f , g) := (1 − β)E

[ ∞∑

t=0

βtc(Xt, Ut, X̂t)

]

. (7)

2) For β = 1,

J1(f , g) := lim
T →∞

1
T
E

[
T −1∑

t=0

c(Xt, Ut, X̂t)

]

. (8)

Remark 1: In the model, it has been assumed that whenever
the transmitter transmits (i.e., Ut �= 0), it sends the source re-
alization uncoded. This is without loss of generality because
the channel input alphabet is the same as the source alphabet
and the channel is symmetric. For such models, coding does not
improve performance [26].

Problems 1 and 2 are decentralized stochastic control prob-
lems. The main conceptual difficulty in solving such problems
is that the information available to the decision makers and,
hence, the domain of their strategies grow with time, making
the optimization problem combinatorial. One could circumvent
this issue by identifying suitable information states at the de-
cision makers that do not grow with time. In the following
section, we discuss one such method to establish the structural
results.

III. MAIN RESULTS FOR FINITE STATE MARKOV SOURCES

A. Structure of Optimal Communication Strategies

We establish two types of structural results. First, we use
person-by-person approach to show that (X0:t−1 , U0:t−1) is ir-
relevant at the transmitter (see Lemma 1); then, we use the com-
mon information approach of [27] and establish a belief state

Authorized licensed use limited to: Aditya Mahajan. Downloaded on April 29,2020 at 01:26:58 UTC from IEEE Xplore.  Restrictions apply. 



CHAKRAVORTY AND MAHAJAN: REMOTE ESTIMATION OVER A PACKET-DROP CHANNEL WITH MARKOVIAN STATE 2019

for the common information (S0:t , Y0:t) between the transmitter
and the receiver (see Theorem 1).

Lemma 1: For any estimation strategy of the form (5), there
is no loss of optimality in restricting attention to transmission
strategies of the form

Ut = ft(Xt, S0:t−1 , Y0:t−1). (9)

The proof proceeds by establishing that the process {Xt,
S0:t−1 , Y0:t−1}t≥0 is a controlled Markov process controlled by
{Ut}t≥0 . See Appendix A for details.

For any strategy f of the form (9) and any realization (s0:T ,
y0:T ) of (S0:T , Y0:T ), define ϕt : X → U as,

ϕt(x) = ft(x, s0:t−1 , y0:t−1), ∀x ∈ X.

Furthermore, define conditional probability measures π1
t and π2

t
on X as follows: for any x ∈ X

π1
t (x) := Pf (Xt = x | S0:t−1 = s0:t−1 , Y0:t−1 = y0:t−1),

π2
t (x) := Pf (Xt = x | S0:t = s0:t , Y0:t = y0:t).

We call π1
t the pre-transmission belief and π2 the post-

transmission belief. Note that when (S0:T , Y0:T ) are random
variables, then π1

t and π2
t are also random variables (taking

values in Δ(X)), which we denote by Π1
t and Π2

t .
For the ease of notation, define B(π1 , s, ϕ) as follows:

B(π1 , st , ϕ) := P(Yt = E |S0:t = s0:t , Y0:t−1 = y0:t−1)

=
∑

xt ∈X

π1(xt)p(st , ϕ(xt)). (10)

Furthermore, define π1 |ϕt ,s as follows:

π1 |ϕ,s(x) :=
π1(x)p(s, ϕ(x))

B(π1 , s, ϕ)
. (11)

Then, using Bayes’ rule one can show the following.
Lemma 2: Given any transmission strategy f of the form (9):
1) There exists a function F 1 such that

π1
t+1 = F 1(π2

t ) = π2
t P. (12)

2) There exists a function F 2 such that

π2
t = F 2(π1

t , st , ϕt , yt) =

{
δyt

, if yt ∈ X

π1
t |ϕt ,st

, if yt = E.
(13)

Note that in (12), we are treating π2
t as a row vector and

in (13), δyt
denotes a Dirac measure centered at yt . The update

equations (12) and (13) are standard nonlinear filtering equa-
tions. See supplementary material for proof.

Theorem 1: In Problem 1 with finite state Markov source,
we have the following conditions.

1) Structure of optimal strategies: There is no loss of opti-
mality in restricting attention to transmission and estima-
tion strategies of the form

Ut = f ∗
t (Xt, St−1 ,Π1

t ), (14)

X̂t = g∗t (Π
2
t ). (15)

2) Dynamic program: Let Δ(X) denote the space of prob-
ability distributions on X. Define value functions V 1

t :

Δ(X) × S → R and V 2
t : Δ(X) × S → R as follows:

for any st ∈ S

V 1
T +1(π

1
t , st) = 0, (16)

and for t ∈ {T, . . . , 0}
V 1

t (π1
t , st) = min

ϕt :X→U

{
Λ(π1

t , ϕt) + Ht(xt, π
1
t , st , ϕt)

}
,

(17)

V 2
t (π2

t , st) = min
x̂∈X

D(π2
t , x̂) + V 1

t+1(π
2
t P, st), (18)

where

Λ(π1 , ϕ) :=
∑

x∈X

λ(ϕ(x))π1(x),

Ht(x, π1 , s, ϕ) := B(π1 , s, ϕ)V 2
t (δx, s)

+ (1 − B(π1 , s, ϕ))V 2
t (π1 |ϕ,s , s),

D(π2 , x̂) :=
∑

x∈X

d(x, x̂)π2(x).

Let Ψt(s, π1) denote the argmin of the right-hand side
of (17) and g∗t (π

2
t ) := arg minx̂∈X D(π2 , x̂). Then, the

optimal transmission strategy is given by

f ∗
t (·, s, π1

t ) = Ψt(s, π1
t )

and the optimal estimation strategy is given by g∗t .
The proof follows from the common information ap-

proach [27]. See Appendix B for details.
Remark 2: The first term in (17) is the expected communi-

cation cost, the second term is the expected cost-to-go. The first
term in (18) is the expected distortion and the second term is the
expected cost-to-go.

Remark 3: In (17) we use min instead of inf for the following
reasons. Let Φ denote the set of functions from X to U , which is
equal to

∏
x∈X U (since X is finite). When U is finite, Φ is also

finite and, thus, we can use min in (17). When U is uncountable,
Φ is a product of compact sets and, hence, is compact and, thus,
we can use min in (17).

Remark 4: Note that the dynamic program in Theorem 1 is
similar to a dynamic program for a partially observable Markov
decision process with finite state space and finite or uncountable
action space (see Remark 3). Thus, the dynamic program can be
extended to infinite horizon discounted cost model after verify-
ing standard assumptions. However, doing so does not provide
any additional insight, so we do not present infinite horizon re-
sults for this model. We will do so for the autoregressive source
model later in the paper, where we provide an algorithm to
find the optimal time-homogeneous strategy for infinite horizon
criteria.

IV. MAIN RESULTS FOR AUTOREGRESSIVE SOURCES

A. Structure of Optimal Strategies for Finite
Horizon Model

We start with a change of variables. Define a process {Zt}t≥0
as follows: Z0 = 0 and for t ≥ 0

Zt =

{
aZt−1 , if Yt = E

Yt, if Yt ∈ X.
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Next, define processes {Et}t≥0 , {E+
t }t≥0 , which we call the

error processes and {Êt}t≥0 as follows:

Et := Xt − aZt−1 , E+
t := Xt − Zt, Êt := X̂t − Zt.

The processes {Et}t≥0 and {E+
t }t≥0 are related as follows:

E0 = 0, E+
0 = 0, and for t ≥ 0

E+
t =

{
Et, if Yt = E

0, if Yt ∈ X
and Et+1 = aE+

t + Wt. (19)

The above dynamics may be rewritten as

Et+1 =

{
aEt + Wt, if Yt = E

Wt, if Yt �= E.
(20)

Since Xt − X̂t = E+
t − Êt , we have that d(Xt − X̂t) =

d(E+
t − Êt). Thus, with this change of variables, the per-step

cost may be written as λ(Ut) + d(E+
t − Êt).

Note that Zt is a deterministic function of Y0:t . Hence, at
time t, Zt−1 is measurable at the transmitter and, thus, Et is
measurable at the transmitter. Moreover, at time t, Zt is mea-
surable at the receiver.

Lemma 3: For any transmission and estimation strategies of
the form (9) and (5), there exists an equivalent transmission and
estimation strategy of the form

Ut = f̃t(Et, S0:t−1 , Y0:t−1), (21)

X̂t = g̃t(S0:t , Y0:t) + Zt. (22)

Moreover, for any transmission and estimation strategies of the
form (21) to (22), there exist transmission and estimation strate-
gies of the form (9) and (5) that are equivalent.

The proof is given in Appendix C.
An implication of Lemma 3 is that we may assume that the

transmitter transmits Et and the receiver estimates

Êt = X̂t − Zt = g̃t(S0:t , Y0:t).

For this model, we can further simplify the structures of op-
timal transmitter and estimator as follows.

Theorem 2: In Problem 1 with first-order autoregressive
source, we have the following properties.

1) Structure of optimal estimation strategy: At each time t,
there is no loss of optimality in choosing the estimates
{Êt}t≥0 as

Êt = 0,

or, equivalently, choosing the estimates {X̂t}t≥0 as:
X̂0 = 0, and for t > 0

X̂t =

{
aX̂t−1 , if Yt = E

Yt, if Yt ∈ R.
(23)

2) Structure of optimal transmission strategy: There is no
loss of optimality in restricting attention to transmission
strategies of the form

Ut = f̃t(Et, St−1). (24)

3) Dynamic programming decomposition: Recursively de-
fine the following value functions—for any e ∈ R and
s ∈ S,

JT +1(e, s) = 0, (25)

and for t ∈ {T, . . . , 0}

Jt(e, s) = min
u∈U

H̄t(e, s, u), (26)

where

H̄t(e, s, u) = λ(u) +
∑

s ′∈S

Qss ′p(s′, u)d(e)

+ E[Jt+1(Et+1 , St) |Et = e, St−1 = s, Ut = u].

Let f̃ ∗
t (e, s) denote the argmin of the right-hand

side of (26). Then, the transmission strategy f̃∗ =
(f̃ ∗

0 , . . . , f̃ ∗
T ) is optimal.

See Appendix D for the proof.

B. Monotonicity and Quasi Convexity of the
Optimal Solution

For autoregressive sources we can establish monotonicity and
quasi-convexity of the optimal solution. To that end, let us as-
sume the following.

Assumption 1: The channel transition matrix Q is stochastic
monotone, i.e., for all i, j ∈ {1, . . . , n} such that i > j and for
any � ∈ {0, . . . , n − 1},

n∑

k=�+1

Qik ≥
n∑

k=�+1

Qjk .

Theorem 3: For any t ∈ {0, . . . , T}, we have the following.
1) For all s ∈ S, Jt(e, s) is even and quasi-convex in e.

Furthermore, under Assumption 1.
2) For every e ∈ X, Jt(e, s) is decreasing in s.
3) For every s ∈ S, the transmission strategy f̃t(e, s) is even

and quasi-convex in e.
Sufficient conditions under which the value function and the

optimal strategy are even and quasi-convex are identified in [28,
Th. 1]. Properties 1 and 3 follow because the model satisfies
these sufficient conditions. Property 2 follows from standard
stochastic monotonicity arguments. The details are presented in
the supplementary material.

An immediate consequence of Theorem 3 is the following.
Corollary 1: Suppose that Assumption 1 is satisfied and

U is finite set given by U = {0, u(1) , . . . , u(m )}. For any
i ∈ {0, 1, . . . ,m}, define3

k
(i)
t (s) := inf{e ∈ R≥0 : f̃t(e, s) = u(i)}.

For ease of notation, define k
(m+1)
t (s) = ∞.

Then, for any s ∈ S, i ∈ {0, . . . , m} and |e| ∈ [k(i)
t (s),

k
(i+1)
t (s)), the optimal strategy is a threshold-based strategy

given as follows:

f̃t(e, s) = u(i) . (27)

Some Remarks:
1) It can be shown that under the optimal strategy, Π2

t is sym-
metric and unimodal (SU) (see Definition 1) around X̂t

and, therefore, Π1
t is SU around aX̂t−1 . Thus, the trans-

mission and estimation strategies in Theorem 2 depend

3Note that k
(0)
t (s) = 0 and Theorem 3 implies k

(i)
t (s) ≤ k

(i+1)
t (s) for any

i ∈ {0, 1, . . . , m}.
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on the pre- and post-transmission beliefs only through
their means.

2) Since the distortion function is even and quasi-convex,
we can write the threshold conditions

k
(i−1)
t (s) ≤ |e| < k

(i)
t (s)

in (27) as

d(k(i−1)
t (s)) ≤ d(e) < d(k(i)

t (s)).

Thus, if we define distortion levels D
(i)
t (s) =

[
d(k(i−1)

t (s)), d(k(i)
t (s))

)
, then we can say that the op-

timal strategy is to transmit at power level u(i) if Et ∈
D

(i)
t (St−1).

3) When Yt = E, the update of the optimal estimate is same
as the update equation of Kalman filter. For this reason,
we refer to the estimation strategy (23) as a Kalman filter
like estimator.

C. Generalization to Infinite Horizon Model

Given a communication strategy (f , g), let D
(f ,g)
β (e, s) and

P
(f ,g)
β (e, s) denote, respectively, the expected distortion and

expected transmitted power when the system starts in state (e, s),
i.e., for β ∈ (0, 1),

D
(f ,g)
β (e, s) :=(1 − β)E(f ,g)

[ ∞∑

t=0

βtd(Et) |E0 = e, S−1 = s

]

,

P
(f ,g)
β (e, s) :=(1 − β)E(f ,g)

[ ∞∑

t=0

βtλ(Ut) |E0 = e, S−1 = s

]

,

and for β = 1,

D
(f ,g)
1 (e, s) := lim

T →∞

1
T
E(f ,g)

[
T −1∑

t=0

d(Et) |E0 = e, S0 = s

]

,

P
(f ,g)
1 (e, s) := lim

T →∞

1
T
E(f ,g)

[
T −1∑

t=0

λ(Ut) |E0 = e, S0 = s

]

.

Then, the performance of the strategy (f , g) when the system
starts in state (e, s) is given by

J
(f ,g)
β (e, s) := D

(f ,g)
β (e, s) + P

(f ,g)
β (e, s).

The structure of optimal estimator, as established in
Theorem 2, continues to hold for the infinite horizon setup as
well. Thus, we can restrict attention to Kalman filter like esti-
mator given by (23) and look at the problem of finding the best
response transmission strategy. This is a single agent stochastic
control problem. If the per-step distortion is unbounded, then
we need the following assumption—which implies that there ex-
ists a strategy whose performance is bounded—for the infinite
horizon problem to be meaningful.

Assumption 2: Let f (0) denote the transmission strategy that
always transmits at power level umax and g∗ denote the Kalman
filter like strategy given by (23). Then, for given β ∈ (0, 1], and

for all e ∈ X and s ∈ S, D
(f ( 0 ) ,g)
β (e, s) < ∞.

Assumption 2 is always satisfied if d(·) is bounded. For β = 1,
d(e) = e2 , and S = {0, 1}, the condition a2(1 − Q00) < 1 is

sufficient for Assumption 2 to hold (see [20, Th. 8] and [22,
Corollary 12]). Similar sufficient conditions are given in [23,
Th. 1] for vector-valued Markov source processes with a Marko-
vian packet-drop channel.

We now state the main theorem of this section.
Theorem 4: In Problem 2 with first-order autoregressive pro-

cesses under Assumption 2, we have the following properties.
1) Structure of optimal estimation strategy: The time-

homogeneous strategy g̃∗ = {g̃∗, g̃∗, . . . }, where g̃∗ is
given by (23), is optimal.

2) Structure of optimal transmission strategy: There is
no loss of optimality in restricting attention to time-
homogeneous transmission strategies of the form

Ut = f̃β (Et, St−1).

3) Dynamic programming decomposition: For β ∈ (0, 1),
let Jβ be the smallest bounded solution of the following
fixed point equation: for all e ∈ R and s ∈ S

Jβ (e, s) = min
u∈U

H̄β (e, s, u), (28)

where

H̄β (e, s, u) = (1 − β)λ(u) +
∑

s ′∈S

Qss ′p(s′, u)d(e)

+βE[Jβ (Et+1 , St) |Et = e, St−1 = s, Ut = u].

Let f̃ ∗
β (e, s) denote the argmin of the right-hand side

of (28). Then, the transmission f̃∗
β = (f̃ ∗

β , f̃ ∗
β , . . . ) is

optimal.
4) Results for β = 1: Let f̃ ∗

1 be any limit point of {f̃ ∗
β}β∈(0,1)

as β ↑ 1. Then, f̃ ∗
1 is optimal strategy for Problem 2 with

β = 1.
The proof is given in Appendix E.
Remark 5: We are not asserting that the dynamic pro-

gram (28) has a unique fixed point. To make such an assertion,
we would need to check the sufficient conditions for Banach
fixed point theorem. These conditions [29] are harder to check
than the sufficient conditions (P1)–(P3) of Proposition 2 that we
verify in Appendix E.

Corollary 2: The monotonicity properties of Theorem 3 hold
for the infinite horizon value function Jβ and transmission strat-
egy f̃β as well.

An immediate consequence of Corollary 2 is the following.
Corollary 3: Suppose that Assumption 1 is satisfied and

U is finite set given by U = {0, u(1) , . . . , u(m )}. For any
i ∈ {0, 1, . . . ,m}, define4

k
(i)
β (s) := inf{e ∈ R≥0 : f̃(e, s) = u(i)}.

For ease of notation, define k
(m+1)
β (s) = ∞.

Then, the optimal strategy is a threshold-based strategy
given as follows: for any s ∈ S, i ∈ {0, . . . , m} and |e| ∈
[
k

(i)
β (s), k(i+1)

β (s)
)

f̃β (e, s) = u(i) . (29)

4Note that k(0)
β

(s) = 0 and Corollary 2 implies k
(i)
β

(s) ≤ k
(i+1)
β

(s) for any

i ∈ {0, 1, . . . , m}.
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Fig. 2. Timeline for pre- and post-transmission error state.

V. COMPUTING OPTIMAL THRESHOLDS FOR

AUTOREGRESSIVE SOURCES WITH FINITE ACTIONS

Suppose the power levels are finite and given by

U = {0, u(1) , . . . , u(m )}, m ∈ Z>0

with u(i) < u(i+1) and i ∈ {0, 1, . . . ,m − 1}. From Corol-
lary 3, we know that the optimal strategy for Problem 2 is a
time-homogeneous threshold-based strategy of the form (27).
Let k denote the thresholds {k(i)

β (s)} and f (k) denote the strat-
egy (29). In this section, we first derive formulas for computing
the performance of a general threshold-based strategy f

(k)
β of

the form (27) and then propose a stochastic approximation based
algorithm to identify the optimal thresholds.

It is conceptually simpler to work with a post-decision model
where the pre-decision state is Et and the post-decision state is
E+

t given by (19). The timeline of the various system variables
is shown in Fig. 2. In this model, the per-step cost is given by
λ(Ut) + d(E+

t ).5

A. Performance of an Arbitrary Threshold-Based
Strategy

For β ∈ (0, 1], pick a reference channel state s◦ ∈ S. Given
an arbitrary threshold-based strategy f

(k)
β , suppose the sys-

tem starts in state (E+
−1 , S−1) = (0, s◦) and follows strategy

f
(k)
β . Then, the process {(E+

t , St)}t≥0 is a Markov process. Let

τ (0) = 0 and for n ∈ Z>0 let

τ (n) := {t > τ (n−1) : (E+
t−1 , St−1) = (0, s◦)}

denote the stopping times when the Markov process
{(E+

t , St)}t≥0 revisits (0, s◦). We say that the Markov pro-
cess regenerates at times {τ (n)}n∈Z≥0 and refer to the interval
{τ (n) , . . . , τ (n−1)} as the nth regenerative cycle.

Define the following parameter.
1) L

(k)
β is the expected cost during a regenerative cycle, i.e.,

L
(k)
β := E

⎡

⎣
τ ( 1 )−1∑

t=0

βt(λ(Ut) + d(E+
t ))

∣
∣
∣
∣
∣
∣

E+
−1 = 0, S−1 = s◦

]

. (30)

2) M
(k)
β is the expected time during a regenerative cycle,

i.e.,

M
(k)
β := E

⎡

⎣
τ ( 1 )−1∑

t=0

βt

∣
∣
∣
∣
∣
∣

E+
−1 = 0, S−1 = s◦

⎤

⎦ . (31)

5From Theorem 2, we have that Êt = 0. Thus, d(E+
t − Êt ) = d(E+

t ).

Using ideas from renewal theory, we have the following.
Theorem 5: For any β ∈ (0, 1], the performance of

threshold-based strategy f
(k)
β is given by

C
(k)
β := Cβ (f (k)

β , g∗) =
L

(k)
β

M
(k)
β

. (32)

See Appendix F for the proof.

B. Necessary Condition for Optimality

In order to find the optimal threshold, we first observe the
following.

Lemma 4: For any β ∈ (0, 1], L
(k)
β , and M

(k)
β are differen-

tiable with respect to k. Consequently, C
(k)
β is also differen-

tiable.
The proof of Lemma 4 follows from first principles using an

argument similar to that in the supplementary material for [14].
Let ∇kL

(k)
β , ∇kM

(k)
β , and ∇kC

(k)
β denote the derivatives of

L
(k)
β , M (k)

β , and C
(k)
β , respectively. Then, a sufficient condition

for optimality is the following.
Proposition 1: A necessary condition for thresholds k∗ to be

optimal is that N
(k∗)
β = 0, where

N
(k∗)
β := M

(k)
β ∇kL

(k)
β − L

(k)
β ∇kM

(k)
β .

Proof: The result follows from observing that ∇kC
(k)
β =

N
(k)
β /(M (k)

β )2 .

Remark 6: If C
(k)
β is convex in k, then the condition in

Proposition 1 is also sufficient for optimality. Based on nu-
merical calculations we have observed that C

(k)
β is convex in k

but we have not been able to prove it analytically.

C. Stochastic Approximation Algorithm to Compute
Optimal Thresholds

In this section, we present an iterative algorithm based on si-
multaneous perturbation and renewal Monte Carlo (RMC) [9],
[30] to compute the optimal thresholds. We present this algo-
rithm under the following assumption.

Assumption 3: There exists a K ∈ X≥0 such that for the
optimal transmission strategy

k(m−1)(s) ≤ K ∀s ∈ S.

Remark 7: Assumption 3 is equivalent to stating that for each
channel state s, there is a state e∗(s) such that for all e ≥ e∗(s),
the optimal transmission strategy transmits at the maximum
power level umax in state (e, s). Assumption 3 is similar to the
channel saturation assumption in [13, Assumption 1] and [12,
Remark 5].

Under Assumption 3, there is no loss of optimality in restrict-
ing attention to threshold strategies in the set

K := {k : k(i)(s) ≤ K, ∀s ∈ S, i ∈ {0, . . . , m − 1}}.

The main idea behind the RMC is as follows. Given a
threshold k, consider the following sample-path-based unbiased

Authorized licensed use limited to: Aditya Mahajan. Downloaded on April 29,2020 at 01:26:58 UTC from IEEE Xplore.  Restrictions apply. 



CHAKRAVORTY AND MAHAJAN: REMOTE ESTIMATION OVER A PACKET-DROP CHANNEL WITH MARKOVIAN STATE 2023

Fig. 3. Thresholds versus iterations for different values of (qr , qf ). The experiment is repeated 100 times. The bold lines represent the sample
median and the shaded regions represent the 1st and 3rd quartiles across the runs. (a) (qr , qf ) = (0.1, 0.1). (b) (qr , qf ) = (0.1, 0.3). (c) (qr , qf ) =
(0.1, 0.5).

estimators of L
(k)
β and M

(k)
β :

L̂
(k)
β :=

1
N

N −1∑

n=0

τ (n + 1 )−1∑

t=τ (n )

βt−τ (n )
[
λ(Ut) + d(E+

t )
]
, (33)

M̂
(k)
β :=

1
N

N −1∑

n=0

τ (n + 1 )−1∑

t=τ (n )

βt−τ (n )
, (34)

where N is a large nonnegative integer.
Then, simultaneous perturbation based unbiased estimators

of ∇kL
(k)
β and ∇kM

(k)
β are given by

∇̂L(k)
β = δ(L̂

(k+cδ)
β − L̂

(k−cδ)
β )/2c, (35)

∇̂M(k)
β = δ(M̂

(k+cδ)
β − M̂

(k−cδ)
β )/2c, (36)

where δ is an appropriately chosen random variable having the
same dimension as k and c is a small positive constant. Typ-
ically, all components of δ are chosen independently as either
Rademacher(±1) [31], [32] or Normal(0, 1) [33], [34].

If the estimates (L̂
(k)
β , M̂

(k)
β ) and (∇̂L(k)

β , ∇̂M(k)
β ) are gener-

ated from independent sample paths, then the unbiasedness and
independence of these estimates imply that

N̂
(k)
β := M̂

(k)
β ∇̂L(k)

β − L̂
(k)
β ∇̂M(k)

β

is an unbiased estimator of N
(k)
β .

Then, the RMC algorithm to compute the optimal threshold
is as follows.

1) Let j = 0 and pick any initial guess k0 .
2) For sufficiently large number of iterations do

a) Generate L̂
(kj )
β and M̂

(kj )
β according to (33) and

(34).
b) Sample a random direction δ.
c) Generate ∇̂L(kj )

β and ∇̂M(kj )
β according to (35)–

(36).
d) Compute:

N̂
(kj )
β := M̂

(kj )
β ∇̂L(kj )

β − L̂
(kj )
β ∇̂M(kj )

β .

e) Update:

kj+1 = [kj − αj N̂
(kj )
β ]K

where [·]K denotes projection on to the set K and
{αj} is a sequence of learning rates that satisfy∑∞

j=1 αj = ∞ and
∑∞

j=1 α2
j < ∞.

f) Set j = j + 1.

We assume the following (which is a standard assumption
for stochastic approximation algorithms, see e.g., [34, Assump-
tion 5.6]).

Assumption 4: The set of globally asymptotically stable
equilibrium of the differential equation dk/dt = −N

(k)
β is

compact.
Theorem 6: Consider the sequence of iterates {kj}j≥0 ob-

tained by the RMC algorithm described previously. Let k∗ be
any limit point of {kj}j≥0 . Then, under Assumptions 3 and 4,

N
(k∗)
β = 0 and, therefore, ∇kC

(k∗)
β = 0.

Proof: The proof follows from [30, Corollary 1].

D. Numerical Example

Consider a real-valued autoregressive source with a = 1,
μ = Normal(0, 1) and discount factor β = 0.99. The chan-
nel is a Gilbert–Elliott channel [35], [36] with state space
S = {0, 1} and transition matrix Q = [ 1−qr qr

qf 1−qf
], where qr

and qf are called the recovery rate and the failure rate of the
channel. Note that when qr + qf ≤ 1, the matrix Q is stochas-
tic monotone and Assumption 1 is satisfied. The channel has
two power levels U = {0, 1} with loss probability p(0, 0) = 1,
p(0, 1) = 0.7, p(1, 0) = 1, p(1, 1) = 0.2, and transmission cost
λ(0) = 0, λ(1) = 100.

We run the RMC algorithm with s◦ = 0, N = 1000, the learn-
ing rates {αj} chosen according to Adam [37] (with α parameter
of Adam equal to 0.1 and other parameters taking their default
values as stated in [37]), δ = Normal(0, 1) and c = 0.1. Note
that since m = 1, k(0)(s) = 0. We use k(0) and k(1) to denote
k(1)(0) and k(1)(1). For a given choice of the channel transition
matrix, the algorithm is run for 5000 iterations and the exper-
iment is repeated 100 times. The median and first and third
quartiles across multiple runs are stored.

To visualize the speed of convergence across different choices
of channel transition matrices, we plot thresholds (k(0), k(1))
versus iterations for a few different values of (qr , qf ) in Fig. 3.
These plots show that the convergence is relatively fast. Similar
qualitative behavior is observed for other choices of channel
transition matrices as well.

To compare the performance of the system for different
choices of the channel transition matrices, we choose the thresh-
olds k = (k(0), k(1)) to be the average over the last 500 itera-
tions of the median across the 100 runs. We estimate L̂

(k)
β and

M̂
(k)
β by Monte Carlo averaging over N = 106 renewals and

compute Ĉ
(k)
β using Theorem 5. Optimal performance for dif-

ferent values of recovery rate qr and failure rate qf such that
qr + qf ≤ 1 is shown in Fig. 4. The plot shows that the per-
formance improves with increase in the recovery rate qr and
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Fig. 4. Optimal performance over Gilbert–Elliott channel for different
values of recovery rate qr and failure rate qf for qr + qf ≤ 1.

deteriorates with the increase in the failure rate qf . The code
can be found in [38].

VI. DISCUSSIONS

A. Comparison With the Results of [12]

Remote estimation over a packet-drop channel with Marko-
vian state was recently considered in [12]. In [12], it is assumed
that the transmitter knows the current channel state. In contrast,
in our model, we assume that the receiver observes the channel
state and sends it back to the transmitter. So, the transmitter has
access to a one-step delayed channel state.

Ren et al. [12] pose the problem of identifying the optimal
transmission and estimation strategies for infinite horizon av-
erage cost setup for vector-valued autoregressive sources. They
identify the common information based dynamic program and
identify technical conditions under which the dynamic program
has a deterministic solution. The dynamic program in [12] may
be viewed as the infinite horizon average cost equivalent of
the finite horizon dynamic program in Theorem 1. They then
show that when the source dynamics are orthogonal and the
noise dynamics are isotropic, there is no loss of optimality in
restricting attention to estimation strategies of the form (15)
and transmission strategies of the form (14). In addition, for
every π ∈ Δ(X) and s ∈ S, ζt(·) := ft(·, s, π) is symmetric
and quasi-convex. This structural property of the transmit-
ter implies that when the power levels are finite, there exist
thresholds {ki

t(s, π)}m−1
i=0 such that the optimal strategy is a

threshold-based strategy as follows: for any s ∈ S, π ∈ Δ(X),
i ∈ {0, . . . , m}, and |e| ∈ [k(i)

t (s, π), k(i+1)
t (s, π))

ft(e, s, π) = u(i) . (37)

In this paper, we follow a different approach. We investi-
gate both finite Markov sources and first order autoregressive
sources. For Markov sources, we first show that there is no loss
of optimality in restricting attention to estimation strategies of
the form (15) and transmission strategies of the form (14). For
autoregressive sources, we show that the structure of the trans-
mission strategies can be further simplified to (23) and (24).
In addition for every s ∈ S, ϕt(·) = f̃t(·, s) is symmetric and
quasi-convex. This structural property of the transmitter im-
plies that when the power levels are finite, there exist thresholds

{ki
t(s)}m−1

i=0 such that the optimal strategy is a threshold-based
strategy given by (27).

Once we restrict attention to estimation strategy of the
form (23), the best response strategy at the transmitter is a cen-
tralized Markov decision process. This allows us to establish the
existence of optimal deterministic strategies for both discounted
and average cost infinite horizon models without having to resort
to the detailed technical argument presented in [12].

Note that in the threshold-based strategies (37) identified
in [12], the thresholds depend on the belief state π, while in
the threshold-based strategies (27) identified in this paper, the
thresholds do not depend on π. We exploit this lack of de-
pendence on π to develop a renewal theory based method to
compute the performance of a threshold based strategy. The
algorithm proposed in this paper will not work for threshold
strategies of the form (37) due to the dependence on π (which
is uncountable).

B. Comparison With the Results of [14]

A method for computing the optimal threshold for remote es-
timation over noiseless communication channel (i.e., no packet
drop) is presented in [14]. That method relies on computing L

(k)
β

and M
(k)
β by solving the balance equations (which are Fredholm

integral equations of the second kind) for the truncated Markov
chain. When the channel is a packet-drop channel, the kernel
of the Fredholm integral equation is discontinuous. Moreover,
when the channel has state, the integral equation is multidi-
mensional. Solving such integral equations is computationally
difficult. The simulation-based methods presented in this paper
circumvent these difficulties.

C. Special Case With Independent and Identically
Distributed Packet-Drop Channels

Consider the case when the packet drops are independent
and identically distributed, which can be viewed as a Markov
channel with a single state (i.e., |S| = 1). Thus, we may drop
the dependence on s from the value function and the strategies.
Furthermore, Assumption 1 is trivially satisfied. Thus, the result
of Theorem 3 simplifies to the following.

Corollary 4: For Problem 1 with independent and identically
distributed packet drops the value function Jt(e) and the optimal
transmission strategy ft(e) are even and quasi-convex.

The above result is same as [7, Th. 1]. Furthermore, when
the power levels are finite, the optimal transmission strategy
is characterized by thresholds (k(1)

t , . . . , k
(m−1)
t ). For infinite

horizon models the thresholds are time invariant.
In addition, the renewal relationships of Theorem 5 contin-

ues to hold. The stopping times {τ (n)}n≥0 correspond to times
of successful reception and the proposed renewal Monte Carlo
algorithm is similar in spirit to [9]. Note that the algorithm pro-
posed in [9] uses simultaneous perturbation to find the minimum
of C

(k)
β , where C

(k)
β is evaluated using renewal relationships.

The algorithm proposed in this paper is different and uses simul-
taneous perturbations to find the roots of N

(k)
β , which coincide

with the roots of ∇kC
(k)
β .

It is worth highlighting that when the power levels are fi-
nite, the model can also be interpreted as a remote estima-
tor that has the option of transmitting (at a constant power
level) over one of m available independent and identically
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Fig. 5. Remote estimation over multiple channels.

distributed packet-drop channels, as shown in Fig 5. For chan-
nel i, i ∈ {1, . . . ,m}, the transmission cost is λ(i) and the drop
probability is p(i). We assume that the channels are ordered6

such that λ(1) ≤ · · · ≤ λ(m) and p(1) ≥ · · · ≥ p(m). In ad-
dition, the sensor has the option of not transmitting, which is
denoted by i = 0. Note that λ(0) = 0 and p(0) = 1. As ar-
gued previously, the optimal transmission strategy in this case
is characterized by thresholds (k(1)

t , . . . , k
(m−1)
t ) and the sensor

transmits over channel i, where i is such that |et | ∈ [k(i)
t , k

(i+1)
t )

(and we assume that k
(0)
t = 0 and k

(m )
t = ∞). The above re-

sult is similar in spirit to [39], which considers independent and
identically distributed source and additive noise channels.

VII. CONCLUSION

In this paper, we study remote estimation over a Markovian
channel with feedback. We assume that the channel state is
observed by the receiver and fed back to the transmitter with
one unit delay. In addition, the transmitter gets ACK/NACK feed-
back for successful/unsuccessful transmission. Using ideas from
team theory, we establish the structure of optimal transmission
and estimation strategies for finite Markov sources and identify
a dynamic program to determine optimal strategies with that
structure. We then consider first-order autoregressive sources
where the noise process has unimodal and symmetric distribu-
tion. Using ideas from majorization theory, we show that the
optimal transmission strategy has a monotone structure and the
optimal estimation strategy is like Kalman filter.

The structural results imply that threshold-based transmit-
ter is optimal when the power levels are finite. We provide a
stochastic approximation based algorithm to compute the opti-
mal thresholds and optimal performance. An example of a first-
order autoregressive source model with Gilbert–Elliott channel
is considered to illustrate the results.

APPENDIX A
PROOF OF LEMMA 1

Arbitrarily fix the estimation strategy g and consider the best
response strategy at the transmitter. We will show that Ĩ1

t :=
(Xt, S0:t−1 , Y0:t−1) is an information state at the transmitter.
In particular, we will show that {Ĩ1

t }t≥1 satisfies the following
properties:

P(Ĩ1
t+1 | I1

t , Ut) = P(Ĩ1
t+1 | Ĩ1

t , Ut) (38)

6The assumption is without loss of generality. In particular, if there are
channels i and j such that λ(i) ≥ λ(j) and p(i) ≥ p(j), then transmission over
channel j dominates the action of transmission over channel i.

and

E[c(Xt, Ut, X̂t) | I1
t , Ut ] = E[c(Xt, Ut, X̂t) | Ĩ1

t , Ut ]. (39)

Given any realization (x0:T , s0:T , y0:T , u0:T ) of the
system variables (X0:T , S0:T , Y0:T , U0:T ), define i1t =
(x0:t , s0:t−1 , y0:t−1 , u0:t−1) and ı̃1t = (xt, s0:t−1 , y0:t−1). Now,
for any ı̆1t+1 = (xt+1 , s̆0:t , y̆0:t) = (xt+1 , s̆t , y̆t , ı̆

1
t ), we use the

shorthand P(̆ı1t+1 |̃ı10:t , u0:t) to denote P(Ĩ1
t+1 = ı̆1t+1 |Ĩ1

0:t =
ĩ10:t , U0:t = u0:t). Then,

P(̆ı1t+1 |i1t , ut) = P(xt+1 , s̆t , y̆t , ı̆
1
t |x0:t , s0:t−1 , y0:t−1 , u0:t)

(a)
= P(xt+1 |xt)P(y̆t |xt, s̆t)P(s̆t |st−1)

× 1{(s̆0 : t−1 ,y̆0 : t−1 )=(s0 : t−1 ,y0 : t−1 )}

= P(̆ı1t+1 |xt, s0:t−1 , y0:t−1 , ut)

= P(̆ı1t+1 |̃ı1t , ut) (40)

where (a) follows from the source and the channel models. This
shows that (38) is true.

Now consider (39). Recall that X̂t = gt(I2
t ). Therefore,

the expectation in the left-hand side of (39) depends on
P(I2

t | I1
t , Ut). By marginalizing (40) with respect to Xt+1 , we

get

P(I2
t | I1

t , Ut) = P(I2
t | Ĩ1

t , Ut)

which implies (39).
Equation (38) shows that {Ĩ1

t }t≥0 is a controlled Markov
process controlled by {Ut}t≥0 . Equation (39) shows that Ĩ1

t is
sufficient for performance evaluation. Hence, by Markov de-
cision theory [40], there is no loss of optimality in restricting
attention to transmission strategies of the form (9).

APPENDIX B
PROOF OF THEOREM 1

Once we restrict attention to transmission strategies of the
form (9), the information structure is partial history sharing [27].
Thus, one can use the common information approach of [27] and
obtain the structure of optimal transmission strategy using this
approach.

Following [27], we split the information available at each
agent into a common information and local information. Com-
mon information is the information available to all decision
makers in the future; the remaining data at the decision maker
are the local information. Thus, at the transmitter, the common
information is C1

t := {S0:t−1 , Y0:t−1} and the local information
is L1

t := Xt , and at the receiver, C2
t := {S0:t , Y0:t} and L2

t = ∅.
The state sufficient for input output mapping of the system is
(Xt, St). By [27, Proposition 1], we get that

Θ1
t (x, s) := P(Xt = s, St = s|C1

t ),

Θ2
t (x, s) := P(Xt = s, St = s|C2

t )

are sufficient statistics for the common information at the trans-
mitter and the receiver, respectively. Now, we observe the
following.
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1) Θ1
t is equivalent to (Π1

t , St−1) and Θ2
t is equivalent

to (Π2
t , St). This is because independence of {Xt}t≥0

and {St}t≥0 implies that θ1
t (x, s) = π1

t (x)Qst−1 s and
θ2

t (x, s) = π2
t (x)1{St =s}.

2) The expected distortion D(Π2
t , X̂t) does not depend on

St and the evolution of Π2
t to Π1

t+1 (given by Lemma 2)
does not depend on X̂t .

Thus, from [27, Proposition 1] we get that the optimal strategy
is given by the dynamic program of (17)–(18).

APPENDIX C
PROOF OF LEMMA 3

The proof relies on the fact that Zt is a deterministic function
of Y0:t , i.e., there exists an �t such that Zt = �t(Y0:t). We prove
the two parts separately. We use the notation f = (f1 , . . . , fT ),
g = (g1 , . . . , gT ), f̃ = (f̃1 , . . . , f̃T ), and g̃ = (g̃1 , . . . , g̃T ).

1) Given a transmission and an estimation strategy (f , g) of
the form (9) and (5), define

f̃t(Et, S0:t−1 , Y0:t−1)

= ft(Et + a�t−1(Y0:t−1), S0:t−1 , Y0:t−1)

and

g̃t(S0:t , Y0:t) = gt(S0:t , Y0:t) − �t(Y0:t).

Then, by construction the strategy (f̃ , g̃) is equivalent to
(f , g).

2) Given a transmission and an estimation strategy (f̃ , g̃) of
the form (21) to (22), define

ft(Xt, S0:t−1 , Y0:t−1)

= f̃t(Xt − a�t−1(Y0:t−1), S0:t−1 , Y0:t−1)

and

gt(S0:t , Y0:t) = g̃t(S0:t , Y0:t) + �t(Y0:t).

Then, by construction the strategy (f , g) is equivalent to
(f̃ , g̃).

APPENDIX D
PROOF OF THEOREM 2

A. Sufficient Statistic and Dynamic Program

Similar to the construction of a prescription for the finite
state Markov sources, for any transmission strategy g̃ of the
form (21) and any realization (s0:t−1 , y0:t) of (S0:t−1 , Y0:t),
define ϕ : R → U as

ϕ(e) = f̃t(e, s0:t−1 , y0:t−1), ∀e ∈ R.

Next, redefine the pre- and post-transmission beliefs in terms of
the error process. In particular, π1

t is the conditional probability
density of Et given (s0:t−1 , y0:t−1) and π2

t is the conditional
probability density of E+

t given (s0:t , y0:t).
Let Rt = 1{Yt ∈X} and rt denote the realization of Rt . The

time evolution of π1
t and π2

t is similar to Lemma 2. In particular,
we have the following lemma.

Lemma 5: Given any transmission strategy f of the form (4),
the following functions exist.

1) There exists a function F 1 such that

π1
t+1 = F 1(π2

t ) = π̃2
t � μ (41)

where π̃2
t given by π̃2

t (e) := (1/|a|)π2
t (e/a) is the con-

ditional probability density of aE+
t , μ is the proba-

bility density function of Wt and � is the convolution
operation.

2) There exists a function F 2 such that for any realization
rt ∈ {0, 1} of Rt

π2
t = F 2(π1

t , st , ϕt , rt).

In particular,

π2
t = F 2(π1

t , st , ϕt , rt) =

{
π1

t |ϕt ,st
, if rt = 0

δ0 , if rt = 1.
(42)

The dynamic program of Theorem 1 can be rewritten in terms
of the error process as follows. Consider X = R (similar deriva-
tion holds for X = Z). Then,

V 1
T +1(π

1
t , st) = 0,

and for t ∈ {T, . . . , 0}

V 1
t (π1

t , st) = min
ϕt :X→U

{
Λ(π1

t , ϕt) + Ht(π1
t , st , ϕt)

}
, (43)

V 2
t (π2

t , st) = D(π2
t ) + V 1

t+1(π
2
t P, st), (44)

where

Λ(π1
t , ϕt) :=

∫

R

λ(ϕ(e))π1
t (e)de,

Ht(π1
t , st , ϕ) := B(π1

t , st , ϕt)V 2
t (δ0 , st)

+ (1 − B(π1
t , st , ϕt))V 2

t (π1 |ϕ,st
, st),

D(π2
t ) := min

ê∈X

∫

R

d(e − ê)π2
t (e)de.

Note that due to the change of variables, the expression for
the first term of Ht does not depend on the transmitted symbol.
Consequently, the expression for V 1

t is simpler than that in
Theorem 1.

Remark 8: The common-information approach for decen-
tralized stochastic control for finite state and finite action mod-
els was presented in [27]. In general, to extend the approach to
Borel state and action spaces, one needs to impose a topology
on the space of prescriptions and establish an appropriate “mea-
surable selection theorem”. Such technical difficulties are not
present in the dynamic program of (43) and (44) because the
common information is finite7 and, therefore, all prescriptions
are measurable.

To establish the results of Theorem 2, we show that the above
dynamic program satisfies a monotonicity property with respect
to the partial order based on majorization. We start with some
mathematical preliminaries needed to present this argument.

7In particular, C 1
t = R0:t−1 and C 2

t = R0:t .
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B. Mathematical preliminaries

Definition 1 (Symmetric and unimodal density): A prob-
ability density function π on reals is said to be symmet-
ric and unimodal (SU) around c ∈ R if for any x ∈ R,
π(c − x) = π(c + x) and π is nondecreasing in the interval
(−∞, c] and nonincreasing in the interval [c,∞).

Definition 2 (Symmetric and quasi-convex prescription):
Given c ∈ R, a prescription θ : R → U is symmetric and quasi-
convex (denoted by SQC(c)) if θ(e − c) is even and quasi-
convex.

Now, we state some properties of SU distributions.
Property 1: If π is SU(c), then

c ∈ arg min
ê∈R

∫

R

d(e − ê)π(e)de.

Proof: For c = 0, the above property is a special case of [4,
Lemma 12]. The result for general c follows from a change of
variables.

Property 2: If π1
t is SU(0) and ϕt ∈ SQC(0), then for any

rt ∈ {0, 1} and st ∈ S, F 2(π1
t , st , ϕt , rt) is SU(0).

Proof: We prove the result for each rt ∈ {0, 1} separately.
Recall the update of π1

t given by (42).
1) For rt = 0 and a given st ∈ S, we have that if

ϕt ∈ SQC(0), then p(st , ϕt(e) is SU(0) since p(st , ·)
is decreasing and p(st , ϕt(e)) = p(st , ϕ(−e)). Then,
π1

t (e)p(st , ϕt(e)) is SU(0) since the product of two
SU(0) functions is SU(0). Hence, π2

t is SU(0).
2) For rt = 1, π2

t = δ0 , which is SU(0).
Property 3: If π2

t is SU(0), then F 1(π2
t ) is also SU(0).

Proof: Recall that F 1 is given by (41). The property fol-
lows from the fact that convolution of symmetric and unimodal
distributions is symmetric and unimodal [4].

Definition 3 (Symmetric rearrangement (SR) of a set): Let
A be a measurable set of finite Lebesgue measure, its symmetric
rearrangement Aσ is the open interval centered around origin
whose Lebesgue measure is same as A.

Definition 4 (Level sets of a function): Given a function � :
R → R≥0 , its upper-level set at level ρ, ρ ∈ R, is {x ∈ R :
�(x) > ρ} and its lower-level set at level ρ is {x ∈ R : �(x)
< ρ}.

Definition 5 (SR of a function): The symmetric decreasing
rearrangement �σ

↓ of � is a symmetric and decreasing function
whose level sets are the same as �, i.e.,

�σ
↓ (x) =

∫

R≥0

1{z∈R:�(z )>ρ}σ (x)dρ.

Similarly, the symmetric increasing rearrangement �σ
↑ of � is a

symmetric and increasing function whose level sets are the same
as �, i.e.,

�σ
↑ (x) =

∫

R≥0

1{z∈R:�(z )<ρ}σ (x)dρ.

Definition 6 (Majorization): Given two probability density
functions ξ and π over R, ξ majorizes π, which is denoted by

ξ �m π, if for all ρ ≥ 0,
∫

|x|≥ρ

ξσ
↓ (x)dx ≥

∫

|x|≥ρ

πσ
↓ (x)dx.

Definition 7 (SU-majorization): Given two probability den-
sity functions ξ and π over R, ξ SU majorizes π, which we
denote by ξ �a π, if ξ is SU and ξ majorizes π.

An immediate consequence of Definition 7 is the following.
Lemma 6: For any nonnegative SQC(c) function g, c ∈ R,

and given two probability density functions ξ and π over R,
such that ξ �a π and ξ is SU(c), we have that for any A ⊆ R

∫

A

g(x)ξ(x)dx ≥
∫

A

g(x)π(x)dx.

Property 4: For any ξ �a π, F 1(ξ) �a F 1(π).
This follows from [4, Lemma 10].
Recall the definition of D(π2) given after (44).
Property 5: If ξ �a π, then

D(π) ≥ D(πσ
↓ ) ≥ D(ξσ

↓ ) = D(ξ).

Proof: The inequalities follow from [4, Lemma 11]. The last
equality holds since ξ is SU(0) and, thus, ξσ

↓ = ξ.
Lemma 7: For any c ∈ R, densities π and ξ and a prescrip-

tion ϕ, there exists a SQC(c) prescription θ, c ∈ R, such that
for any u ∈ U

π({e ∈ R : ϕ(e) ≤ u}) = ξ({e ∈ R : θ(e) ≤ u}).

We denote such a θ by T (π ,ξ)
c ϕ.

Proof: Let η(u) := π({e ∈ R : ϕ(e) ≤ u}). We prove the
construction separately for X = R and X = Z. First, let us con-
sider X = R. Let A(u) be a symmetric set centered around
c ∈ R such that ξ(A(u)) = η(u). By construction, η(u) is in-
creasing in u and, therefore, so is A(u). Define θ(e) such that
A(u) is the lower level set of θ(e). By construction, θ(e) is
symmetric around c. Moreover, since A(u) is convex, θ(e) is
quasi-convex.

Now, let us consider X = Z and c = 0. (The proof for general
c follows from a change of variables). Let Uϕ denote the set
{ϕ(e) : e ∈ Z}. Note that Uϕ is a finite or a countable set,
which we will index by {u(i) ; i ∈ Z≥0}. Define k(i) such that

ξ(A(i−1)) < η(i) ≤ ξ(A(i))

where A(i−1) := {−k(i−1) , . . . , k(i−1)} and A(i) := {−k(i) ,
. . . , k(i)}.

Now, for any u(i) ∈ Uϕ , let η(i) denote η(i) := π({e ∈ Z :
ϕ(e) ≤ u(i)}). Define δ(i) := (η(i) − ξ(A(i)))/2. Define the
prescription θ as follows:

θ(e) =

⎧
⎪⎪⎨

⎪⎪⎩

u(i−1) , if |e| ∈
(
k(i−1) , k(i)

)

u(i−1) w.p. δ(i−1) , if |e| = k(i)

u(i) w.p. δ(i) , if |e| = k(i) .

Then, by construction, θ is SQC(0) and ξ({e ∈ Z : θ(e) ≤
u}) = η(u).

Remark 9: Suppose θ = T (π ,ξ)
c ϕ. Then, the probability of

using power level u at pre-transmission belief π and prescription
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ϕ is the same as that at pre-transmission belief π and prescription
θ. In particular, for all u ∈ U

π({e ∈ X : ϕ(e) = u}) = ξ({e ∈ X : θ(e) = u}).

Property 6: For any density ξ, π, and prescription ϕ let θ =
T (π ,ξ)

c ϕ. Then, for any s ∈ S
1) B(ξ, s, θ) = B(π, s, ϕ).
2) Λ(π, ϕ) = Λ(ξ, θ).

The above results follow from the definitions of B and Λ and
Remark 9. See supplementary material for a detailed proof.

Property 7: For any ξ �a π, where ξ is SU(c), and prescrip-
tion ϕ, let θ = T (ξ ,π )

c ϕ. Then, for any s ∈ S

ξ|θ,s �a π|ϕ,s . (45)

Consequently, for any s ∈ S and r ∈ {0, 1}, we have

F 2(ξ, s, θ, r) �a F 2(π, s, ϕ, r). (46)

Proof: We prove the result for finite U = {u(0 , . . . , u(m )}.
The result for the case when U is an interval follows from a
discretization argument.

For any i ∈ {0, . . . , m}, let A(i) = {e : θ(e) = u(i)} and
B(i) = {e : ϕ(e) = u(i)} and Ā(i) =

⋃i
j=0 A(i) and B(i) =

⋃i
j=0 B(i) .

Since θ is SQC(0), Ā(i) is an interval (while B̄(i) need not
be an interval). Define a(i) = ξ(Ā(i)) and b(i) = π(B̄(i)). Also
define ξ(i) as ξ(i)(e) = ξ(e)1{e∈Ā ( i ) }/a(i) and π(i) = π(i)(e) =
π(e)1{e∈B̄ ( i ) }/b(i) . Then, by [4, Lemma 8]

ξ(i) �a π(i) , ∀i ∈ {0, . . . , m}. (47)

Fix an s ∈ S. For ease of notation, define p(i) = p(s, u(i)).
Then, we can write the following expression for ξ

∣
∣
θ,s

:

ξ
∣
∣
θ,s

(e) =
1

B(ξ, s, θ)
ξ(e)p(s, θ(e))

=
ξ(e)

B(ξ, s, θ)

m∑

i=0

p(i)1{e∈A ( i ) }

(a)
=

ξ(e)
B(ξ, s, θ)

m−1∑

i=0

[p(i) − p(i+1)]1{e∈Ā ( i ) } + p(m )1{e∈Ā (m ) }

=
1

B(ξ, s, θ)

m−1∑

i=0

a(i) [p(i) − p(i+1)]ξ(i) + a(m )p(m )ξ(m )

(48)

where (a) uses the fact that A(i) = Ā(i) \ Ā(i−1) . By a similar
argument, we have

π
∣
∣
ϕ,s

(e) =
1

B(π, s, ϕ)

m−1∑

i=0

b(i) [p(i) − p(i+1)]π(i)

+ b(m )p(m )π(m ) . (49)

Property 6 implies that a(i) = b(i) . The monotonicity of p(s, u)
implies that p(i) − p(i+1) ≥ 0. Using this, and combining (48)
and (49) with (47), we get (45). Equation (46) follows from (13).

C. Qualitative Properties of the Value Function and
Optimal Strategy

Lemma 8: The value functions V 1
t and V 2

t of (43)–(44), sat-
isfy the following property.

V1) For any i ∈ {1, 2}, s ∈ S, t ∈ {0, . . . , T}, and proba-
bility densities ξi and πi such that ξi �a πi , we have
that V i

t (ξi, s) ≤ V i
t (πi, s).

Furthermore, for any s ∈ S and t ∈ {0, . . . , T}, the
optimal strategy satisfies the following properties.

V2) If π1
t is SU(c), then there exists a prescription ϕt ∈

SQC(c) that is optimal. In general, ϕt depends on π1
t .

V3) If π2
t is SU(c), then the optimal estimate Êt is c.

Proof: We proceed by backward induction. V i
T +1(π

1 , s), i ∈
{1, 2} trivially satisfy (V1). This forms the basis of induction.
Now assume that V 1

t+1(π
1 , s) also satisfies (V1). For ξ2 �a π2 ,

we have that

V 2
t (π2 , s) = D(π2) + V 1

t+1(F
1(π2), s)

(a)
≥ D(ξ2) + V 1

t+1(F
1(ξ2), s) = V 2

t (ξ2 , s), (50)

where (a) follows from Properties 4 and 5 and the induction
hypothesis. Equation (50) implies that V 2

t also satisfies (V1).
Now, we have

Ht(π1 , s, ϕ) = B(π1 , s, ϕ)V 2
t (δ0 , s)

+ (1 − B(π1 , s, ϕ))V 2
t (π1 |ϕ,s , s)

(a)
≥ B(ξ1 , s, θ)V 2

t (δ0 , s) + (1 − B(ξ1 , s, θ))V 2
t (ξ1 |θ,s , s)

= Ht(ξ1 , s, θ), (51)

where (a) holds due to Properties 6 and 7 and (50). Then, we
have from (43)

V 1
t (π1 , s) = min

ϕ :X→U

{
Λ(π1 , ϕ) + Ht(π1 , s, ϕ)

}

(b)
≥ min

θ :X→U

{
Λ(ξ1 , θ) + Ht(ξ1 , s, θ)

}

= V 1
t (ξ1 , s) (52)

where (b) holds due to Property 6 and (51) and since inequal-
ity is preserved in pointwise minimization. This completes the
induction step.

In order to show (V2), note that π1
t �a π1

t trivially. Let ϕt

be the optimal prescription at π1
t . If ϕt ∈ SQC(c), then we are

done. If not, define θt = T (π 1
t ,π 1

t )
c ϕt where the transformation

T (π 1
t ,π 1

t )
c is introduced in Lemma 7. Then, the argument in (52)

(with ξ1 replaced by π1) also implies (V2). Furthermore, (V3)
follows from Property 1.

D. Proof of Theorem 2

Proof of Part 1: Properties 2 and 3 imply that for all t, Π2
t is

SU(0). Therefore, by Property 1, the optimal estimate Êt = 0.
Recall that Êt = X̂t − Zt . Thus, X̂t = Zt . This proves the first
part of Theorem 2.
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Proof of Parts 2 and 3: Lemmas 1 and 3 imply that there
is no loss of optimality in restricting attention to transmitters of
the form

Ut = g̃t(Et, Y0:t−1). (53)

Part 1 implies that there is no loss of optimality in restricting
attention to estimation strategies of form (23). So, we assume
that the transmission and estimation strategies are of these forms.

Since the estimation strategy is fixed, Problem 1 reduces
to a single agent optimization problem. {(Et, St−1)}t≥0 is an
information state for this single agent optimization problem for
the following reasons.

1) Equation (20) implies that {Et}t≥0 is a controlled
Markov process controlled by Rt . Moreover, for any real-
ization (e0:t , u0:t , s0:t−1) of (E0:t , U0:t , S0:t−1), we have

P(Rt = 0|e0:t , u0:t , s0:t−1) =
∑

s ′∈S

Qss ′p(s′, u)

= P(Rt = 0|ut, st−1).

Combining the two we get that

P(Et+1 , St |e0:t , u0:t , s0:t−1)=P(Et+1 , St |et , ut , st−1).

2) Using (19), the conditional expected per-step cost may
be written as

E[λ(Ut) + d(E+
t )|e0:t , u0:t , s0:t−1 ]

= λ(ut) + E[p(St, u)d(e)|St−1 = s]. (54)

Thus, the optimization problem at the transmitter is an
Markov decision process with information state (Et, St−1).
Therefore, from Markov decision theory, there is no loss of
optimality in restriction attention to Markov strategies of the
form ft(Et, St−1). The optimal strategies of this form are given
by the dynamic program of Part 3.

APPENDIX E
PROOF OF THEOREM 4

A. Proof of Part 1)

The structure of Theorem 2 holds the infinite horizon setup
as well. The main idea is to use forward induction to show that
the optimal estimate for the error process, Êt = 0. The structure
of optimal X̂t is then derived by using the change of variable
introduced in Section IV-A.

B. Some Preliminary Properties

We prove the following properties, which will be used
to establish the existence of the solution to the dynamic
program (28). Note that the per-step cost c(e, s, u) given
in (54) can be rewritten as c(e, s, u) := (1 − β)(λ(u) +∑

st ∈S Qsst
p(st , u)d(e)).

Our model satisfies the following properties ([29, Assum-
tions 4.2.1,4.2.2]).

Proposition 2: Under Assumption 2, for any λ(·) ≥ 0, the
following conditions of [29] are satisfied.

P1) The per-step cost c(e, s, u) is lower semicontinuous,8

bounded from below and inf-compact9 on R× {0, 1},
i.e., for all e, r ∈ R, the set {u ∈ U : c(e, s, u) ≤ r} is
compact.

P2) For every u ∈ {0, 1}, the transition kernel from
(Et, St−1) to (Et+1 , St) is strongly continuous.10

P3) There exists a strategy for which the value function is
finite.

Proof: P1) is true because of the following reasons. The
action set U is either finite or uncountable and the per-step cost
c(·, s, u) is continuous onR (and, hence, lower semicontinuous),
and is nonnegative. Finally, when U is finite, all subsets of U
are compact. When U is uncountable, all closed subsets of U
are compact.

To check (P2), note the following fact ([29, Example C.6]).
Fact 1: Let P be a stochastic kernel and suppose that there is

a σ-finite measure φ on X such that, for every y ∈ X,
P(·|y) has a density p(·|y) with respect to φ, that is

P (B|y) =
∫

B

p(x|y)φ(dx), ∀B ∈ B(X), y ∈ X.

If p(x|·) is continuous on X for every x ∈ X, then P
is strongly continuous.

P2) is true for the following reasons. Let P denote the transi-
tion kernel from (Et, St−1) to (Et+1 , St). Then, for any Borel
subset B of B(X)

P (Et+1 ∈ B |Et = e, St−1 = s, Ut = u)

= (1 − p(s, u))
∫

B

μ(w)dw + p(s, u)
∫

B

μ(w − ae)dw.

Then, according to Fact 1, P is strongly continuous since the
real line R with Lebesgue measure φ(dx) = dx is σ-finite and
since the density μ is continuous on R.

P3) is true due to Assumption 2.

C. Proofs of Parts 2) and 3)

For ease of exposition, we assume X = R. Similar argument
works for X = Z. We fix the optimal estimator with the Kalman
filter like structure (23) and identify the best performing trans-
mitter, which is a centralized optimization problem. For the
discounted setup, one expects that the optimal solution is given
by the fixed point of the dynamic program (28) [similar to (25)–
(26)]. However, it is not obvious that there exists a fixed point
of (28) because the distortion d(·) is unbounded.

Define the operator B given as follows, for any given s ∈ S
and function: v : R× S → R

[Bv](e, s) := min
u∈U

E[c(e, s, u) + v(Et+1 , St)

|Et = e, St−1 = s].

8A function is lower semicontinuous if its lower level sets are closed.
9A function v : X × U → R is said to be inf-compact on X × U if, for every

x ∈ X and r ∈ R, the set {u ∈ U : v(x, u) ≤ r} is compact.
10A controlled transition probability kernel P (· |x, u) : X → [0, 1] is said

to be strongly continuous if for any bounded measurable function v on X the
function v ′ on X × U , v ′(x, u) := EP [v |x, u], x ∈ X, u ∈ U , is continuous
and bounded.
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Then, (28) can be expressed in terms of the operator B as
follows:

[BJβ ](e, s) := min
u∈U

E[c(e, s, u) + Jβ (Et+1 , St)

|Et = e, St−1 = s].

Then, the proof of Parts 2) and 3) of the theorem follows directly
from [29]. In particular, we have the following proposition,
where the first part follows from [29, Th. 4.2.3] and the second
part follows from [29, Lemma 4.2.8].

Proposition 3: Under (P1)–(P3), there exist fixed point so-
lutions Jβ of (28). Let J∗

β : X → R denote the smallest such

fixed point and f̃ ∗
β (e, s) denote the argmin of the right-hand

side of (28) for Jβ = J∗
β . Then,

1) f̃ ∗
β is the optimal strategy for Problem 2 with β ∈ (0, 1).

2) Let J
(0)
β = 0 and define J

(n+1)
β := BJ

(n)
β . Then, J∗

β =

limn→∞ J
(n)
β .

D. Properties of the Value Function

We can apply the vanishing discount approach and show that
the result for the long-term average cost is obtained as a limit of
those in the discounted setup, as β ↑ 1.

Our model satisfies the following conditions [29], [41].
Proposition 4: Under Assumption 2, for any λ(·) ≥ 0, the

value function Jβ , as given by (28), satisfies the following con-
ditions of [29], [41]: for any s ∈ S, and λ ∈ R≥0 .

S1) There exists a reference state e0 ∈ X and a nonnega-
tive scalar Ms such that J∗

β (e0 , s) < Ms for all β ∈
(0, 1).

S2) Define hβ (e, s) = (1 − β)−1 [Jβ (e, s) − Jβ (e0 , s)].
There exists a function Ks : X → R such that
hβ (e, s) ≤ Ks(e) for all e ∈ X and β ∈ (0, 1).

S3) There exists a nonnegative (finite) constant Lλ such that
−Ls ≤ hβ (e, s) for all e ∈ X and β ∈ (0, 1).

Therefore, if f̃ ∗
β denotes an optimal strategy for β ∈ (0, 1),

and f̃ ∗
1 is any limit point of {f̃ ∗

β}, then f̃ ∗
1 is optimal for

β = 1.
Proof: We prove the proposition for X = R. Similar argu-

ment holds for X = Z.
Let J̃

(0)
β (e, s) denote the value function of the “always trans-

mit with maximum power” strategy. According to Assump-
tion 2, Ms = J̃

(0)
β (0, s) < ∞. Hence, (S1) is satisfied with

e0 = 0 and Ms = J̃
(0)
β (0, s).

Since not transmitting is optimal at state 0 (because the trans-
mission strategy is SQC about 0), we have

J∗
β (0, s) = β

∑

st ∈S

Qsst

∫

R

μ(w)J∗
β (w, st)dw.

Let J̃
(1)
β (e, s) denote the value function of the strategy that

transmits with power level u = ϕ(e) at time 0 and follows the

optimal strategy from then on. Then,

J̃
(1)
β (e, s) = (1 − β)

[

λ(ϕ(e)) +
∑

st ∈S

Qsst
p(st , ϕ(e))d(e)

]

+ β
∑

st ∈S

Qsst

∫

R

μ(w)J∗
β (w, st)dw

= (1 − β)
[

λ(ϕ(e)) +
∑

st ∈S

Qsst
p(st , ϕ(e))d(e)

]

+ J∗
β (0, s). (55)

Since J∗
β (e, s) ≤ J̃

(1)
β (e, s) and J∗

β (0, s) ≥ 0, from (55)
we get that (1 − β)−1 [J∗

β (e, s) − J∗
β (0, s)] ≤ λ(ϕ(e)) +∑

st ∈S Qsst
p(st , ϕ(e))d(e). Hence, (S2) is satisfied with

Ks(e) = λ(ϕ(e)) +
∑

st ∈S Qsst
p(st , ϕ(e))d(e).

According to [28, Th. 1], the value function J∗
β is even and

quasi-convex and, hence, J∗
β (e, s) ≥ J∗

β (0, s). Hence, (S3) is
satisfied with Ls = 0.

E. Proof of Part 4)

The result for Part 4) of the theorem for X = Z follows
from [41, Th. 7.2.3] and for X = R the result of Part 4) fol-
lows from [29, Th. 5.4.3].

APPENDIX F
PROOF OF THEOREM 5

For ease of notation, we use τ instead of τ (1) . Let F0 de-
note the event {E+

−1 = 0, S−1 = s◦} and Fτ denote the event
{E+

τ−1 = 0, Sτ−1 = s◦}.
First note that from (31) we can write

E[βτ | F0 ] = 1 − (1 − β)M (k)
β . (56)

Now, consider

C
(k)
β = (1 − β)E

[ ∞∑

t=0

βt(λ(Ut) + d(E+
t ))

∣
∣
∣
∣
∣
F0

]

= (1 − β)E

[
τ−1∑

t=0

βt(λ(Ut) + d(E+
t ))

∣
∣
∣
∣
∣
F0

]

+ (1 − β)E

[

βτ
∞∑

t=τ

βt−τ (λ(Ut) + d(E+
t ))

∣
∣
∣
∣
∣
F0

]

(a)
= (1 − β)L(k)

β + (1 − β)E[βτ | F0 ]

× E

[ ∞∑

t=τ

βt−τ (λ(Ut) + d(E+
t ))

∣
∣
∣
∣
∣
Fτ

]

(b)
= (1 − β)L(k)

β +
[
1 − (1 − β)M (k)

β

]
C

(k)
β (57)

where the first term of (a) uses the definition of L
(k)
β , as given

by (30) and the second term of (a) uses strong Markov property;
(b) uses (56) and time homogeneity. Rearranging terms in (57)
we get (32).
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[10] X. Gao, E. Akyol, and T. Başar, “Optimal communication scheduling and
remote estimation over an additive noise channel,” Automatica, vol. 88,
pp. 57–69, 2018.

[11] J. Chakravorty and A. Mahajan, “Structure of optimal strategies for remote
estimation over Gilbert–Elliott channel with feedback,” in Proc. Int. Symp.
Inform. Theory, Jun. 2017, pp. 1272–1276.

[12] X. Ren, J. Wu, K. H. Johansson, G. Shi, and L. Shi, “Infinite horizon
optimal transmission power control for remote state estimation over fading
channels,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 85–100, Jan.
2018.

[13] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power management in
wireless control systems,” IEEE Trans. Autom. Control, vol. 59, no. 6,
pp. 1495–1510, Jun. 2014.

[14] J. Chakravorty and A. Mahajan, “Fundamental limits of remote estimation
of autoregressive Markov processes under communication constraints,”
IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1109–1124, Mar. 2017.

[15] L. He, J. Chen, and Y. Qi, “Event-based state estimation: Optimal al-
gorithm with generalized closed skew normal distribution,” IEEE Trans.
Autom. Control, vol. 64, no. 1, pp. 321–328, Jan. 2019.

[16] W. Chen, J. Wang, D. Shi, and L. Shi, “Event-based state estimation of
hidden Markov models through a Gilbert–Elliott channel,” IEEE Trans.
Autom. Control, vol. 62, no. 7, pp. 3626–3633, Jul. 2017.

[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S.
S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[18] K. Plarre and F. Bullo, “On Kalman filtering for detectable systems with
intermittent observations,” IEEE Trans. Autom. Control, vol. 54, no. 2,
pp. 386–390, Feb. 2009.

[19] Y. Mo and B. Sinopoli, “A characterization of the critical value for Kalman
filtering with intermittent observations,” in Proc. Conf. Decis. Control,
2008, pp. 2692–2697.

[20] M. Huang and S. Dey, “Stability of Kalman filtering with Markovian
packet losses,” Automatica, vol. 43, no. 4, pp. 598–607, Apr. 2007.

[21] K. You, M. Fu, and L. Xie, “Mean square stability for Kalman filtering with
Markovian packet losses,” Automatica, vol. 47, no. 12, pp. 2647–2657,
Dec. 2011.

[22] E. R. Rohr, D. Marelli, and M. Fu, “Kalman filtering with intermittent
observations: On the boundedness of the expected error covariance,” IEEE
Trans. Autom. Control, vol. 59, no. 10, pp. 2724–2738, Oct. 2014.

[23] J. Wu, G. Shi, B. D. Anderson, and K. H. Johansson, “Kalman filtering over
Gilbert–Elliott channels: Stability conditions and critical curve,” IEEE
Trans. Autom. Control, vol. 63, no. 4, pp. 1003–1017, Apr. 2018.

[24] A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information, and
coding for finite-state Markov channels,” IEEE Trans. Inf. Theory, vol. 42,
no. 3, pp. 868–886, May 1996.

[25] S. Yang, A. Kavcic, and S. Tatikonda, “Feedback capacity of finite-state
machine channels,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 799–810,
Mar. 2005.

[26] J. C. Walrand and P. Varaiya, “Optimal causal coding-decoding prob-
lems,” IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 814–820, Nov. 1983,
arXiv:1005.2442.

[27] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic
control with partial history sharing: A common information approach,”
IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1644–1658, Jul. 2013.

[28] J. Chakravorty and A. Mahajan, “Sufficient conditions for the value func-
tion and optimal strategy to be even and quasi-convex,” IEEE Trans.
Autom. Control, vol. 63, no. 11, pp. 3858–3864, Nov. 2018.

[29] O. H. Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes:
Basic Optimality Criteria. New York, NY, USA: Springer, 1996.

[30] J. Subramanian and A. Mahajan, “Renewal Monte Carlo: Renewal theory
based reinforcement learning,” in Proc. Conf. Decis. Control, 2019, pp.
5759–5764.

[31] J. C. Spall, “Multivariate stochastic approximation using a simultane-
ous perturbation gradient approximation,” IEEE Trans. Autom. Control,
vol. 37, no. 3, pp. 332–341, Mar. 1992.

[32] J. L. Maryak and D. C. Chin, “Global random optimization by simultane-
ous perturbation stochastic approximation,” IEEE Trans. Autom. Control,
vol. 53, no. 3, pp. 780–783, Apr. 2008.

[33] V. Katkovnik and Y. Kulchitsky, “Convergence of a class of random search
algorithms,” Autom. Remote Control, vol. 33, no. 8, pp. 1321–1326, 1972.

[34] S. Bhatnagar, H. Prasad, and L. Prashanth, Stochastic Approximation
Algorithms. London, U.K.: Springer, 2013.

[35] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,
vol. 39, no. 5, pp. 1253–1265, Sep. 1960.

[36] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, no. 5, pp. 1977–1997, Sep. 1963.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Jan. 2017, arXiv: 1412.6980.

[38] “Remote estimation over a packet-drop channel with Markovian state,”
2019. https://doi.org/10.24433/CO.8529792.v1
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